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Abstract

An oxygen gradient formed along the length of colonic crypts supports stem-cell proliferation at 

the normoxic crypt base while supporting obligate anaerobe growth in the anoxic colonic lumen. 

Primary human colonic epithelial cells derived from human gastrointestinal stem cells were 

cultured within a device possessing materials of tailored oxygen permeability to produce an 

oxygen-depleted luminal (0.8±0.1% O2) and oxygen-rich basal (11.1±0.5% O2) compartment. 

This oxygen difference created a stable oxygen gradient across the colonic epithelial cells which 

remained viable and properly polarized. Facultative and obligate anaerobes Lactobacillus 
rhamnosus, Bifidobacterium adolescentis, and Clostridium difficile grew readily within the 

luminal compartment. When formed along the length of an in vitro crypt, the oxygen gradient 

facilitated cell compartmentalization within the crypt by enhancing confinement of the 

proliferative cells to the crypt base. This platform provides a simple system to create a 

physiological oxygen gradient across an intestinal mimic while simultaneously supporting 

anaerobe co-culture.

Introduction

Humans have co-evolved with their gut microbiota in a symbiotic relationship essential for 

health, yet how these thousands of species influence human biology remains little 

understood.1,2 A number of diseases are associated with intestinal dysbiosis, as well as 

increased susceptibility to bacterial pathogens such as Clostridium difficile.3–6 With this 
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growing awareness, numerous efforts are focused on the gut microbiome for its role in 

disease and its therapeutic potential.7–10 Despite the importance of the microbiome, the 

mechanisms underlying the observed disease associations remain obscure, in part because 

current approaches using fecal sample analysis and animal models have clear limitations. 

For example, fecal samples represent a limited population of the microbes in the intestine, 

omitting populations of microbes restricted to various regions and those known to be strictly 

adhered to the mucosa11 and crypts.12 Animal models are valuable tools for investigating the 

gut microbiota-host interaction; however, manipulating experimental parameters in animal 

subjects is difficult and expensive.13 Moreover, animals and humans possess different 

genetics, anatomy, physiology, metabolism and diet, all of which contribute to shaping the 

interaction of the host and the gut microbial composition.14 Accordingly, significant interest 

exists for improved in vitro models of the human gastrointestinal system, in particular 

models that support human-microbial co-culture.15–17

Co-culture is complicated by the rich luminal microbiota population, >90% of which are 

obligate anaerobes that die 30–60 min after exposure to room air.18,19 To support the 

survival of these anaerobes, the colon maintains a very low luminal oxygen tension 

(PO~0.1–1 mm Hg, <1% O2), yet provides adequate oxygen to support the growth and 

survival of the epithelial cells lining the intestinal lumen.20–23 In sharp contrast to the 

luminal microbes, the intestinal epithelial cells have a significant demand for oxygen due to 

their high turnover and substantial metabolic needs.24 Oxygen delivery to these cells is via 
an extensive vascular network in the lamina propria.25 Although difficult to accurately 

assess, the epithelial cells in direct contact with the colonic lumen are believed to be hypoxic 

(PO<10 mm Hg, 1.4% O2) while the microenvironment at the crypt base where stem and 

proliferative cells reside is borderline normoxic (PO~80 mm Hg, 5–20% O2).20–23 For these 

reasons, in vitro co-culture of strict anaerobes with human primary intestinal cells presents a 

challenge. Thus a simple, robust, and self-sustaining platform for the co-culture of colonic 

anaerobes over a human primary colonic epithelium is highly sought after to understand 

host/microbiota interactions.26

To experimentally manipulate and take advantage of the complex relationships responsible 

for the impact of the microbiome on the intestine as well as throughout the body, the ability 

to control the interplay between primary human intestinal epithelial cells and commensal gut 

microbiota must be greatly enhanced. However, current microbe-intestinal assay systems 

remain severely limited either due to the inability to use primary human intestinal cells or 

significant technical skills required for use of complex methods and devices.8,27 The 

anaerobic co-culture of gut microbiota with mammalian cells has typically employed human 

tumor cell lines as an epithelial mimic (e.g. Caco-2) since these tumor cells are rugged. The 

‘Human-oxygen-Bacteria anaerobic’ (HoxBan) system consists of a 50-mL centrifuge tube 

in which Caco-2 cells on a glass coverslip are cultured in proximity to solid agar seeded with 

an anaerobic bacterium.26 While a simple system, the approach is not amenable to real-time 

screening and is short lived (<36 hours). Culture devices that attempt to produce an oxygen 

gradient across a commercial Transwell insert have also been reported.28–30 These systems 

are placed within an anaerobic chamber to produce anoxic conditions in the luminal 

compartment while oxygenated medium is supplied to the basal compartment. The oxygen 

profile in these devices is not stable over time without continuous perfusion.28,29 A new 
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Transwell compatible system has been reported to solve this issue by perfusing oxygen 

through the basalcompartment.30 These systems have demonstrated co-culture of human 

colon cancer cells28,29 and human primary intestinal cells30 with obligate anaerobes, but 

require continual flow as well as placement of the device into an anaerobic chamber in order 

to maintain a stable oxygen gradient, thus greatly increasing complexity. Over the past few 

years, complex, multi-layered microfluidic devices have been used to create an oxygen 

gradient for anaerobic co-culture, again using Caco-2 cells as the human epithelial mimic.
31–33 These devices rely on the perfusion of normally oxygenated and deoxygenated media 

in segregated compartments to maintain the co-culture environment. A similar strategy uses 

a Caco-2 tissue construct formed on the inner wall of a miniature cylinder-shaped silk 

scaffold while medium pre-equilibrated with an anaerobic gas mix is perfused inside the 

cylinder.34 While these systems generate an oxygen gradient, they require significant 

technical expertise and equipment to fabricate and maintain the flow systems. Other efforts 

to create an experimental platform with primary human cells have used explanted intestinal 

tissue, but rapid cell death and bacterial overgrowth have limited their use.35–37 In 2011, the 

demonstration of long-term human colonic stem-cell cultures as enclosed organoids 

embedded in Matrigel™ opened new possibilities for the study of the human gastrointestinal 

tract using primary human cells.38,39 For culture with bacteria, these systems require 

injection of microbiota through the surrounding hydrogel and into the enclosed lumen of 

individual organoids. The required technical skill, rapid bacterial overgrowth, and short-lived 

co-culture have severely limited this approach.40

Recent advances by our group have produced an epithelial mimic of colonic crypts by 

culture of primary human colonic stem cells on a shaped scaffold spanning a luminal and 

basal fluid compartments.41 Implementation of a chemical gradient across the 3D scaffold 

recapitulates the structure and polarization of the colonic crypts.41 The current work extends 

this platform to produce a simple in vitro culture system that creates and maintains a 

physiologic oxygen gradient with no requirement for an external anaerobic environment or 

flowing gas supply to the culture. Initial studies used a confluent human colonic epithelial 

monolayer to measure oxygen consumption and depletion from a luminal compartment 

surrounded by oxygen-impermeable walls. Oxygen passively diffusing into the basal 

compartment then enabled formation of an oxygen gradient across the epithelial cells. 

Numerous cellular properties including viability, proliferation, mucus production, and tight 

junction formation of the human colonic epithelial cells under the oxygen gradient were 

compared to that of cells under fully aerobic and anaerobic conditions. The ability to form 

an O2 gradient across a 3D in vitro crypt was then assessed as well as the impact of the 

formed oxygen gradient on cell compartmentalization within the crypt. Finally, co-culture of 

facultative and obligate anaerobes was demonstrated within the luminal compartment of the 

oxygen-gradient device in the presence of the cell monolayer and the in vitro crypts. This 

co-culture system has the potential to transform intestinal microbiome research by enabling 

the function of host-microbe interactions to be interrogated in a simple, bench-top system 

that can be readily adopted by any life science laboratory.
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Methods

Fabrication of the threaded chamber and the plug

The cell culture inserts and the plugs were fabricated by milling polycarbonate stock using a 

CNC mill. The cell chamber was designed to have the same culture area as a Corning 12-

well Transwell® insert. The cell chamber and the plug were threaded (M12 × 1.75) for 

efficient sealing of the luminalcompartment. For cell culture, a polytetrafluoroethylene 

(PTFE) porous membrane (BGCM00010; Millipore, Burlington, MA) was attached to the 

bottom of the cell chamber inserts using double-side medical tape (#1504XL, 3M) 

(Supplemental Fig. S1).

A collagen scaffold was prepared in the device prior to cell seeding as previously reported79 

with slight modifications. First, collagen gel (250 μL) was formed on the porous membrane 

in the cell culture insert placed in a 12-well plate by mixing rat tail collagen I (3.32 mg/mL 

in 0.02 M acetic acid, Corning) with neutralization buffer (8.6 μM NaOH, 29 μM HEPES, 

76 μM NaHCO3 in phosphate buffered saline (PBS)) at final concentration of 1 mg/mL and 

then incubating at 37°C for 1 h. Then the collagen gel was crosslinked from the bottom side 

by adding 0.5 mL PBS in the luminal compartment of the device and 1.5 mL of 1-Ethyl-3-

(3-dimethylaminopropyl)-carbodiimide (EDC): N-hydroxysuccinimide (NHS): 2-(N-

morpholino)ethanesulfonic acid (MES) buffer (0.6 M EDC in water, 0.15 M NHS in water, 

0.1 M MES in water, pH 5, 1:1:1 volume ratio) in the basal compartment of the well plate 

and incubating for 1 h at 25°C. Residual EDC and NHS in the collagen gel were removed by 

immersion in water for at least 16 h at 25°C. The resulting, partially crosslinked, collagen in 

the chamber was sterilized with 70% ethanol (5 min) and washed extensively with PBS prior 

to cell seeding.

To initiate the oxygen gradient, the oxygen impermeable plug was threaded into the cell 

chamber. When the plug was inserted, the air trapped between the plug and the medium was 

released through a hole in the plug. Then the hole was sealed with an Ethylene Propylene 

Diene Monomer (EPDM) rubber cap (0.508 mm). For re-use of the cell culture inserts and 

the plugs, the porous membrane was detached, and the parts were sonicated and washed with 

detergent in water, thoroughly rinsed with water, dried and then plasma treated for 5 min.

Power and statistical analyses

Power analysis80 was performed using G*Power applet81 (version 3.1.9.2) to calculate the 

minimum sample size required for distinguishing the cellular properties in an aerobic vs. 

anaerobic environment with the assumption that the cells under the oxygen gradient would 

behave in a similar manner. As preliminary data for this analysis, proliferative cell 

populations of human colonic epithelial cells grown on neutralized collagen in 24-well plate 

and exposed to either aerobic or anaerobic conditions were used. The cells were grown 

aerobically in expansion medium (EM, Table S1) for 4 days with the medium exchanged 

every 2 days then on day 4 the cells were either grown aerobically or anaerobically for 2 

more days in EM. To label proliferative cells, EdU was pulsed on day 5. On day 6, the cells 

were fixed with 4% paraformaldehyde (PFA) and stained for EdU incorporation and with 

Hoechst 33342 as described below. The cells were imaged using a Nikon Eclipse TE300 
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inverted epifluorescence microscope with a Cy5 filter for EdU and DAPI filter for Hoechst 

33342 observation. The mean of the EDU positive area normalized by Hoechst 33342 

labeled area in aerobic and anaerobic conditions was 0.55 and 0.06 respectively and the 

standard deviation 0.044 and 0.029, resulting the sample size of 2. An α of 0.05 and power 

(1-β) = 0.95 was used for these calculations.

In all graphs, the data and error bars indicate the mean values and the standard deviation, 

respectively. A one-way ANOVA analysis was used for all statistical analyses except for the 

data summarized in Fig. 3C,D where a paired t-test was used to exclude batch-to-batch 

variability.

Human colonic epithelial cell culture

Human primary colon epithelial stem cells from two different sources were used in this 

study-one was obtained from a colonic biopsy specimen (52 years old male, Meadowmont 

Endoscopy Center at the University of North Carolina Hospital with consent of the patient 

[Institutional Review Board approval #14–2013]). The second source was from a cadaveric 

donor (23 years old male). The colonic crypts were isolated and expanded in EM on 

collagen gel in a 6-well plate as described previously.82 For routine maintenance, the cells 

were subcultured every 5–7 days in 6-well plate for up to 16 passages by digesting the 

underlying collagen with collagenase and then dissociation of the cells from the collagen by 

incubation with using 0.5 mM Ethylenediaminetetraacetic acid (EDTA) as described 

previously.82 Karyotyping of the cells at passage 7 and 15 confirmed that the chromosomes 

of the cells were normal.

For the experiments with the different oxygen environments in the cell culture inserts, the 

cells were passaged from a 6 well plate to the cell culture insert with collagen prepared as 

described above (from a 6 well plate to 6 inserts) and cultured for up to 10 days under 

aerobic conditions as follows. The human colonic stem cells were expanded to form a 

monolayer in expansion media (EM, Table S1, 0.5 mL placed in the luminal compartment 

and 2.5 mL placed into the basal compartment) for 6 days with medium exchange every 

other day until a confluent monolayer was formed. On day 6, the luminal medium was 

replaced with differentiation medium (DM, Table S1, 0.4 mL) and the basal medium was 

replaced with stem medium (SM, Table S1, 3 mL). Then the cells were incubated at 37°C 

for 4 days with medium replacement every other day. On day 10, the luminal plug was 

installed in the cell culture insert to initiate the oxygen gradient. The cells under the oxygen 

gradient were further incubated for 2 more days and assayed on day 12 as described below. 

Aerobic culture samples were prepared in the same manner except that the plug was not 

used to seal the luminal compartment. For anaerobic culture samples, the culture media was 

deoxygenated prior to anaerobic culture (<1% O2) and the media were replaced in an 

anaerobic chamber under 100% N2, or 5% CO2 + 95% N2. The cells were then placed in a 

glasslock container filled with an anaerobic gas mixture (5% CO2, 10% H2, 85% N2). The 

glasslock container also contained water to maintain a humidified environment to minimize 

evaporation of the cell media.
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Oxygen sensing and transepithelial electrical resistance (TEER) measurement

The oxygen level was measured using a Microx4 oxygen sensor (PreSens, Germany) with a 

needle oxygen probe (PreSens, NTH-PSt7) according to the manufacturer’s instructions. To 

measure the oxygen level in the luminal compartment of the device, the oxygen probe was 

placed through the rubber cap used to seal the port in the polycarbonate plug so that the tip 

of the probe was located 2 mm above the surface of the cells. For the oxygen measurements 

in the basal compartment, a basal reservoir that has the same inner diameter (22.1 mm) and 

well volume (7 mL) as a 12-well plate was fabricated by milling a polycarbonate slab and 

then a hole was drilled into the side of the reservoir 7 mm above the well bottom so that the 

probe was immediately adjacent to the porous membrane (Supplemental Fig. S1). The 

oxygen probe was inserted through this hole that was then sealed with the rubber cap. For 

the oxygen level measurement of the basal medium, the cell culture insert was placed in the 

basal reservoir and the oxygen measurements were acquired every 5 min for 16 h. TEER 

was measured using a volt-ohmmeter (EVOM2, World Precision Instruments, FL) and a 

chopstick electrode. TEER was measured immediately after placing cells in an aerobic 

environment. For TEER measurement on the cells in the oxygen gradient condition, the plug 

was removed before TEER measurement. The cells in fully anaerobic condition were taken 

out of the anaerobic environment immediately before the TEER measurement.

Viability assay

Propidium iodide (PI, 2 μM) and Hoechst 33342 (12.5 μM) in PBS were added to the 

luminal compartmentof the cell cultures and incubated for 30 min to label dead cells (PI 

positive) and all cells (Hoechst 33342 positive). For detecting PI and Hoechst 33342-stained 

cells, the labeled monolayers were sampled with a biopsy tool (5 mm in diameter), 

transferred onto glass slides and the entire sample imaged with an Olympus Fluoview 

FV3000 confocal microscope (10× objective, 0.4 N.A.) with 561 nm and 405 nm lasers for 

excitation of PI and Hoechst 33342, respectively. Emissions at 610–710 nm and 430–470 nm 

were detected for PI and Hoechst 33342, respectively.

Pimonidazole staining

To assay intracellular oxygen depletion, cells were incubated for 2 h with pimonidazole 

hydrochloride (200 μM, Hypoxyprobe, HP1–100Kit) that was added to the basal 

compartment. The cells were fixed with 3% glyoxal in PBS (pH 5)83 for 20 min at −20°C. 

To permeabilize the cells, the sample was incubated for 10 min at 25°C with 0.5% Triton 

X-100 in PBS for 20 min at 25°C. The sample was then blocked using bovine serum 

albumen (BSA, 3% in PBS) for 1 h at 25°C. The samples were subsequently incubated with 

mouse antibody against pimonidazole (Hypoxyprobe, HP1–100Kit) diluted in 3% BSA 

(1:50) at 4°C for 15 h. The cells were washed with 3% BSA in PBS ×3 and then incubated 

with anti-mouse antibody conjugated with Alexa Fluor 647 (1:500, 715–605-150, Jackson 

ImmunoResearch) diluted in 3% BSA (1:500) for 1 h at 25°C. Finally, the cells were washed 

with 3% BSA in PBS ×2 and then washed with PBS. For imaging, the collagen gels with 

adherent cells were transferred onto glass slides and imaged using Olympus Fluoview 

FV3000 confocal microscope (640 nm excitation, emission 650 nm-750 nm). The 

fluorescence intensity of pimonidazole adduct as indicative of oxygen depletion was 
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measured using Fiji.84 The amount of pimonidazole adduct formed was normalized to the 

total number of cells by dividing the pimonidazole adduct fluorescence intensity by the 

Hoeschst 33342 fluorescence intensity.

Immunofluorescence and EdU staining

The cells were fixed with 3% glyoxal solution for ZO-1 immunostaining. All other 

immunostaining employed fixation in 4% paraformaldehyde for 15–20 min. Cryosection 

samples were prepared by fixing the cells on collagen with 4% PFA, soaked with 30% 

sucrose in water for 1 day and then embedded in optimal cutting temperature (OCT) 

compound (Tissue-Tek O.C.T. Compound, VWR, Radnor, PA). The frozen tissue samples 

were sectioned into 10 μm thick slices using a cryostat and transferred onto glass slides. The 

fixed samples and the sectioned samples were permeabilized with 0.5% Triton X-100 in 

PBS for 20 min, blocked with 3% BSA in PBS for 1 h at 25°C and then incubated with 

primary antibody at 4°C for at least 15 h. Primary antibodies for MUC2 (Santa Cruz 

Biotechnology, SC-515032), ZO-1(Proteintech, 21733–1-AP), and ezrin (Thermo, PA5–

17518) were diluted in 3% BSA at 1:200 and incubated with the samples at 4°C overnight. 

The samples were then washed with 3% BSA in PBS ×3 and incubated with fluorophore 

conjugated secondary antibody. Alexa Fluor 488 donkey anti-mouse (Jackson 

ImmunoResearch, 715–545-150) and Alexa Fluor 594 donkey anti-rabbit ReadyProbes 

(ThermoFisher scientific, R37119) were used for MUC2 and ZO-1 respectively at 1:100 

dilution in 3% BSA in PBS with incubation for 1 h at 25°C. Hoechst 33342 (2 μM) was 

added with the secondary antibody to stain DNA. Finally, the cells were washed with 3% 

BSA ×2 and then with PBS.

5-ethynyl-2´-deoxyuridine (EdU) was used to stain for S phase (proliferative) cells following 

the manufacturer’s protocol (Click-iT EdU Alexa Fluor 647 Imaging kit, C10340, Thermo 

Fisher Scientific). The cells were incubated for 24 h in the presence of EdU (10 μM) in the 

basal medium. The cells were fixed with 4% paraformaldehyde for 15 min at 25°C, 

permeabilized for 20 min with 0.5% Triton X-100 in PBS. EdU incorporated into the 

cellular DNA was stained with Cy5 conjugated azide for 1 h at 25°C. For imaging, the 

samples were either taken with a biopsy punch (5 mm) or picked up with forceps and then 

transferred on glass slides and imaged using an Olympus Fluoview FV3000 confocal 

microscope (Exc. 405 nm, 488 nm, 561 nm, 640 nm lasers for Hoechst 33342, Alexa Fluor 

488, Alexa Fluor 594, Cy5, respectively). For quantification, the fluorescent area of each 

stain above an empirically set threshold was calculated using Fiji image processing software.
84 To normalize the measurement to the total number of cells present, the fluorescence-

positive area was divided by the Hoechst fluorescence area i.e. area above an empirically set 

threshold.

Bacterial co-culture

L. rhamnosus GG (LGG) (ATCC 53103, obtained from Microbiologics, 01090P) was grown 

from a single colony in De Man, Rogosa and Sharpe (MRS) broth under aerobic conditions 

in a tissue culture incubator (5% CO2, 69.3% N2, 18.6% O2) at 37°C. C. difficile 630Δerm 

was grown from a single colony in brain heart infusion medium (BHIS) supplemented with 

5% w/v yeast extract broth in an anaerobic chamber (Coy Laboratories, Grass Lake, MI, 5% 
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CO2, 10% H2, 85% N2). B. adolescentis Reuter ATCC 15703 (obtained from ATCC) was 

grown in MRS broth supplemented with 5% L-cysteine in an anaerobic environment using 

the BD GasPak EZ Gas Generating System. All bacterial cultures were initiated one day 

before co-culture.

For LGG co-culture, the human colonic epithelial cells were grown as described above for 

10 days prior to co-culture except that on day 8, the culture medium was replaced with 

antibiotic free medium. On day 10, the medium was replaced with fresh antibiotic-free 

medium, and the epithelial cell culture placed into the oxygen gradient device with the 

oxygen impermeable plug installed. Aerobic control samples were prepared at the same 

time, but without installation of the plug to leave the luminal fluid compartment open to air. 

The cells were incubated for 1 day followed by addition of the bacterial sample to the 

luminal compartment. On day 11, harvested LGG were diluted in MRS broth at 1:1000, and 

5 μL of the diluted LGG sample was inoculated in the luminal compartment, resulting in 

3×105 colony forming unit (CFU)/mL in the luminal compartment. For the oxygen gradient 

samples, the rubber cap in the plug was removed, then LGG was inoculated through the port, 

and the rubber cap was placed again to seal the luminal space. After 24 h, the supernatant 

was collected and the number of viable LGG in the supernatant was estimated by plating 

serial dilutions of a known volume onto MRS agar plates. To estimate the number of LGG 

that adhered to the human cells, the epithelial cells cultured in the presence of the bacteria 

were washed with PBS to remove loosely attached bacteria. The epithelial monolayer and 

underlying collagen scaffold were then transferred to a tube and incubated with collagenase 

for 10–15 min at 37°C. The solution was then vortexed vigorously ×3 and then serial 

dilutions plated on MRS agar plates to quantify the number of CFU/mL.

For epithelial cell and C. difficile co-culture, the human colonic epithelial cells were grown 

for 10 days as described above, then transferred into an anaerobic chamber for further 

manipulation. For samples cultured in the oxygen-gradient device and an anaerobic 

environment, the medium in the luminal compartments was replaced with antibiotic-free 

deoxygenated DM (<0.5% O2), and the plug was installed in an anaerobic chamber. The 

medium within the basal compartment was replaced with normoxic SM in both anaerobic 

and the oxygen gradient conditions. For the fully anaerobic co-culture samples the basal 

media was pre-incubated in an anaerobic environment prior to co-culture. Inoculation of C. 
difficile was performed within an anaerobic chamber. C. difficile were placed into BHIS 

medium and 4 μL (1×104 CFU/mL) was inoculated into the luminal compartments (0.4 mL), 

through the port in the plug for the oxygen-gradient gradient device or directly into the 

luminal compartment for the cells to be cultured under an anaerobic condition. Then the 

oxygen-gradient device with epithelial and bacterial cells was removed from the anaerobic 

chamber and incubated in a standard tissue-culture incubator (5% CO2, 69.3% N2, 18.6% 

O2) at 37°C. The control sample to remain anaerobic was retained within the anaerobic 

chamber and incubated at 37°C in a glasslock container with a humidified environment. At 6 

and 24 h, the contents of the luminal chamber (supernatants, collagen scaffold and epithelial 

cells) were placed into a tube and incubated with collagenase for 15 min at 37°C. The 

bacterial suspension was then serially diluted in BHIS medium and plated onto BHIS agar 

for enumeration of C. difficile.
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For B. adolescentis co-culture with the in vitro crypts, the crypts were prepared as described 

above (7 days in EM then 4 days in DM/SM) except the last medium replacement on day 9 

was with antibiotic-free medium. On day 11, the oxygen gradient was generated by placing 

deoxygenated DM (<0.5% O2) in the luminal compartment followed by installation of the 

plug while the device was within an anaerobic chamber (5% CO2, 95% N2). Normoxic SM 

was loaded into the basal compartment. Aerobic crypt-bacteria co-cultures were prepared in 

the same way except normoxic DM was used and the plug was not installed so that the 

luminal fluid remained open to the surrounding environment. The luminal compartment of 

both systems was inoculated with 2.5×104 CFU of B. adolescentis followed by placement of 

the devices in a standard tissue-culture incubator (5% CO2, 69.3% N2, 18.6% O2) at 37°C. 

After 24 h of co-culture, the luminal medium containing B. adolescentis was collected and 

serial dilutions were plated on MRS agar plates in anaerobic chamber BD GasPak EZ Gas 

Generating System for colony enumeration.

Scanning electron microscopy (SEM)

The epithelial cells without bacteria and the co-culture samples were fixed with 4% 

paraformaldehyde for 20 min and 40 min, respectively. The samples were washed with PBS, 

then dehydrated by incubation in solutions with gradually increasing ethanol to water ratios 

until 100% ethanol was attained. The samples were dried with a critical point dryer 

(Autosamdri®−931, Toursimis, MD) coated with 15 nm of platinum using a sputter coater 

(Cressington, UK) and observed by SEM (Hitachi S-4700). The contrast of the image was 

enhanced using the Enhance Local Contrast (CLAHE) plugin on the Fiji image processing 

package.84

In vitro crypt formation and culture

The shaped collagen scaffold used for crypt formation was prepared as described previously.
41 Briefly, a PTFE membrane was attached to the cell culture device designed for the oxygen 

gradient using double sided medical tape as described above. Then a COC film with a 3 mm 

circular opening at the center was attached under the porous membrane. Rat tail collagen (5 

mg/mL in 0.1 M MES buffer) was mixed with EDC and NHS at a final concentration of 60 

mM and 15 mM, respectively. The collagen mixture (50 μL) was pipetted into the culture 

insert and the collagen was molded into a crypt shape using a PDMS stamp. The PDMS 

stamp possessed a 10×10 micropillar array with each micropillar 125 μm diameter (at the 

largest width), 500 μm length, and a distance between the micropillars of 200 μm. Molding 

was accomplished in a pressurized chamber filled with N2 gas for 1 h. The stamp was then 

removed leaving a microwell array with each microwell of similar length and diameter to in 
vivo human crypts. The shaped collagen scaffold was soaked in water for 16 h to remove 

excess cross-linking reagents and then sterilized in 70% ethanol and washed with PBS. 

Human collagen I (10 μg/mL, VitroCol®, Advanced BioMatrix, CA) was coated on the 

shaped scaffold to enhance cell adhesion. Human primary colon epithelial cells were then 

plated on the collagen scaffold and cultured in EM for 7 days. The medium was exchanged 

every other day. On day 7, the growth factor gradient was formed by changing the luminal 

and basal media to DM (without the growth factors) and SM (with the growth factors), 

respectively. The cells were grown in the growth factor gradient for 4 days with the medium 

exchanged every other day. On day 11, the oxygen gradient was generated by placing the 
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plug into the luminal compartment as described above. Corresponding aerobic samples were 

prepared at the same time by omitting the plug. The cells were then cultured for 2 more days 

with DM and SM in the luminal and basal compartments, respectively. An EdU 

incorporation assay was performed in the same way as for the monolayers described above 

by adding EdU (10 μM) to the basal medium for 24 h. The tissue constructs were then fixed 

on day 12 with 4% paraformaldehyde for 20 min at 25°C and EdU incorporation measured 

as described above. For assay of pimonidazole adduct formation, the cultures were 

continued to day 13 when pimonidazole hydrochloride (200 μM, Hypoxyprobe) was added 

to the basal medium followed by incubation for 2 h. The cells were fixed on day 13 with 3% 

glyoxal fixative for 20 min at 25°C and adduct formation assayed as described above.

Results

1. Design and simulation of the oxygen-gradient device

The device incorporated an oxygen-impermeable luminal plug, a culture insert supporting 

the cells on their scaffold and enclosing the luminal compartment, and a basal compartment 

into which oxygen diffused passively. The device possessed dimensions similar to that of a 

commercial Transwell (Fig. 1A). This format was employed due to its familiarity to the 

research community, its ease of use, and the accessibility of the basal and luminal 

compartments for sampling and reagent addition. The gas impermeable plug inserted into 

the luminal compartment blocked oxygen influx from above the cell monolayer as the cells 

consumed oxygen. The threaded plug was fabricated from polycarbonate due to its low 

oxygen permeability, transparency, and ease of fabrication by milling. A port in the plug 

enabled gas release during sealing, sampling of the luminal contents, addition of reagents or 

bacteria, and measurement of oxygen saturation. During cell culture, the port was sealed 

with a rubber cap. A thin porous membrane formed the oxygen permeable base of the 

polycarbonate device insert. A collagen-based hydrogel scaffold (~2 mm thick) was formed 

on the porous membrane to support the epithelial cell monolayer. The thick collagen scaffold 

was preferred over a simple porous membrane because when properly shaped the collagen 

scaffold supports formation of either a cell monolayer or a fully polarized in vitro crypt.41 

The wells of a 12-well microtiter plate formed the basal compartment. The basal 

compartment below the monolayer was supplied with oxygen by leaving the fluid in this 

compartment in contact with the aerobic atmosphere. This system design was chosen to 

permit development of an anaerobic luminal compartment by minimizing the influx of 

oxygen into the luminal compartment and utilizing cell respiration to scavenge oxygen 

molecules existing within or entering the luminal compartment. It was reasoned that supply 

of oxygen passively through the basal compartment would then lead to development of a 

self-sustaining oxygen gradient over time.

The oxygen concentration over time within the device in the presence of cells was modeled 

using a COMSOL simulation. Critical to precision was accurate, experimentally measured 

values for the oxygen diffusion coefficient within the collagen hydrogel and the oxygen 

consumption rate (OCR) of primary intestinal epithelial cells. The oxygen diffusion 

coefficient in collagen was calculated by fitting the time varying oxygen concentration 

measured within a thick collagen gel to Fick’s second law of diffusion (Supplementary 
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Methods). The collagen slab was initially deoxygenated and then placed into contact with 

fully oxygenated medium. The oxygen diffusion coefficient in the collagen gel was 

1.2±0.1×10−9 m2/s, which is lower than the previously reported oxygen diffusion coefficient 

in water (3×10−9 m2/s).42 The OCR of human primary colon epithelial cells was calculated 

by measuring the oxygen concentration over time within the medium in a closed culture 

vessel containing a cell monolayer on a collagen gel (Supplementary Methods). The 

experimental measurements were fit to the integrated Michaelis-Menten kinetic equation to 

obtain a maximum OCR of 14±4 amol/cell∙s at 37°C, which is within an order of magnitude 

of previously reported values measured for various adherent human cells (1.5–120 amol/

cell∙s).43 For Caco-2 cells, the mitochondrial respiration rates of undifferentiated44 (70 amol/

cell·s) and semi-differentiated (33 amol/cell·s) 45 cells are within the order of magnitude of 

the OCR measured for the primary intestinal cells. The difference in cell type (cancer cell 

line vs. primary cells), differentiation state, and culture medium may contribute to the 

measured difference in metabolism and OCRs of the various cell types. The measured OCR 

in this work represents both mitochondrial respiration and glycolysis since the measurement 

was performed under typical culture conditions, i.e. extracellular matrix and intestinal 

culture medium. This OCR value is therefore expected to closely resemble that of cells in 

the described intestinal monolayers and in vitro crypts providing an accurate value for the 

simulation.

To predict whether an oxygen gradient could be generated in the device using epithelial cell 

respiration, the oxygen level and flux in the device over time was simulated (Fig. 1B). In the 

simulation, the walls of the cell culture insert, the plug, and the well plate were modeled as 

oxygen impermeable since they were comprised of polycarbonate (culture insert, plug) or 

polystyrene (multiwell plate). Free oxygen diffusion was assumed through porous 

membrane below the collagen scaffold. The model suggested that luminal hypoxia (<1% O2) 

could be attained within 3 h after the plug was installed in the device while the oxygen level 

below the collagen gel would decrease over time reaching a steady state at ~10% O2 (Fig. 

1B, supplementary movies 1 and 2). In this simulation, the oxygen gradient across the cell 

layer and collagen gel (2 mm thick) was sustained over time due to oxygen consumption by 

the cells suggesting the feasibility of forming an oxygen gradient across the cells and 

scaffold without the need to flow gas or media into the device.

2. Experimental measurement of the oxygen gradient formed by an epithelial monolayer 
in the device

The simulated oxygen gradient was experimentally validated by forming a confluent 

monolayer of primary human epithelial cells across the collagen scaffold (see Methods). The 

luminal medium was then replaced with oxygenated medium (18.6% O2) or deoxygenated 

medium (<1% O2) followed by placement of the luminal plug. For both conditions, the basal 

medium was initially oxygenated (18.6% O2), and the entire device was placed into a 

standard tissue culture incubator (5% CO2, 69.3% N2, 18.6% O2) at 37°C. The oxygen 

saturation in both the luminal and basal compartments was measured over time and 

compared to that of the model (Fig. 1C,D). When the luminal medium was not 

deoxygenated in advance of device setup, the oxygen saturation in the luminal compartment 

decreased at a rate of 8.8 ± 0.5% O2/h (from 15 min to 2 h) after installation of the plug. By 
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2, 3, and 6.5 h after plug insertion, the oxygen saturation was 2.2 ± 0.7%, 1.3 ± 0.4%, and 

0.8 ± 0.1%, respectively. When deoxygenated medium was placed at time zero into the 

luminal compartment, the luminal oxygen level reached a steady state level at 2 h of 0.07 

± 0.02% at 2 h. After placement of the device into the tissue culture incubator, the oxygen 

saturation of the basal medium also decreased at the rate of 4.1 ±1.1% O2/h, but reached a 

stable value of 11.1± 0.5% O2 at 4 h. The oxygen saturation decrease in the basal 

compartment was most likely due to the lack of mixing in the basal compartment with 

consequent establishment of an oxygen gradient across the liquid medium in the basal 

compartment itself. When O2 gradients in the basal compartment were eliminated by stirring 

the medium, the oxygen saturation was stable at 19.1±0.7%. These data matched that 

predicted by the model and demonstrate that an oxygen gradient was formed across the 

epithelial cell monolayer. Cellular respiration combined with oxygen-impermeable walls 

depleted oxygen in the luminal compartment, while the basal compartment remained 

oxygenated due to exposure of the fluid to the ambient environment.

The presence of pimonidazole adducts, which form on thiols of cellular proteins in the 

presence of low oxygen saturation (<10 mm Hg or <1.4% O2 under the current conditions), 

was assessed.46,47 Cells cultured in an anaerobic medium displayed significantly greater 

adduct formation than those in oxygenated medium (Fig. 1E,F). Cells cultured in the oxygen 

gradient possessed a level of adduct formation that was not significantly different from that 

of the cells in the oxygenated medium, but significantly lower than that of the cells under 

anaerobic conditions. These data suggest that the cells under the oxygen gradient 

experienced an oxygen influx sufficiently high to minimize the pimonidazole adduct 

formation in contrast to that in fully anaerobic conditions (Fig. 1B). These data indicate that 

an oxygen gradient can be created and maintained across the human intestinal epithelial cells 

by limiting oxygen influx from the luminal face. Because the cells are supplied with oxygen 

from the basal compartment, the cells were not anoxic under these conditions.

3. Characterization of cell physiology in the oxygen gradient device

Intestinal epithelial cells, in contrast to epithelial cells derived from other organs, maintain 

their barrier integrity despite their hypoxic microenvironment.48,49 Indeed, a recent report 

demonstrated that hypoxia might improve barrier function in intestinal epithelium.50 

However, these observations were made using colon cancer cell lines, which can respond to 

environmental stimuli quite differently than primary cells. To assess the response of human 

primary intestinal cells to different oxygen levels, cells were cultured aerobically to produce 

a confluent monolayer on the collagen scaffold and then were placed either under fully 

aerobic conditions, fully anaerobic conditions, or an oxygen gradient. After 2 days, >95% of 

the cells were viable without a significant difference between the 3 oxygen conditions (Fig. 

2A,E). In vivo, intestinal epithelial cells are polarized, exhibiting distinct luminal and basal 

surface, and this polarization is critical for proper function such as water, salt, and 

metabolite transport.51 Ezrin, a brush border protein enriched within the luminal microvilli 

of absorptive colonocytes, was present at high density on the luminal aspect of the epithelia 

under all three culture conditions (Fig. 2B). Microvilli on the luminal cell aspect were also 

clearly visible by electron microscopy suggesting that polarized colonocytes readily formed 

under the different conditions (Fig. 2C). Colonic epithelial cells form tight intercellular 
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junctions to protect against luminal content leakage into the underlying tissue. The tight 

junction marker ZO-1 was appropriately localized at intercellular interfaces under all 3 

oxygen conditions, suggesting that the cells formed an impermeable monolayer (Fig. 2D). 

The transepithelial electrical resistance (TEER) for cells under the varying oxygen 

conditions did not differ significantly (Fig. 2F). The TEER values of the epithelial cell 

monolayers were consistent with those published for in vivo human colon tissue (100–400 

Ω·cm2),52,53 unlike the values for Caco-2 tumor-cell monolayers (>1000 Ω·cm2).32,53,54 

These data suggest that the oxygen gradient did not impair the ability of primary human 

intestinal cells to form a tight barrier when cultured as a monolayer.

Oxygen influences growth and fate decisions in various stem-cell niches including 

embryonic, mesenchymal, hematopoietic, and neural stem cells,55,56 but oxygen’s influence 

on the proliferation and formation of differentiated intestinal epithelial cells is not known. To 

evaluate the influence of oxygen depletion on proliferation, cells were pulsed with EdU for 

24 h and then assayed for EdU incorporation into DNA. Cells under the oxygen gradient or 

anaerobic conditions demonstrated significantly lower incorporation of EdU relative to the 

cells under a fully aerobic environment (Fig. 3A,C). The decreased proliferation in the 

absence of a high oxygen saturation is consistent with the behavior of other stem cells57 and 

colon cancer cells,58 but contrary to the increased proliferation of mesenchymal or neural 

stem cells in hypoxic conditions.55 This result may suggest that the observed decreased 

proliferation in response to oxygen depletion may be an attribute of the intestinal epithelium. 

Differentiation to mucus-producing goblet cells was detected by immunofluorescence using 

antibodies specific to mucin2 (MUC2). The expression of MUC2 was not statistically 

different for the cells cultured in a fully aerobic environment or under the oxygen gradient, 

but MUC2 was significantly decreased in cells cultured in the absence of oxygen (Fig. 

3B,D). This is consistent with the reduced goblet cell population in ulcerative colitis, where 

lowered blood oxygen level (hypoxemia) causes an inflammatory hypoxia.59,60 Thus oxygen 

saturation clearly impacts cell proliferation as well as the ability to form the differentiated 

cell types.

4. Co-culture with a facultative anaerobe

To understand whether the luminal environment of the gradient device was able to support 

the growth of colonic bacteria, the facultative anaerobe Lactobacillus rhamnosus GG (LGG) 

was co-cultured with human colonic epithelial cells and compared to co-cultures under fully 

aerobic conditions. LGG was selected since it is one of the most common constituents of 

probiotics. LGG (1.5×105 colony forming units, CFU) were inoculated into the luminal 

chamber above the epithelial cell monolayer. After co-culture for 24 h, the number of viable 

LGG under the oxygen gradient increased 15,000 fold which was not significantly different 

from the increase observed for bacteria in the fully aerobic environment (Fig. 4C), consistent 

with previous reports that LGG exhibits similar growth in aerobic and low oxygen 

conditions.61 Since LGG binding to human cells is suggested to mediate the probiotic effect 

of LGG,62 the association of LGG with the epithelial cell surface was examined in the 

presence and absence of the oxygen gradient. Surface-adherent LGG were assessed after 

removal of the luminal medium containing the non-adherent LGG. There was no significant 

difference in the percentage of viable LGG bound to human cells within the fully aerobic 
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(3.6% ± 3.8) and oxygen gradient (6.8% ± 4.0) co-cultures. The proportion of adhered LGG 

was similar to that observed in prior reports of adhesion to Caco-2 tumor cells.63 

Immunostaining of the tight junction protein ZO-1 revealed the expected patterning with 

intense, but contiguous, staining at the cell-cell borders (Fig. 4B). After 24 h of culture, the 

TEER of the monolayers under the aerobic and the oxygen gradient conditions was not 

significantly different suggesting that the barrier function of the monolayer cultured in the 

presence of LGG was not disrupted (Fig. 4D), and that on these timescales the impact of the 

nearby bacteria on the epithelial cells was minimal.

5. Co-culture with the obligate anaerobe, Clostridium difficile (C. difficile)

C. difficile (strain 630Δerm) was chosen as a model obligate anaerobe due to its growing 

clinical significance in causing intestinal disease when gut microbiota is disrupted by 

antibiotic treatment or other means. After establishing the epithelial monolayer, the luminal 

reservoir of the oxygen-gradient device was filled with deoxygenated medium (<1% O2), the 

device was moved into an anaerobic chamber, and C. difficile at ~5×103 CFU was added to 

the luminal chamber. The device was then placed in a standard tissue-culture incubator at 

37°C. As a positive control for C. difficile growth, co-culture samples were prepared 

similarly, but the device was placed into an anaerobic chamber. At 6 h and 24 h post-

inoculation, bacteria were collected and C. difficile were enumerated. C. difficile expanded 

40-and 4000-fold after 6 h and 24 h of co-culture, respectively. There was no significant 

difference between the number of C. difficile within the anaerobic and oxygen-gradient co-

culture at either the 6 h or 24 h time post-inoculation (Fig. 4F). Thus, C. difficile anaerobic 

bacterial growth was supported in the luminal microenvironment created on the oxygen-

gradient device by the colonic epithelial cell monolayer in combination with the gas-

impermeable luminal reservoir walls.

The toxicity of C. difficile is largely due to production of the toxins TcdA and TcdB, which 

act to impair epithelial barrier function, as well as by inciting inflammatory responses.64–66 

In particular, C. difficile infection in vivo or addition of the above toxins to cell cultures 

increases secretion of inflammatory cytokines such as IL-8 from the basal face of the colonic 

epithelium.67,68 After culture of the epithelium under oxygen-gradient conditions in the 

presence or absence of C. difficile for 24 h, epithelial cells co-cultured with C. difficile 
secreted significantly more IL-8 than cultures without the bacteria (Fig. 4G). Epithelial 

monolayers cultured in the presence of C. difficile under the oxygen gradient or within a 

fully anaerobic environment demonstrated no significant difference in the amount of IL-8 

secreted. Epithelial cells in both culture conditions increased their IL-8 production as the 

exposure time to C. difficile increased (Fig. 4G).

A major mechanism of action of the C. difficile toxins is cytoskeletal disruption through 

glycosylation and inactivation of the Rho family of GTPases, which interferes with tight 

junction assembly.65,66 To investigate whether tight junction disruption occurred in the 

model epithelium and whether different oxygen conditions might alter this process, human 

intestinal epithelial cells were co-cultured with C. difficile either under the oxygen gradient 

or anaerobic conditions, and then assessed for cellular morphology and ZO-1. At 6 h post-

inoculation, ZO-1 was properly localized to tight junctions without obvious disruption under 

Kim et al. Page 14

Biofabrication. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



either condition (Fig. 4H), similar to the ZO-1 localization in the fully oxygenated cultures 

(Fig. 2D). However, after 24 h in the presence of C. difficile, the ZO-1 localization in the 

monolayers cultured in an anaerobic environment was irregular and without clear 

demarcation of the intercellular borders, suggesting that the tight junctions might be 

disrupted (Fig. 4H).69–71 Cells under the oxygen gradient with C. difficile showed mixed 

ZO-1 localization with some ZO-1 staining clearly defined, but other areas with patchy 

localization (Fig. 4H). When viewed by SEM, the cells in a fully anaerobic environment 

with the bacterium often adopted a rounded morphology with exposed collagen scaffold in 

many locations suggesting cell death and detachment from the scaffold (Fig. 4I). Cells 

cultured under the oxygen-gradient with C. difficile predominantly exhibited a cobblestone 

morphology with few apparent rounded cells and much less exposed scaffold. When non-

adherent bacteria were removed, significantly more C. difficile remained attached to the 

epithelial cell surface in the oxygen gradient condition (4.2 ± 3.6 cells/100μm2) compared to 

that in the anaerobic condition (0.14 ± 0.16 cells/100 μm2). These data demonstrate that the 

oxygen gradient formed in the device support growth of the obligate anaerobic bacteria C. 
difficile, which mediated secretion of the inflammatory cytokine IL-8, disruption of tight 

junctions and alteration of cell morphology.

6. Application of an oxygen gradient along the length of an in vitro crypt.

An oxygen gradient was applied across the long axis of 3D in vitro crypts to recreate the 

oxygen profile thought to exist in vivo, i.e. an oxygenated stem cell niche with a nearby 

hypoxic differentiated cell zone.41 In this model system, chemical gradients of growth 

factors along the in vitro crypt axis induce cell compartmentalization with a stem/

proliferative zone at the crypt base and differentiated cells localized to the luminal surface of 

the tissue (Fig. 5A).41 To evaluate the influence of the oxygen gradient on cell 

compartmentalization, in vitro crypts were formed as previously described41 and then 

cultured within the oxygen-gradient device or under fully oxygenated conditions for an 

additional 2 days. Both oxygenation environments demonstrated higher pimonidazole adduct 

formation at the luminal tissue surface and minimal formation at the crypt base (Fig. 5B); 

however, adduct formation on the luminal surface of crypts under the oxygen gradient was 

significantly greater than that for crypts without an imposed oxygen gradient (Fig. 5C). This 

pattern is consistent with that formed within crypts in vivo.72 The gradient in pimonidazole 

adduct formation observed in the crypts that were under fully oxygenated conditions 

suggests that the luminal-facing differentiated cells themselves locally depleted oxygen even 

when in contact with the oxygenated luminal reservoir (Fig. 5B). Interestingly the stem/

proliferative cells at the crypt base did not exhibit pimonidazole adducts despite being a 

greater distance from an oxygenated medium relative to the differentiated cells. A likely 

explanation is the metabolic shift that occurs between stem cells and differentiated cells. A 

shift in metabolism from aerobic glycolysis (less oxygen consumption) to oxidative 

phosphorylation (greater oxygen demand) occurs in many cell types73–75 as they move from 

a proliferative, less differentiated state to a non-proliferative, mature phenotype. Intestinal 

epithelial cells undergo a similar metabolic shift as the stem and transit-amplifying cells 

become differentiated.76,77 The differentiated cells with their higher oxygen consumption 

would then create a greater local oxygen depletion along the luminal crypt surface than their 

counterpart proliferative, undifferentiated cells occupying the crypt base.
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When grown as a monolayer, the intestinal epithelial cells respond to an anaerobic 

environment by decreasing cell proliferation (Fig. 3A,C). To assess how this might impact 

cell compartmentalization within the platform, in vitro crypts (with growth factor gradients) 

were cultured for 2 days under an oxygen-gradient or in an oxygenated environment and 

then pulsed with EdU for 24 h. In both conditions, the EdU-labeled (S-phase) cells were 

located near the base of the crypt (Fig. 5B,D,E). However, significantly fewer proliferative 

cells were present within the crypts under the oxygen gradient compared to that in the fully 

oxygenated system (Fig. 5D). Additionally, the proliferative cells under the oxygen gradient 

were located closer to the crypt base than that under the fully oxygenated condition. When 

the total area of the crypt positive for EdU incorporation was summed, a significantly greater 

fraction of the EdU positive crypt resided in the lower 1/3 of the crypt (73 ± 17%) for the 

oxygen-gradient samples relative to that in the fully oxygenated environment (57 ± 13 %) 

(Fig. 5E). Imposition of an oxygen gradient across the crypt facilitated compartmentalization 

of the crypt cells enhancing confinement of the proliferative cells to the crypt base as well as 

reducing their numbers.

Finally, to determine whether luminal growth of colonic bacteria might be supported within 

the oxygen-gradient device, the 3D crypts were co-cultured with the obligate anaerobe 

Bifidobacterium adolescentis. In contrast to C. difficile, B. adolescentis is a nonpathogenic, 

commonly used probiotic.78 B. adolescentis was co-cultured for 24 h in the luminal reservoir 

under an oxygen-gradient or fully oxygenated conditions. The number of viable B. 
adolescentis increased >100-fold after 24 h of co-culture in the oxygen-gradient device, 

while only 3% survived under the fully oxygenated conditions (Fig.5F). This clearly 

demonstrates the importance of the oxygen gradient in the co-culture of obligate anaerobic 

bacteria in the 3D crypt model.

Discussion

In this work we demonstrated a simple method for generating a physiologic oxygen gradient 

across a primary human colonic epithelium that enabled its co-culture with obligate 

anaerobic bacteria while the platform was housed under normal atmospheric conditions. By 

using oxygen impermeable materials to block gas diffusion in the luminal reservoir 

combined with oxygen consumption of the epithelial cells, the oxygen gradient was formed 

in less than 2 h. The lack of continuous perfusion of either a liquid or gas simplifies the 

system making it attractive and accessible to a broad group of users. Oxygen depletion did 

not impair viability, polarization, or epithelial integrity of the primary human colonic 

epithelial cells on the times scales measured. In the presence of an oxygen gradient the 

luminal compartment possessed a sufficiently low oxygen saturation to support obligate 

anaerobe growth. When formed across 3D in vitro crypts, the applied oxygen gradient 

assisted cell localization to distinct zones enhancing confinement of the proliferative cells to 

the crypt base. This suggests that disruption of the oxygen gradient during breach of the 

colonic epithelium may support barrier repair by enabling proliferative cells to form further 

up the crypt long axis and more rapidly replace damaged luminal cells. The luminal hypoxia 

achieved in the oxygen gradient supported the growth of facultative and obligate anaerobic 

bacteria above both 2D and 3D epithelial formats. C. difficile-induced monolayer damage 

was decreased in the presence of the oxygen gradient relative to a fully anaerobic epithelial 
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monolayer although it is unclear whether this difference is due to altered microbe-cell 

interactions or an oxygen-susceptible behavior of C. difficile. The ability to co-culture of 

pathogenic anaerobes as well as commensal bacteria in proximity to an in vitro crypt will 

enable novel investigations into the interplay of gut microbes and primary human intestinal 

epithelial cells. This concept of generating oxygen gradient can be expanded to other tissue 

models when the same direction of oxygen gradient is desired. The self-forming oxygen 

gradient cassette offers a simple, bench-top platform with both luminal and basal access to 

yield a close mimic of the physiological oxygen microenvironment in the colon with support 

of physiologic and pathogenic bacterial residents of the colonic lumen.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Design and testing of the oxygen gradient device. a) An image of the device insert (left 

panel) and the assembled device (insert plus basal compartment, right panel). The insert 

possessed a gas-impermeable threaded plug to isolate the luminal compartment from the 

external atmosphere. A port in the plug was used for addition of reagents and measurement 

of the oxygen saturation. A single well of a 12-well plate was used as the basal reservoir. b) 

The simulated oxygen saturation (top panel) and oxygen flux (lower panel) in the device at 

24 h after the plug was placed. The white “×”s indicate the location of the oxygen probe in 

the experimental measurements. The Y axis units for O2 flux is (mol/m2∙s). c) Schematic of 

a coronal section through the device. The red lines indicate the locations of the oxygen 

probes during the experimental measurements. d) The measured and simulated luminal and 

basal oxygen profiles over time. The dashed black line and green squares represent the 

simulated and average measured, basal oxygen saturation, respectively, when the basal and 
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luminal compartments are initially filled with normoxic medium. The dashed blue line and 

black triangles represent the simulated and average measured, luminal oxygen saturation, 

respectively, when the luminal and basal compartments are initially filled with normoxic 

medium. The red circles represent the average oxygen saturation in the luminal compartment 

when it is initially filled with deoxygenated medium. 3 independent samples were used for 

all measured values and the error bars depict a single standard deviation of the data points. e) 

The formation of pimonidazole adducts plotted against the oxygen culture condition. The Y 

axis displays the normalized adduct formation calculated as the intensity of 

immunofluorescence staining of the adducts divided by the fluorescence intensity of the 

Hoechst 33342 dye (N=3 independent samples for all conditions). * and ** indicate p<0.001 

or 0.005, respectively. f) Representative images of pimonidazole adduct formation (red) as 

detected by immunofluorescence staining in aerobic, anaerobic and the oxygen-gradient 

environments. Hoechst 33342 fluorescence is shown in blue. Scale bar in the large image is 

100 μm and in the inset 20 μm.
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Figure 2. 
Monolayer cell properties in different oxygen environments. a) Representative fluorescence 

images of monolayers stained with PI (magenta) and Hoechst 33342 (blue). Scale bar in the 

inset is 20 μm. b) Representative images of the human colonic epithelial cells cryosectioned 

and immunostained for ezrin (red: ezrin, blue: Hoechst 33342). d) Representative SEM 

images of the human colonic epithelial cells in the various oxygen conditions. d) 

Representative images of ZO-1 immunofluorescence (red) in the human colonic epithelial 

cells in aerobic, anaerobic, and oxygen-gradient environments. e) Measurement of dead cells 

under the various oxygen environments. The Y-axis is the PI-positive area divided by the 

Hoechst 33342 positive area. The data were obtained from 3 independent experiments. f) 

Monolayer TEER in the various oxygen environments. The aerobic conditions utilized 21 

independent samples while the for anaerobic condition and oxygen gradient conditions used 

20 independent samples
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Figure 3. 
Measurement of proliferation and goblet cell formation in the monolayer cells exposed to 

different oxygen environments. a) S-phase cells (aqua or blue-green) as measured by EdU 

pulse incorporation. Cells were counterstained with Hoechst 33342 (blue). Scale bar in the 

inset is 20 μm. b) Goblet cell MUC2 (yellow) as measured by immunofluorescence staining 

of MUC2. Scale bar in the inset is 20 μm. c) Measurement of S-phase cells. The Y axis 

shows the normalized EdU incorporation calculated by dividing the EdU-positive 

fluorescent area by the Hoechst 33342-positive area (N=9 independent samples). d) 

Measurement of MUC2 present within Goblet cells. The Y axis shows the normalized 

Muc2-positive area calculated by dividing the MUC2 immunofluorescent-positive area by 

the Hoechst 33342-positive area (N= 3 independent samples). *, **, *** indicate p<0.005, 

0.01, or 0.05, respectively.
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Figure 4. 
Co-culture of anaerobic bacteria with the epithelial cell monolayers under differing oxygen 

conditions. a) Schematic diagrams of the co-culture of LGG with the epithelial cell 

monolayer. The left panel shows the normoxic or oxygenated conditions in which the fluid 

in both the luminal and basal reservoirs is exposed to the oxygen environment of a standard 

tissue culture incubator. The right panel illustrates the oxygen gradient environment in 

which only the fluid in the basal reservoir is exposed to the external environment. b) 

Immunofluorescence staining of ZO-1 in the cells co-cultured with LGG for 24 h aerobically 

(left) and under the oxygen gradient (right). c) Shown is the number of viable LGG bacteria 

in either the supernatant (luminal reservoir) or adhered to the human cells at 24 h (N=3 

technical replicates). d) TEER of the epithelial monolayers after 24 h of co-culture with 

LGG (N=3 technical replicates. e) Schematic diagrams of the co-culture of C. difficile with 

the epithelial monolayer. The left panel shows the anoxic setup in which the fluid in both the 

luminal and basal reservoirs is exposed to the de-oxygenated environment of an anaerobic 

chamber. The right panel illustrates the oxygen gradient environment in which the fluid in 

the basal reservoir is exposed to the oxygen environment of a standard tissue culture 

incubator. f) Growth of C. difficile after 6 h and 24 h of co-culture with the epithelial cell 

monolayer from 3 independent samples for each condition. g) [IL-8] secreted by the 

epithelial cells into the basal reservoir with (+) and without (−) C. difficile co-culture after 6 

and 24 h. from 3 independent samples for each condition except for the control samples 

without C. difficile in which 2 independent samples were used. h) Immunofluorescence 

staining of ZO-1 in the human colonic epithelial cells in the absence and presence of C. 
difficile for 6 or 24 h. Scale bar in the inset is 20 μm. i) SEM images of the human colonic 

epithelial cell monolayer after 24 h of C. difficile co-culture under the different oxygen 

environments. The yellow arrows highlight individual rod-shaped C. difficile.
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Figure 5. 
Application of an oxygen gradient across an in vitro crypt. a) Schematic diagram of a single 

in vitro crypt with application of a chemical and oxygen gradient. Stem/proliferative cells 

are depicted in green while the differentiated cells in red. A single layer of cells lines the 

surface of the crypt-shaped scaffold. b) Whole-mount fluorescence images of a side view of 

two in vitro crypts. In the left panel, the crypt under a chemical gradient, but no applied 

oxygen gradient, i.e aerobic conditions. In the right panel, the crypt under both a chemical 

and oxygen gradient. The crypts were stained for pimonidazole adducts (red), EdU 

incorporation (green), and Hoechst 33342 (blue). c) The normalized pimonidazole adduct 

formation plotted against the location of the cells along the crypt long axis under different 

oxygenation conditions. The Y-axis shows the cell location with 0 being the base of the crypt 

(i.e. basal side) and 10 representing the top of the crypt at the luminal reservoir. Total crypt 

length was 600 μm. A total 25 individual crypts from 3 different arrays were analyzed for 

each condition. * represents p<0.01. d) The normalized EdU incorporation plotted against 

cell location along the crypt axis for different oxygen environments. The normalized EdU 

incorporation was calculated by dividing the EdU fluorescence intensity by the Hoechst 

33342 fluorescence intensity. The aerobic and gradient data were significantly different 

(p<0.01) for all distances between 0 and 0.8 of the crypt length. A total of 30 (for aerobic) 

and 32 (for gradient) individual crypts from 3 different arrays were analyzed. e) The relative 

distribution of the EdU-labeled cells with respect to the location of the cell along the crypt 

axis. Three different arrays were analyzed for the aerobic (30 crypts total) and the gradient 

(32 crypts total) samples. Between 0–0.2 and 0.4–0.7 of the crypt length, the p value for the 

data comparisons p<0.05. f) Growth of B. adolescentis at 0 and 24 h of culture above the in 
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vitro crypts under the fully oxygenated or oxygen gradient environment from 2 technical 

replicates for the aerobic condition and 3 for the gradient condition.
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