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Abstract

Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) method was

introduced in 2014. HEMNMA computes normal modes of a reference model

(an atomic structure or an electron microscopy map) of a molecular complex

and uses this model and its normal modes to analyze single-particle images of

the complex to obtain information on its continuous conformational changes,

by determining the full distribution of conformational variability from the

images. An advantage of HEMNMA is a simultaneous determination of all

parameters of each image (particle conformation, orientation, and shift)

through their iterative optimization, which allows applications of HEMNMA

even when the effects of conformational changes dominate those of orienta-

tional changes. HEMNMA was first implemented in Xmipp and was using

MATLAB for statistical analysis of obtained conformational distributions and

for fitting of underlying trajectories of conformational changes. A HEMNMA

implementation independent of MATLAB is now available as part of a plugin

of Scipion V2.0 (http://scipion.i2pc.es). This plugin, named ContinuousFlex,

can be installed by following the instructions at https://pypi.org/project/

scipion-em-continuousflex. In this article, we present this new HEMNMA soft-

ware, which is user-friendly, totally free, and open-source.

Statement for a Broader Audience: This article presents Hybrid Electron

Microscopy Normal Mode Analysis (HEMNMA) software that allows analyzing

single-particle images of a complex to obtain information on continuous conforma-

tional changes of the complex, by determining the full distribution of conforma-

tional variability from the images. The HEMNMA software is user-friendly, totally

free, open-source, and available as part of ContinuousFlex plugin (https://pypi.org/

project/scipion-em-continuousflex) of Scipion V2.0 (http://scipion.i2pc.es).
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1 | INTRODUCTION

Cryo-electronmicroscopy (cryo-EM) has become comparable
to X-ray crystallography with regards to the obtainable

resolution of structures of biomolecular complexes, which
are now increasingly determined at near-atomic
resolution.1–10 No requirement for sample crystallization and
the possibility to elucidate multiple conformations of a

Received: 30 August 2019 Revised: 3 November 2019 Accepted: 4 November 2019

DOI: 10.1002/pro.3772

Protein Science. 2020;29:223–236. wileyonlinelibrary.com/journal/pro © 2019 The Protein Society 223

https://orcid.org/0000-0001-5112-2743
mailto:slavica.jonic@upmc.fr
http://scipion.i2pc.es
https://pypi.org/project/scipion-em-continuousflex
https://pypi.org/project/scipion-em-continuousflex
https://pypi.org/project/scipion-em-continuousflex
https://pypi.org/project/scipion-em-continuousflex
http://scipion.i2pc.es
http://wileyonlinelibrary.com/journal/pro


complex from the same sample are among the main advan-
tages of cryo-EM. Characterizing the different conformations
that can coexist is essential for understanding how the com-
plexes function and addressing their dynamics.

To achieve near-atomic resolution of 3D reconstruc-
tions, the classical approach is to collect a large number of
images of complexes (particles) at random and unknown
orientations within a thin layer of vitreous ice, then, per-
form 2D and 3D classifications into an initially set num-
ber of classes and, finally, perform 3D reconstruction
using only those particles that have the most consistent
views and conformations (those that contribute to the
highest-resolution class averages) while removing all
other particles.8–14 Such “selection” of particles may
obscure information on a possibly larger conformational
variability as some conformational states may be thrown
away blindly instead of being elucidated. Therefore, non-
classification-based methods are required to extract from
images the full distribution of conformational variability
(the so-called conformational space or landscape in which
the images are mapped) and to assemble 3D reconstruc-
tions from identified, more or less dense regions in this
space (denser regions contain more frequent conforma-
tional states and less dense regions contain less frequent
states). Such methods are necessary for studying continu-
ous conformational changes of complexes (the concept
including the possibility of unequally distributed con-
formers, e.g., possible existence of more stable con-
formers) and are referred to as continuous-state methods.
Many classification-based methods (referred to as
discrete-state methods) can be found in the literature.15–28

While the majority of the discrete-state methods require
that the number of classes is set initially, setting this num-
ber in some of the methods is less arbitrary as it is based
on making a balance between intraclass and interclass
variances after a statistical analysis of the data, typically
using an eigenvector analysis of the covariance estimated
from images or from volumes reconstructed from random
subsets of images.18,19,21 The covariance eigenvectors esti-
mation has also been introduced in the context of contin-
uous conformational heterogeneity.29,30 The latter
methods are closely related to continuous-state methods
whose development started recently and are currently an
active field of research.31–37

We introduced the continuous-state method referred
to as Hybrid Electron Microscopy Normal Mode Analysis
(HEMNMA) in 2014.31,32 HEMNMA computes normal
modes of a reference model (an atomic structure or an
EM map) of a molecular complex and uses this model
and its normal modes to analyze single-particle images of
the complex iteratively in order to extract information on
the full distribution of conformational variability from
these images. In each iteration, HEMNMA aims at

simultaneously solving both orientational and conforma-
tional heterogeneity of images using the reference model
and its normal modes.

Although often considered as “model-free,” the
continuous-state methods from other groups do use a model
(e.g., the model used by Dashti et al.33 is EMDB-1067 density
map). This model is used to first solve the orientational het-
erogeneity of images, by determining the particle 3D orienta-
tion and 2D shift in each image assuming conformational
homogeneity of images (e.g., the particle orientation and shift
in each image can be determined by the standard projection
matching of the image with the model). Then, the conforma-
tional heterogeneity of images is solved (i.e., the conforma-
tions are determined) using the image orientations and shifts
determined in the previous step. These methods do not refine
orientations and shifts when determining conformations,
assuming that the effects of orientational changes dominate
those of conformational changes so that each image can be
associated with the correct orientation.

An advantage of HEMNMA is a simultaneous determi-
nation of all parameters of each image (particle conforma-
tion, orientation, and shift) through their iterative
optimization, which allows applications of HEMNMA even
when the effects of conformational changes dominate those
of orientational changes. The simultaneous determination
of the parameters is done by iterative matching of the image
with projections of the reference model being deformed
using a linear combination of normal modes (the conforma-
tion is estimated by determining the unknown coefficients
of the linear combination, i.e., by determining the displace-
ment amplitudes along normal modes). The reference
model does not need to be an atomic-resolution model and
can also be an EM map. This EM map can be obtained by
3D reconstruction from combined data as if the data were
conformationally homogeneous (e.g., by the so-called ran-
dom sample consensus approach that identifies the best EM
maps from those reconstructed using random subsets of
images and random image orientations,38 maximum likeli-
hood optimization of a number of 3D reconstructions
starting from random data subsets,39 or other methods40).

HEMNMA and other continuous-state methods are
fundamentally different from classification-based (discrete-
state) methods. For instance, the discrete-state method of
Haselbach et al.27 uses standard Relion39 software for dis-
crete classification of images into a number of 3D maps
and standard principal component analysis (PCA) to clus-
ter the maps. As similar classification-based methods, it is
prone to assigning images to lower-noise density maps
independently of whether or not the images belong there.
For further reading on the different methods, the reader
can refer to some of the recent methods reviews.41–45

The first version of HEMNMA was implemented in
Xmipp46 and was using MATLAB for statistical analysis
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of obtained conformational distributions and for fitting of
underlying trajectories of conformational changes.31,32 A
MATLAB-independent version of HEMNMA was recently
implemented in Scipion47 and is currently available as
part of a plugin of Scipion V2.0 (http://scipion.i2pc.es).
This plugin, named ContinuousFlex, can be installed by
following the instructions at https://pypi.org/project/
scipion-em-continuousflex. The new HEMNMA software
is totally free and open-source, and the new graphical
interface is even more user-friendly than the previous
one. In this article, we present this new HEMNMA
software.

2 | HEMNMA WITHIN SCIPION:
STEPS, PARAMETERS, AND
GRAPHICAL INTERFACE

The steps to follow are listed in the HEMNMA menu on
the left side of the Scipion project window and are num-
bered from 1 to 6. When the different steps are executed, a
tree-like structure of the project appears on the right side
of the window, with each block corresponding to a step or
a substep (Figures 1 and 2). In this section, we describe
the steps (Steps 1–6), parameters, and graphical interface
of HEMNMA. Each parameter is also described in the
graphical interface, via a help message that can be dis-
played by clicking on the question mark next to the
corresponding parameter field. The majority of the
parameters are set to the values that usually produce good
results. These default values are visible in the graphical
interface and can be modified by the user. The parameters
whose values are expected to be less frequently changed
are hidden by default. By selecting “Advanced” as “Expert
Level”mode (“Normal” is the default mode), the values of

these “advanced” parameters can be visualized (the
parameter names showing up on a grey background) and
modified (e.g., Figure 3a).

2.1 | Step 1: Reference model

The reference model to import can be a PDB file with
atomic coordinates or a density volume (e.g., an EMmap or
a simulated map from a PDB structure). Both import
options are provided (Steps 1.a and 1.b1 in the project tree,
Figures 1 and 2). Figures 1 and 2 show the project tree for
an input atomic structure and for an input density volume,
respectively. Before the next step, the input density volume
must be converted into a PDB-format file. We provide a tool
for the volume conversion into a set of 3D Gaussian func-
tions (Step 1.b2 in the project tree, Figure 2), the so-called
pseudoatoms,48 whose coordinates are written into a PDB
file. More precisely, the conversion is performed so that the
input density volume is represented with Gaussian func-
tions of a given (input) standard deviation (“Pseudoatom
radius” input parameter expressed in voxels), by minimiz-
ing the normalized volume approximation error48 to reach
a given (input) value of this error (“Volume approximation
error” parameter expressed in percent) (Figure 3). Note that
the default value of the “Volume approximation error”
parameter is 5%, which can be modified by first selecting
“Advanced” as “Expert Level”mode to visualize the param-
eter (Figure 3a). Through this conversion procedure, some
noise may be removed from the input density volume, as
shown elsewhere.49 However, strong particle background
noise should be removed using external tools or the mas-
king procedures available in HEMNMA (“Mask mode”
parameter in Figure 3a allows entering the name of a binary
mask file or the threshold value below which the densities

FIGURE 1 HEMNMA project tree for the case of analyzing images using an atomic structure as the reference model
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should be removed). For faster processing, the volume-to-
pseudoatoms conversion was parallelized and should be
run using several CPU threads (sharing the same memory).
The number of threads can be specified via the “Threads”
parameter (Figure 3a). The results of the volume-to-

pseudoatoms conversion can be visualized with Chimera50

(Figure 3b) by clicking on the “Analyze Results” button in
the project window (Figure 2).

After a displacement with normal modes, both an
atomic reference model and a pseudoatomic reference

FIGURE 2 HEMNMA project tree for the case of analyzing images using a density volume as the reference model. The volume is

converted into 3D Gaussian functions (the so-called pseudoatoms)

FIGURE 3 Volume-to-pseudoatoms conversion. (a) Dialog box. (b) Superposition of an input density volume (transparent grey) and its

pseudoatomic representation [spheres where the amplitudes of Gaussian functions are color-coded from white (smallest) to red (largest)]. In

this example, the Gaussian-function standard deviation (pseudoatom radius) and the desired volume approximation error are 2 voxels and

5%, respectively. The desired volume approximation error parameter is hidden by default (“Expert Level” is set to “Normal”) and can be

visualized by setting “Expert Level” to “Advanced” (panel a). The volume-to-pseudoatoms conversion is parallelized using threads (parallel

processes sharing the same memory) and the number of threads to use can be specified in the “Threads” field (panel a). The masking

options to remove background noise from the input volume are explained in the help message under the corresponding question mark

(panel a)
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model (from a reference density volume) are converted
into a density volume whose projections are compared
with images to determine the conformations in these
images (Step 5). The higher the resolution of the refer-
ence model, the more accurate the normal modes and
the conformational determination will be. Thus, the most
accurate conformational determination is expected with
input atomic models and high-resolution EM maps.

The reference atomic model can be a full-atomic model
or a coarse-grained model (e.g., containing Cα atoms only).
The computation of normal modes (Step 2) requires infor-
mation on the shape of the entire complex. An atomic
model lacking a few small regions (e.g., disordered regions)
may still be used as the reference model. If the atomic
model lacks large portions of a complex and an EM map
can be obtained for the entire complex, this EM map
should be used as the reference model. An alternative ref-
erence model could be a hybrid model of the entire com-
plex obtained by modeling the missing parts in the atomic
model or the density volume computed from this hybrid
model.

Classical, classification-based approaches can be used
to obtain a reference EM map for HEMNMA to analyze
the entire heterogeneous set of images or an image subset
with heterogeneity reduced through classification, as
shown elsewhere.31 The use of classification-based
approaches before HEMNMA may be particularly useful
in the case of combined discrete and continuous confor-
mational heterogeneity (e.g., a mixture of flexible com-
plexes bound and unbound with ligands).

There are no restrictions regarding the number of
atoms in input PDB files or the size of input EM maps,
except that the maps should have a cubic shape. There
are no restrictions regarding the content of the atomic
model, such as the presence of DNA, ligands, and so
forth. However, in the case of a heterogeneous set of par-
ticles bound and unbound with ligands, it may be inter-
esting to remove the ligand from the reference model, as
shown elsewhere.31,51

2.2 | Step 2: Normal mode analysis

Normal modes of the atomic or pseudoatomic representa-
tion of the reference model (“Input structure” field in
Figure 4a) are computed using Tirion's elastic network
model.52 In this model, atoms or pseudoatoms interact if
they are connected with elastic springs. The interaction
cut-off distance parameter determines how many atoms
or pseudoatoms will be connected with elastic springs.
The following two options exist for setting this value, via
the “Cut-off mode” parameter (Figure 4a): “absolute”
and “relative.” If “absolute” is chosen for “Cut-off mode”

(unshown in Figure 4a), the interaction cut-off distance
value is an input parameter that should be set directly by
the user (by setting the “Cut-off distance” parameter,
expressed in angstroms, which shows up only if “abso-
lute” is chosen for “Cut-off mode”). The default value of
“Cut-off distance” is 8 Å, which is the empirical rec-
ommended value for atomic structures. The “Cut-off dis-
tance” value of 8 Å implies building an elastic network in
which two atoms are connected with a spring (interact
with each other) only if their distance is smaller than
8 Å. If “relative” is chosen for “Cut-off mode,” the inter-
action cut-off distance value is computed automatically
based on a given (input) percentage of distances (“Cut-off
percentage” parameter expressed in percent, Figure 4a)
that should be below this value. The default value of the
“Cut-off percentage” is 95%, which is the empirical rec-
ommended value for pseudoatomic structures. The “Cut-
off percentage” value of 95% implies building an elastic
network in which two pseudoatoms are connected with a
spring only if their distance is smaller than the one below
which 95% of distances are. The larger the interaction
cut-off distance for a given complex, the more rigid the
elastic network will be. A too-large interaction cut-off dis-
tance produces a too rigid elastic network, which can be
detected and corrected by analyzing the normal-mode
animations with the provided graphical interface (normal
mode analysis (NMA) results viewer in Figure 4b).

Normal modes are computed by diagonalizing a square
matrix of second derivatives of the potential energy func-
tion of the structure (Hessian matrix). One dimension of
the Hessian matrix is three times the number of atoms or
pseudoatoms. For faster Hessian diagonalization with input
atomic structures (large Hessians due to large numbers of
atoms), the structure is split into blocks of several residues,
each block having six degrees of freedom (three rotations
and three translations), which reduces the Hessian dimen-
sion to six times the number of blocks and is known as
Rotation Translation Block (RTB) method.53 The number
of residues per RTB block should be set by the user, and its
default value in the graphical interface is 10 (Figure 4a).
The larger the number of residues per block (i.e., the
smaller the number of blocks), the faster the computation
of normal modes and the more rigid the elastic network
will be. A too large number of residues per block will pro-
duce a too rigid elastic network, which can be detected and
corrected by analyzing the normal-mode animations with
the provided graphical interface (NMA results viewer,
Figure 4b).

The number of computed normal modes is three
times the number of pseudoatoms (for a pseudoatomic
structure) or six times the number of RTB blocks (for an
atomic structure). However, the number of modes writ-
ten on the disk and animated should be set by the user
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(“Number of modes” parameter, Figure 4a). It is usually
enough to save animations for 20–100 modes (e.g.,
the most relevant modes to experimentally observed con-
formational changes of low-symmetry structures are
generally among the first 10–20 lowest-frequency non-
rigid-body modes). The computed normal modes can be
inspected by visualizing their animations, collectivities,54

and scores,32 via the NMA results viewer (Figure 4b) that
can be obtained by clicking on the “Analyze Results” but-
ton in the project window. The collectivity54 indicates
how much the atoms or pseudoatoms move together with
a given mode. It is computed for the entire complex with-
out differentiating between its domains and it is normal-
ized between 1/N (maximally localized motion) and

FIGURE 4 Normal mode analysis and visualization. (a) Dialog box (note that “Cut-off mode” selected here is “relative” and that the

interface allows selecting the cut-off mode “absolute” as well). (b) Normal modes viewer allowing visualizing animations of normal modes

(using “Display mode animation with VMD?” for the mode specified in “Mode number”) and checking their collectivities and scores (using

“Display output Normal Modes?”)
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1 (maximally collective motion), where N is the number
of atoms or pseudoatoms. Highly collective low-
frequency modes have been shown to be functionally
relevant.55–58 Therefore, we also provide the score32 that
combines the collectivity and frequency criteria, by
penalizing the modes with higher frequencies and lower
collectivities. The score is normalized between 1/M
(highest collectivity and lowest frequency motion) and
1 (lowest collectivity and highest frequency motion),
where M is the number of modes.

The list of modes, with their collectivities and scores,
can be obtained using “Display output Normal Modes?” in
the NMA results viewer (Figure 4b). The interface allows
ordering the modes according to the increasing or decreas-
ing values of the collectivity or score measures. The modes
most relevant to the actual conformational change are
expected to be among those with the lowest scores. The
number of the lowest-score modes to inspect should be
larger in the case of highly symmetrical structures
(e.g., icosahedral-symmetry viruses) as highly collective
modes may also exist at higher frequencies in such cases.
To help the user decide which modes should certainly not
be selected for the image analysis (Step 5), the modes with
collectivities below 0.15 (very localized motions) are
unchecked in the list of modes obtained via “Display out-
put Normal Modes?” (Figure 4b). The value of 0.15 for this
collectivity threshold can be modified by the user (“Thresh-
old on collectivity” parameter, Figure 4a).

The motion trajectory along a normal mode is saved
in a text file by concatenating the frames (in PDB format)
of the coordinate displacement along this mode. The
default number of frames is 10 and the default amplitude
of the displacement along normal mode is 50 (these
parameters can be modified via the “Animation” tab,
unopened in Figure 4a). This trajectory file is animated
with visual molecular dynamics (VMD),59 by selecting
“Display mode animation with VMD?” and specifying
the mode to be animated in the “Mode number” field
(Figure 4b). VMD provides tools to save the motion tra-
jectories in Animated GIF or MPEG movie formats that
can be played with more standard movie players.

The modes can also be inspected by plotting the shifts
of atoms (or pseudoatoms) along the specified mode and
by plotting their maximum shifts over all modes via “Plot
mode distance profile?” and “Plot max distance profile?,”
respectively (Figure 4b). For instance, a too large shift of
one or a very few atoms (or pseudoatoms) with respect to
the shift of other atoms (or other pseudoatoms) is typically
a sign that the value of the atomic (or pseudoatomic)
interaction cut-off distance used for computing normal
modes is not optimal. In this case, normal modes
should be recomputed using a modified value of this
parameter.

2.3 | Step 3: Information

At this step, entitled “Stop here or continue” in the
HEMNMA menu (Figures 1 and 2), we remind the user
that HEMNMA software may also be used for NMA only
(the processing can be stopped after computing and ana-
lyzing normal modes at Step 2). The following steps
should be performed if aiming at analyzing conforma-
tional heterogeneity in images using the normal modes
computed in Step 2.

2.4 | Step 4: Images

This step allows importing images that will be analyzed
with normal modes. The images should have a square
shape. They should have a power of 2 pixels in each
dimension when using the so-called “wavelet & splines”
method for rigid-body alignment in combination with the
elastic alignment (see Step 5 for more information about
the alignment methods). The larger the size of images,
the longer the image analysis time will be. The image size
can be reduced if the speed is an issue. The image size of
128 × 128 pixels is usually a good compromise.

2.5 | Step 5: Conformational distribution

In this step, a combined elastic and rigid-body alignment is
performed between particle images and the reference model
to calculate the parameters of orientation, translation, and
elastic deformation (amplitudes of normal modes) of the
reference model that best describe the given particle image.

Figure 5a shows the interface (“Input” tab) for selecting
the images to be analyzed (“Input particles” parameter) and
the normal modes to use for the image analysis (“Modes
selection” parameter) from an entire list of computed normal
modes (“Normal modes” parameter). The modes to use for
the image analysis can be selected as the modes with the
highest collectivities or least scores, with or without using
previous knowledge about possible movements. The six
lowest-frequency modes (modes 1–6, where the index of
the mode corresponds to the mode order according to the
increasing frequency) describe rigid-body movements of the
structure and are often referred to as rigid-body normal
modes. These modes should not be selected because rigid-
bodymovements are taken into account through the iterative
combined rigid-body and elastic alignment, as explained in
the next paragraph. Usually, this alignment is performed
with 1–10 selected normal modes excluding modes 1–6.

The interface for setting the parameters of the combined
elastic and rigid-body alignment is shown in Figure 5b
(“Combined elastic and rigid-body alignment” tab). We use
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Powell's optimization (more precisely, Powell's trust region
method60) to iteratively estimate the elastic deformation (nor-
mal-mode amplitudes) of the reference model by maximizing
the similarity between the particle image and the best
matching projection of the deformed model (objective func-
tion, in optimization terminology). In each iteration of
Powell's method, an estimate of the normal-mode amplitudes
is used to displace the atoms or the pseudoatoms along with

normal modes and the obtained, elastically deformed struc-
ture is converted into a density volume that is then rigid-body
aligned with the particle image. The rigid-body alignment
allows the determination of the orientation and translation
parameters (rigid-body parameters) and the objective-
function evaluation that is then used to better estimate the
normal-mode amplitudes (elastic deformation parameters)
for the next iteration of Powell's method.

FIGURE 5 Image analysis with

normal modes. (a) and (b) Two sections

of the dialog box, regarding input (panel

a) and alignment (panel b). (c) An

example of visualization of image analysis

results in three dimensions (amplitudes

along three normal modes). The image

analysis task is parallelized using MPI

protocol and the number of MPI cores

(parallel processes that do not necessarily

share the same memory) can be specified

in the MPI field (panel a). In panel b, the

default choice for the “Rigid-body
alignment method” is “wavelets &
splines” (the alternative method is

“projection matching”) and the elastic

alignment is performed by Powell's trust

region method. In panel c, each point

corresponds to a particle image with

assigned orientations, translations, and

normal-mode displacement amplitudes

with respect to the reference model (close

points correspond to similar

conformations and vice versa)
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The values of the parameters of Powell's method are set
internally in the code and are not modifiable via the inter-
face except for the scaling factor of the initial trust-region
radius (“Elastic-alignment trust region scale” parameter in
Figure 5b). The default value of the scaling factor is
1, which generally works well. When expecting larger con-
formational changes, it may be interesting to increase the
scaling factor (typically to a value between 1 and 2). The
rigid-body alignment can be performed using one of the
following two methods: (a) “projection matching” that
stands for the standard reference-library-based (discrete)
projection matching in real space (faster but less accurate
method); and (b) “wavelets & splines” that stands for a dis-
crete projection matching in wavelet space61 followed by a
continuous matching in 3D Fourier space based on spline
interpolation62 (slower but more accurate method; in par-
ticular, more robust to noise). The default choice is “wave-
lets & splines” (“Rigid-body alignment method” in
Figure 5b). The angular sampling step61 for the reference
projection library computation is 10� by default and can be
modified via the interface (“Discrete angular sampling”
parameter expressed in degrees, Figure 5b).

This combined rigid-body and elastic alignment is the task
that requires the most computation. Therefore, it was message
passing interface (MPI) parallelized to simultaneously process
N particle images usingNMPI cores on CPU computers, clus-
ters or supercomputers. The user specifies the number of MPI
cores to be used (“MPI” parameter in Figure 5a). On an Intel
Xeon CPU at 2.9 GHz, the analysis of one particle image of
size 128 × 128 pixels with 3, 6, and 9 normal modes may,
respectively, take 2, 5, and 10 min when using “projection
matching” rigid-body alignment and 5, 13, and 25 min when
using “wavelets & splines” rigid-body alignment.

Normal-mode amplitudes resulting from the image
analysis with normal modes can be visualized in one
dimension (histogram) as well as in two or three dimen-
sions (Figure 5c). Points in a 2D and 3D space correspond
to images with assigned orientations, translations, and
normal-mode displacement amplitudes with respect to
the reference model. Close points in this space corre-
spond to similar conformations and vice versa.

2.6 | Step 6: Dimension reduction,
clusters, and trajectories

The normal-mode displacement amplitudes obtained by
image analysis in Step 5 can be projected onto a space of
lower dimension (1D, 2D, or 3D) (Figure 6), using the tech-
nique of PCA or one of several other dimension reduction
techniques.63 To perform the dimension reduction, the user
specifies the conformational distribution to be analyzed
(the image analysis results obtained in Step 5), the desired

lower dimension, and one of the available linear or
nonlinear dimensionality reduction techniques via “Confor-
mational distribution,” “Reduced dimension,” and “Dimen-
sionality reduction method” fields, respectively (Figure 6a).
The “Extra params” field (Figure 6a) allows modifying the
parameters of the dimensionality reduction techniques (the
parameters and their default values are listed in the help
message linked to the “Dimensionality reduction method”
field). The available dimensionality reduction techniques
are PCA, Kernel PCA, Probabilistic PCA, Local Tangent
Space Alignment (LTSA), Linear LTSA, Diffusion Map, Lin-
earity Preserving Projection, Laplacian Eigenmap, Hessian
Locally Linear Embedding, Stochastic Proximity Embed-
ding, and Neighborhood Preserving Embedding.63 The
dimension reduction viewer (Figure 6b) can be obtained by
clicking on “Analyze Results” button in the project window.
It allows displaying the axes of the low-dimensional space
(Figure 6c) specified via the “Display normal-mode ampli-
tudes in the low-dimensional space” field (Figure 6b). Also,
the dimension reduction viewer (Figure 6b) allows opening
the tool for making animations (“Trajectories Tool,”
Figure 7a) and the tool for computing 3D reconstructions
(“Clustering Tool,” Figure 8a).

While the advantage of nonlinear dimensionality reduc-
tion techniques is better suitability to nonlinear manifold
data representations, the advantage of linear dimensionality
reduction techniques (PCA, Linear LTSA, Linearity Preserv-
ing Projection, Probabilistic PCA, and Neighborhood Pre-
serving Embedding) is that they allow mapping from the
low-dimensional space back to the original space.
HEMNMA uses this property to generate animated trajecto-
ries of conformational changes. More precisely, the “Trajec-
tories Tool” (Figure 7a) allows recording and visualizing the
displacement of the reference model in the low-dimensional
space. The specification of the displacement trajectory to be
animated requires the user's interaction. The outlier data
points can be removed by providing logical (Boolean)
expressions (“Expression” field in Figure 7a). The trajectory
is specified by the coordinates of 10 points in the low-
dimensional space (red points in Figure 7b). The user may
select all of these 10 points (by clicking on the plot to select
each point) or eight points may be automatically placed on a
line between two points selected by the user (the first and
last points of the trajectory). The position of the initially
placed points may be changed by dragging the points. As in
the case of animations of normal modes in Step 2, the trajec-
tory is saved in a text file by concatenating the PDB-format
frames of the coordinate displacement. The trajectory can be
animated with VMD (Figure 7c) or saved with VMD in Ani-
mated GIF or MPEG movie formats for playing with other
movie players.

Additionally, conformational changes can be ana-
lyzed in terms of 3D reconstructions from images in the
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low-dimensional space. “Clustering Tool” (Figure 8a)
allows making groups of close points (Figure 8b),
corresponding to images with similar conformational
states, and computing 3D reconstructions from these
groups (Figure 8c). A group of points is specified by pro-
viding logical (Boolean) expressions (“Expression” field
in Figure 8a) or by clicking on the plot and dragging to

add points to the group. Each point in the selected group
of points is denoted by a yellow circle (Figure 8b). Cli-
cking on the “Create Cluster” button (Figure 8a) saves
the selected group of points and performs 3D reconstruc-
tion from this group. The saved group can be inspected
by displaying the 3D reconstruction results (slices and
isosurface of the reconstructed volume, Figure 8c) and the

FIGURE 6 Dimension reduction.

(a) Dialog box for projecting normal-mode

amplitudes computed by image analysis onto

a space of lower dimension using PCA (here,

2 in “Reduced dimension” means projecting

onto a 2D space) or one of several other

dimension reduction methods selected via

“Dimensionality reduction method” (the
default values of parameters of these

methods are provided in the help message

displayable by clicking on the corresponding

question mark). (b) Dimension reduction

viewer allowing visualizing normal-mode

amplitudes in the low-dimensional space

(here, a 2D space specified by axes 1 and 2)

as well as opening the clustering (grouping)

and trajectories tools. (c) Example of

projecting normal-mode amplitudes onto a

low-dimensional space (here, 2D space

specified in panel b). In panel a, the methods

available for the dimension reduction are

PCA, Kernel PCA, Probabilistic PCA, Local

Tangent Space Alignment (LTSA), Linear

LTSA, Diffusion Map, Linearity Preserving

Projection, Laplacian Eigenmap, Hessian

Locally Linear Embedding, Stochastic

Proximity Embedding, and Neighborhood

Preserving Embedding
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images present in the group (the images are not shown in
Figure 8). HEMNMA uses a fast Fourier-space method for
3D reconstruction from the selected group of points. The
3D reconstruction can be performed with other reconstruc-
tion methods (available in Scipion or other software pack-
ages), using the output metadata (text) file with the
rigid-body and elastic alignment parameters corresponding
to the selected group of points. The 3D reconstructions rep-
resent the average states from the corresponding groups of
images. One should make as homogeneous groups of
points as possible with a sufficient number of points per
group in order to obtain high-resolution 3D reconstructions
(note that the example in Figure 8b does not show the
most optimal grouping of points).

As explained, HEMNMA provides a full conforma-
tional variability landscape before grouping images into 3D
reconstructions (images with similar conformations on the
landscape). As such, HEMNMA can detect the conforma-
tions and motions that are undetectable with traditional
classification-based approaches, which was extensively
studied elsewhere.31

3 | PERSPECTIVES

A full description of conformational heterogeneity is
important for both biology and drug design. Cryo-EM has
been under continuous development since its beginning

FIGURE 7 Animations after image analysis. (a) Trajectories Tool. (b) Example of trajectory (10 red points, see the text for more

details). (c) Trajectory animation using VMD
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(early '80s), which was even accelerated with the latest
instrumental developments including direct electron detec-
tor devices (DDD cameras). Allowing a routine near-atomic
resolution of structures and a routine full description of
conformational variability are currently two main chal-
lenges. Indeed, the recent cryo-EM advances such as DDD
cameras, phase plates, and sample motion correction have
reduced noise and improved contrast in images, which

makes elucidation of conformations from images more
accurate. Methods for a full description of continuous con-
formational variability are being developed. However, these
methods will need to be more efficient and user-friendly to
allow routine use of cryo-EM for such studies. HEMNMA is
a user-friendly software that has been developed for deter-
mining the full distribution of continuous conformational
variability from cryo-EM images. Still, HEMNMA needs to

FIGURE 8 3D reconstructions after image analysis. (a) Clustering Tool for grouping close points (images with similar conformations).

(b) Example of selecting a group of points (circled in yellow) for 3D reconstruction. (c) Chimera superposition of three 3D reconstructions

(yellow, cyan, and gray isosurfaces) from the corresponding groups of images denoted in panel b (points surrounded by yellow, cyan, and

gray ellipses, panel b), with the most dominant motion shown by red arrows. The group of points saved using the “Create Cluster” button
(panel a) appears as a new box in the project tree (panel c), possibly after using the “Refresh” button from the project window. The saved

group of points can be inspected using the “Analyze Results” button from the project window, which shows images in this group (not shown

here) and slices of the volume reconstructed from these images (panel c). The volume isosurface can be visualized by clicking on the

Chimera icon in the slices display menu (panel c)
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be made faster in order to allow an efficient high-resolution
description of this variability. For instance, the analysis of
104 particle images based on the elastic alignment with six
normal modes and the “wavelets & splines” rigid-body
alignment may take 17 hr using 128 MPI cores on 2.9 GHz
Intel Xeon CPUs, which means that the analysis of 106 par-
ticle images would require around 70 days of use of the
same 128 MPI cores. To get a high-resolution description of
the full conformational landscape of a complex, several mil-
lions of particle images would need to be analyzed. A com-
bination of HEMNMA with a deep learning approach will
be implemented in the future to speed up the processing of
such large numbers of particle images.

HEMNMA is well suited to compact-support particle
shapes and may be adapted to deal with helical symmetry
particles in the future.
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