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Abstract
Collection of antimicrobial peptides (CAMP), CAMPSign, and ClassAMP are

open-access resources that have been developed to enhance research on antimicrobial

peptides (AMPs). Comprehensive information on AMPs and machine learning-based

predictive models are made available for users through these resources. As of date,

CAMPR3 has 10,247 sequences, 757 structures, and 114 family-specific signatures

of AMPs along with associated tools for AMP sequence and structure analysis.

CAMPSign uses family-specific sequence conservation, in the form of patterns and

hidden Markov models for identification of AMPs. ClassAMP can be used to classify

AMPs as antibacterial, antifungal, or antiviral based on sequence information. Here we

describe CAMP and its derivatives and illustrate, with a few examples, the contribution

of these online resources to the advancement of our current understanding of AMPs.
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1 | INTRODUCTION

Antimicrobial peptides (AMPs) are multifaceted host defense
molecules that are produced by organisms ranging from
microbes to mammals.1 AMPs kill microbes via pleiotropic
mechanisms of action, such as destruction of the microbial
membrane and inhibition of macromolecule synthesis.2–4

These molecules exhibit broad range antimicrobial activity,
rapid killing kinetics, reduced toxicity, and reduced micro-
bial resistance. Apart from their antimicrobial activity, a few
AMPs also regulate physiological functions such as inflam-
mation, angiogenesis, and wound healing.5

Identification of AMPs from natural sources in the 1980's
stimulated research on their isolation and characterization. Fur-
ther, the threat posed by antibiotic resistance accelerated research
onAMPs. This resulted in a rapid increase in the number of iden-
tified AMPs, which in turn demanded efficient AMP data regis-
tration, organization, and retrieval methods. Responding to this
need, a few databases on AMPs were developed.6–14 However,

these databases were limited to AMPs from a specific source,
that is, either natural or synthetic, or from a particular source
organism. To address this issue, we developed the collection of
antimicrobial peptides (CAMP) database15 in the year 2010. The
manually curated sequence information of AMPs was further
used to develop tools for AMP prediction and annotation. The
databases and tools, that were developed by our group and
updated over time, are discussed below.

2 | CAMP DATABASE

2.1 | CAMPR1

CAMP was an open-access resource that provided informa-
tion on sequences of natural as well as synthetic AMPs on a
single platform. AMP sequence information obtained from
the publicly available National Center for Biotechnology
Information (NCBI) database was systematically categorized
as (a) experimentally validated, (b) predicted, and (c) patents
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based on the reference literature. Furthermore, information
on the target organism, MIC values and hemolytic activity
was manually annotated from literature. It was the first AMP
database to have information on patented AMPs. The data-
base also hosted machine learning (ML) based algorithms
like random forests (RF), support vector machines (SVM),
and discriminant analysis (DA) for AMP prediction.

2.2 | CAMPR2

CAMP was expanded in 2014 to include information on
structures of AMPs.16 An additional feature of CAMPR2 was
the introduction of family information for sequences present
in the database. AMPs belong to diverse families such as
cathelicidins, defensins, temporins, and so forth, having
characteristic sequence composition. The database had man-
ually annotated information on 53 AMP families. This infor-
mation was meticulously sourced from (a) UniProtKB,17

(b) protein family databases such as Pfam,18 InterPro,19 and
(c) literature databases such as PubMed. The database was
updated with newly identified AMPs and the prediction
algorithms were retrained using the updated sequence
information.

2.3 | CAMPR3

The inclusion of AMP family-specific signatures represen-
ted by patterns and hidden Markov models (HMMs) and
the AMPs retrieved from online databases using these sig-
natures, mainly constituted the third update of CAMP.
Users can access CAMPR3

20 for information such as family
signatures, sequences, structures, activity profile, source,
target organisms, hemolytic activity and links to external
databases such as UniProtKB, PDB, PubMed, and NCBI
Taxonomy for AMPs from eukaryotic and prokaryotic
sources. Presently, CAMPR3 holds information on 10,247
sequences, 757 structures, and 114 family-specific signa-
tures of AMPs along with associated tools for AMP analy-
sis. Thus, CAMP evolved from a simple repository of
AMP sequences to a comprehensive database containing
sequences, structures, and family signatures along with
associated tools for AMP analysis. The evolution of the
CAMP database from its inception to the present state is
described in Table 1.

3 | ONLINE WEBSERVERS FOR
ANALYSIS OF AMPS

3.1 | CAMPSign

AMPs belong to diverse families with conserved sequence com-
position and this can be leveraged to efficiently identify/predict
AMPs from a large pool of sequences. CAMPSign is an open-
access webserver that aids in identification of AMPs and their
families using family-specific signatures represented by patterns
and HMMs.21 CAMPSign, presently can predict members of
45 AMP families.

3.2 | ClassAMP

While few AMPs exhibit broad-spectrum activity, many of
them are target-specific. ClassAMP is an online prediction
tool for classification of peptides as antibacterial, antifungal
and/or antiviral using sequence-based features.22 It employs
ML algorithms such as SVM and RF for classification.

4 | RESOURCES AVAILABLE AT
CAMP AND ITS DERIVATIVES

4.1 | Database search

The CAMP database can be searched to retrieve sequences,
structures and signatures of AMPs. The database provides basic
and advanced search options. Basic search feature enables
keyword-based search for all fields or restricted to a specific
field. The advanced search has a query builder by which users
can combine multiple queries using logical AND or OR opera-
tors. Users can search the database using AMP name, sequence,
source organism, target organism, activity, and so forth. Users
can also query for AMP family members and retrieve family sig-
natures in the form of patterns and HMMs.

4.2 | Data analysis tools available
through CAMP

4.2.1 | AMP prediction

Users can input sequences and obtain a variety of information
including the following: (a) Predict if the sequence/s is/are anti-
microbial; (b) Predict whether antimicrobial regions are present
within a protein; (c) Rationally design single-residue mutants

TABLE 1 Updates of the CAMP
database Database Primary structure 3D structure Family description

Patterns
and HMMs

CAMP (2010) 4,020 – – –

CAMPR2 (2014) 6,756 682 3,111 (53 families) –

CAMPR3 (2016) 10,247 757 5,241 (53 families) 114

Abbreviations: CAMP, collection of antimicrobial peptides; HMMs, hidden Markov models.
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and predict the effect of substitutions on antimicrobial activity.
The outcome of the prediction analysis is in the form of proba-
bility scores (Figure 1). The higher the score (max = 1), the
greater is the likelihood of the sequence having antimicrobial
activity. The prediction tools aid in the identification and ratio-
nal design of novel AMPs.

4.2.2 | Basic local alignment search tool

Users can query peptides of interest and their homologs in the
entire CAMP database or restricted to various subdatasets of
CAMP, for example, structure, patent, experimentally vali-
dated, predicted, and predicted based on signature data sets
using the basic local alignment search tool (BLAST) tool23

available in CAMP.

4.2.3 | Links to third-party analysis tools

The CAMP database provides access to third-party tools for
sequence and structure analysis such as Clustal Omega,24

Vector Alignment Search Tool (VAST),25 PRATT,26

ScanProsite,27 PHI-BLAST,28 and jackhmmer29 for increas-
ing the data analysis options available to users.

4.3 | Predict AMPs based on family signatures

The CAMPSign webserver can be used to predict AMPs
based on family-specific sequence conservation. Users
can scan the sequence of interest against all or specific
AMP family signatures comprising of patterns and
HMMs. Results are generated in a tabular format and have
information on the AMP family and number of patterns
and HMMs that match user-defined sequence/s. Users can
obtain a detailed view of the patterns and HMMs that
match/align to the sequence through the hyperlinks in the
results page (Figure 2).

4.4 | Predict AMPs based on target organisms

The ClassAMP webserver can be used to predict the propen-
sity of a peptide to have antibacterial, antifungal, or antiviral
properties based on sequence features trained using SVM or
RF based algorithms. The sequences are predicted as
antibacterial, antifungal, or antiviral and a probability score
(0–1) is provided. The higher the probability score, the higher
the likelihood of correct classification.

FIGURE 1 Snapshots of analysis reports from prediction modules available in CAMP. (a) Prediction of antimicrobial peptides based on
various ML classifiers. (b) Prediction of antimicrobial regions within the input sequence. (c) Prediction of single-residue mutants with enhanced
antimicrobial activity. A probability threshold of 0.5 was heuristically set to classify peptide as being antimicrobial. CAMP, collection of
antimicrobial peptides; ML, machine learning
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5 | CONTRIBUTION OF CAMP,
CAMPSIGN, AND CLASSAMP TO
RESEARCH ON AMPs

5.1 | Creation of other AMP databases

The data present in CAMP was used to create other
AMP databases like ADAM—a database of AMPs,30

InverPep—a database of invertebrate AMPs,31 YADAMP—
yet another database of AMPs,32 LAMP—a database linking

AMPs,33 C-PAmP—a database containing computationally
predicted AMPs from plants,34 Hemolytik—a database of
experimentally determined hemolytic and nonhemolytic
peptides,35 dbAMP—a resource for exploring AMPs with
functional activities and physicochemical properties on trans-
criptome and proteome data,36 and ANTISTAPHYBASE—a
database of AMPs and essential oils against methicillin-
resistant Staphylococcus aureus (MRSA) and Staphylococcus
aureus.37

FIGURE 2 Screenshot and description of the analysis report of CAMPSign

FIGURE 3 Country-wise share
of citations (in %) of CAMP and its
derivatives. Countries with fewer
share of citations (<0.5%) were
grouped as Others and these included
Algeria, Argentina, Belgium, Cuba,
Croatia, Ecuador, Finland, Egypt,
Uruguay, Tunisia, Sweden, Russia,
Norway, and Indonesia. CAMP,
collection of antimicrobial peptides
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5.2 | Creation of prediction algorithms
on antimicrobial activity

The data present in CAMP have been used either for training
or testing algorithms developed for AMP prediction and/or
classification.38–45

5.3 | Identification of peptides from natural
sources

The AMP prediction algorithm, available through CAMP,
has been successfully used to identify/predict peptides
with antimicrobial activity from natural sources such as
Protaetia brevitarsis larvae,46 Sichuan pepper,47 Litopenaeus
vannamei,48 milk proteins,49 human sweat,50 Thermophilic geo-
bacillus sp. Strain ZGt-1,51 Varanus komodoensis (Komodo
Dragon),52 American alligator plasma,53 human basal tear
sample,54Oxya chinensis sinuosa (grasshopper),55 lily leaves,56

Chrysochromulina tobin,57 and marine mussels.58 Few of these
peptides have been experimentally validated using wet-lab
methods.

5.4 | Rational design of AMPs

Using CAMP data, Joker,59 an algorithm was developed that
aids in rational design of AMPs. CAMP with BLAST tool
has been widely used to identify AMP sequences homolo-
gous to the user-defined sequences.60–66 SVM model of
CAMP was used for prediction of 10,000 double mutants of
Bactenecin 2A and subsequently 17 peptides were sho-
rtlisted for experimental validation.67

5.5 | Relatedness of novel peptides to AMP
families

The novelty of an antiviral peptide identified from the Asian
medicinal plant Acacia catechu was evaluated by comparing it
with members of the AMP families present in CAMPSign.68

Differentially expressed peptides from serous ovarian cancer
tissues were found to exhibit similarity to the members of the
aurein AMP family based on sequence analysis using
CAMPSign.69

6 | CONCLUSIONS

CAMPR3, ClassAMP, and CAMPSign are available online at
www.camp.bicnirrh.res.in, www.bicnirrh.res.in/classamp, and
www.campsign.bicnirrh.res.in, respectively. Open access to
CAMP and its derivatives has accelerated research on AMPs.
These resources have improved AMP identification, predic-
tion, and rational design. The citation reports are indicative of
the world-wide usage of these resources (Figure 3). We hope

to improve the functionality of these resources, as more data
on AMPs are made available in the public domain.
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