
TOOL S F OR P RO T E I N S C I E N C E

Integration of the Rosetta suite with the python software stack
via reproducible packaging and core programming interfaces
for distributed simulation

Alexander S. Ford1,2,3 | Brian D. Weitzner2,3,4 | Christopher D. Bahl1,5,6

1Institute for Protein Innovation, Boston,
Massachusetts
2Institute for Protein Design, University of
Washington, Seattle, Washington
3Department of Biochemistry, University of
Washington, Seattle, Washington
4Lyell Immunopharma, Inc., Seattle,
Washington
5Division of Hematology/Oncology, Boston
Children's Hospital, Boston, Massachusetts
6Department of Pediatrics, Harvard Medical
School, Boston, Massachusetts

Correspondence
Alexander S. Ford and Christopher D. Bahl,
Institute for Protein Innovation, 4 Blackfan
Circle, Room 921G, Boston, MA 02115.
Email: alex.ford@proteininnovation.org
(A. S. F.) and chris.bahl@proteininnovation.
org (C. D. B.)

Funding information
Harvard Medical School, Grant/Award
Number: O2

Abstract
The Rosetta software suite for macromolecular modeling is a powerful computa-

tional toolbox for protein design, structure prediction, and protein structure analy-

sis. The development of novel Rosetta-based scientific tools requires two

orthogonal skill sets: deep domain-specific expertise in protein biochemistry and

technical expertise in development, deployment, and analysis of molecular simula-

tions. Furthermore, the computational demands of molecular simulation necessitate

large scale cluster-based or distributed solutions for nearly all scientifically relevant

tasks. To reduce the technical barriers to entry for new development, we integrated

Rosetta with modern, widely adopted computational infrastructure. This allows

simplified deployment in large-scale cluster and cloud computing environments,

and effective reuse of common libraries for simulation execution and data analysis.

To achieve this, we integrated Rosetta with the Conda package manager; this sim-

plifies installation into existing computational environments and packaging as

docker images for cloud deployment. Then, we developed programming interfaces

to integrate Rosetta with the PyData stack for analysis and distributed computing,

including the popular tools Jupyter, Pandas, and Dask. We demonstrate the utility

of these components by generating a library of a thousand de novo disulfide-rich

miniproteins in a hybrid simulation that included cluster-based design and interac-

tive notebook-based analyses. Our new tools enable users, who would otherwise

not have access to the necessary computational infrastructure, to perform state-of-

the-art molecular simulation and design with Rosetta.

KEYWORD S

conda, containerization, dask, de novo protein design, disulfide-rich miniprotein, elastic cloud

services, high performance computing, jupyter, python, Rosetta

Abbreviations: API, application programming interface; dict, dictionary;
DSL, domain specific language; HPC, high performance computing; I/O,
input/output; JSON, JavaScript object notation; MPI, message passing
interface; XML, extensible markup language; XSD, XML schema
definition.

Statement of importance: Development and application of novel
biomolecular modeling protocols using the Rosetta suite involves

challenges in both software development and distributed execution on
cluster and cloud computing platforms. Integration with existing python
programming interfaces with the community standard RosettaScripts
language allows accelerated development and scalable execution via
reuse of an existing scientific software ecosystem, while conda-based
package management enables reproducible deployment of modeling
protocols.

Received: 28 June 2019 Revised: 30 August 2019 Accepted: 3 September 2019

DOI: 10.1002/pro.3721

Protein Science. 2020;29:43–51. wileyonlinelibrary.com/journal/pro © 2019 The Protein Society 43

https://orcid.org/0000-0002-3652-3693
mailto:alex.ford@proteininnovation.org
mailto:chris.bahl@proteininnovation.org
mailto:chris.bahl@proteininnovation.org
http://wileyonlinelibrary.com/journal/pro

1 | INTRODUCTION

The Rosetta software suite for macromolecular modeling is a
powerful computational toolbox for protein design, structure
prediction, and protein structure analysis. Effectively leve-
raging Rosetta requires both extensive computational resour-
ces and deep knowledge of the inner workings of the
software. To make the software accessible to a broader range
of scientists, the suite exposes multiple, high-level interfaces
including RosettaScripts,1 PyRosetta,2 and protocol-specific
command-line executables.3 Current academic efforts to
make Rosetta more accessible, such as Robetta4 or ROSIE,5

focus on exposing specific, pre-existing functionality for a
general use audience, while commercial efforts focus on the
development of integrated, end-to-end biomolecular model-
ing environments.6

The Rosetta suite implements a shared molecular energy
function and fundamental “Pose” data structure, a complex
object representing a full molecular system optimized for
modeling operations. The high-level protocols layer of the
suite consists of composable submodules that either modify
(“Movers”) or evaluate scalar-valued scores (“Filters”) on
the Pose.7 The rapid adoption of this model is a testament to
its utility, with a majority of Rosetta-based tools making
broad use of these shared internal abstractions accessed via
the RosettaScripts programming interface (Figure 1a).

Despite this shared high-level architecture, Rosetta-based sci-
entific protocols often rely on multi-step simulation workflows,
iterating between execution of modeling protocols via the

rosetta_scripts interpreter and data post-processing and
analysis via statistical tools such as Pandas, R, and Scikit-learn
(Figure 1b). This workflow results in nontrivial development
overhead for scientific end users and a profusion of fragile ad
hoc data munging, job management, and tool interface solutions.
To address these deficiencies in computational workflows, the
broader scientific community has embraced interactive comput-
ing “notebooks” (e.g., Jupyter notebooks). Notebooks allow
users to interactively execute code blocks and display rich out-
put (such as inline plots, formatted tables, or other visualiza-
tions) intermingled with typeset prose explaining the work and
results, capturing the simulation and analysis for a scientific
workflow in a single document. A limitation of typical
notebook-based workflows is the assumption that calculations
are performed on a single machine running the notebook. How-
ever, for nearly all Rosetta-based workflows, an individual simu-
lation may require thousands of core-hours of compute and
must be split across many networked computers (distributed
computing) to finish in a reasonable length of time. Thus, tradi-
tional notebook-based workflows are unusable.

Molecular modeling workflows are typically run in high
performance computing (HPC) environments using a shared
file system to organize the input and output of simulations
run by many worker machines using specialized code for
inter-worker communication (e.g., via message passing inter-
face [MPI]). Together, distributed execution and data man-
agement create significant barriers for scientists performing
molecular modeling tasks, as they must manage deployment
of software on the HPC system, simulation execution, and

FIGURE 1 Rosetta protocols execution model and RosettaScripts workflows. Components managed by conda-based redistributable packages
are highlighted in green, and RosettaScripts-defined protocol components are highlighted in blue. (a) The Rosetta protocols-level pipelined
execution model. An input Pose (P) is modified by Mover (M) and Filter objects A and B, resulting in modified Pose P0 and score values A,
B. (b) In a standard rosetta_scripts based workflow, a protocol pipeline is applied, and output is post-processed via external scripts. (c) In the
integrated workflow described in this work, multiple RosettaScripts-encoded protocols and additional components are combined in an arbitrary
dataflow within a single application

44 FORD ET AL.

subsequent tracking of a simulation and its associated
analyses.

In addition to the rise of notebooks, the decade following
Rosetta3's initial development has seen dramatic growth of
distributed data processing tools running on elastically
scaled cloud infrastructure. Distributed data processing tools
(e.g., MapReduce, Spark, Dask, etc.) express workflows as
many isolated task “nodes” with explicit data “edges” con-
necting task outputs and inputs into a computational graph
(commonly referred to as task-based parallelism). A schedul-
ing engine then assigns tasks to distributed workers to com-
pute the full workflow result. Unlike traditional MPI
applications, in which the entire distributed application fails
if a single worker fails, task-based parallelism can accommo-
date failed workers by retrying the worker's isolated tasks.
This allows large-scale distributed execution on “unreliable”
workers, such as inexpensive preemptible or spot instances
provided in cloud environments. A substantial, freely avail-
able scientific software ecosystem has been developed
around this computing paradigm. However, despite advan-
tages in cost and throughput, there was no way to cleanly
integrate these distributed computing tools with the commu-
nity standard RosettaScripts interface.

Here, we describe deployment of the Rosetta suite via the
conda package manager and the implementation of primary
python programming interfaces using RosettaScripts compo-
nents. We developed infrastructure to standardize the build
process of Rosetta so that it can be easily and reproducibly
deployed on a wide variety of compute environments. We then
extended Rosetta's RosettaScripts interface to support task-
based parallelism and simplified integration with existing sci-
entific computing libraries. Together, these allow (a) flexible
deployment to multiple computing providers, including elastic
cloud infrastructure; (b) reproducible specification of complete
Rosetta based protocols and analysis; (c) extensive integration
with existing components of the scientific software ecosystem;
and (d) notebook-amenable workflows that can drive simula-
tions on a distributed computing system. We demonstrate the
utility of this approach through two real-world examples:
(a) de novo design and analysis of disulfide-rich miniproteins
and (b) large-scale protein relaxation simulations.

2 | RESULTS AND DISCUSSION

Below, we report two proof-of-concept workflows: an end-to-
end pipeline of a disulfide stabilized miniprotein design proto-
col8 combining classic HPC and notebook-based analysis, and
a benchmark of distribution engines on a community-standard
parallel model relaxation task.9 These results were generated
using our novel conda packages and programming interfaces,
implemented via a hybrid batch-interactive workflow and dis-
tributed task-based parallelism.

2.1 | Miniprotein batch design and interactive
analysis

De novo protein design with Rosetta currently requires signif-
icant compute resources, as backbone generation necessitates
large amounts of conformational sampling. Generally, the
process begins by designing thousands of structures in silico.
Then, a portion of these designs are selected for production
and characterization in vitro; design selection is commonly
performed using quantitative measurements of protein struc-
ture (e.g., amount of nonpolar surface area sequestered in the
protein interior) combined with heuristics and human
intuition.8,10–12 Thus, interactive data analysis greatly facili-
tates the de novo protein design process. To demonstrate the
utility of the computational infrastructure we describe below,
we generated a library of 1,000 disulfide-rich mini-proteins
by running an automated RosettaScripts XML protocol with
batch execution on a cluster, followed by analysis and selec-
tion via a Jupyter notebook (Figure 2a).

Independent design trajectories begin by generating a
protein main chain through fragment-based monte-carlo
sampling, and a blueprint file is used to specify the desired
secondary and tertiary structure. Protein “backbones” (i.e., a
poly-valine model of protein structure) that pass a set of
quality filters are then used for disulfide discovery. All pos-
sible disulfide positions are identified, and the combinations
of disulfides are rank-ordered by disulfide entropy, a metric
of how well distributed the disulfide connections are within
the protein backbone.13 Disulfide-bonded backbones are
then subjected to iterative rounds of structure minimization
and sidechain-based rotamer optimization followed by filter-
ing based on the full-atom model before output; the goal is
to identify a low energy primary structure that will direct the
protein to adopt the designed tertiary structure. (File S1).

Following batch simulation, results are collected from an
intermediate store for interactive analysis. The collection of
models, and associated filter values, are aggregated and used
to develop application-specific selection criteria, including fea-
tures such as sequence or structural diversity. Within the analy-
sis notebook, the dask.distributed.LocalCluster

interface is used to distribute analysis tasks across multiple
worker cores. The final selected designs are visually inspected,
stored as PDB models for later analysis, and the primary amino
acid sequences are output for reverse translation and gene syn-
thesis. (File S1).

2.2 | Relax benchmarking

Scalability describes a system's ability to effectively utilize
additional computational resources. A distributed system is
described as “horizontally scalable” if adding worker
resources results in a commensurate increase in throughput,
for example, total tasks per second throughout the system.

FORD ET AL. 45

All distributed task engines introduce a per-task overhead.
This overhead is constant for small system sizes, and it
increases nonlinearly with system size. Thus, at the engine's
scaling limit, additional worker resources are consumed by
overhead and no longer provide increased throughput.

To demonstrate the multi-worker scalability of our new
infrastructure, we compared the performance of traditional
multithreaded job execution versus the distributed task model.
As an example, we chose to perform a common modeling
task: Relax-based refinement of a crystallographic structure.
This step is required for all modeling or design work with
Rosetta that makes use of experimentally determined protein
models. Because the Relax operation is stochastic, it requires
repeating sampling followed by model selection. This exposes
trajectory level parallelism, and a distributed task model is
ideal for this type of computational workflow. Here, we uti-
lized the dask.distributed library to express individual
trajectories as independent tasks, followed by aggregation and
model selection by the resulting score (Figure 2b; File S1).

When executed via a single, multithreaded worker pro-
cess, performance scaled effectively to eight concurrent
tasks. At 12–24 concurrent tasks, scaling decreased due to
multithread overhead in underlying PyRosetta components.
On the other hand, multi-node distributed execution scaled
effectively to 96 concurrent tasks run via 16 processes on
4 AWS m5.24xlarge worker instances with no performance
loss (Figure 3; File S1)

As runtime of an individual protocol step executes on the
order of seconds to minutes, the millisecond-scale per-task
constant overhead does not appreciably impact the total
throughput. Thus, scaling to significantly larger cluster sizes is
limited only by the application-specific task architecture and
the underlying dask.distributed computing library,

which has been demonstrated on thousands of concurrent
cores.14,15

3 | CONCLUSION

Currently, incorporating Rosetta into scientific workflows
requires effort to manage the source code, compilation modes,
system libraries, and other dependencies. This consumes time
and energy, and it substantially increases the difficulty of rep-
roducing computational scientific results. Post-deployment,
the need to learn a highly specialized set of APIs presents
additional barriers to innovation. To address these critical
problems in the field, we provided conda packages for Rosetta
executables and PyRosetta, and we integrated the Ros-
ettaSuite with the ubiquitous python programming interface.

By using Conda packages, scientists can describe a com-
plete computing environment in an easily shareable file,
allowing trivial reconstruction and deployment of this envi-
ronment on multiple platforms. The portability and reliabil-
ity of these environments creates a pathway for renewed
emphasis on reproducibility, and it enables scientists to
spend their time focusing on research questions instead of
managing software dependencies.

Rather than create a new standard, we integrated the
RosettaSuite with common programming interfaces in order
to make Rosetta compatible with established third party
tools used in scientific computing. Relying on a broader
standard facilitates the development of workflows wherein
a Rosetta simulation may be one step in a larger computa-
tional pipeline. These larger pipelines can be executed inter-
actively through a Jupyter notebook that can, in turn, scale
simulations via an HPC or cloud-based scheduler and col-
lect results.

FIGURE 2 Example applications
implemented in this work. (a) A multi-application
batch-to-interactive disulfide-rich mini-protein de
novo design protocol. (b) Scatter–gather job
implemented via dask.distributed for a
parallel-relax protocol

46 FORD ET AL.

The developments reported here position Rosetta to be
easily deployed across multiple computing providers, adopt
state-of-art reproducibility of results, and integrate with exis-
ting components of the scientific software ecosystem when
available. Together, this enables users, who would otherwise
not have access to the necessary computational infrastruc-
ture, to perform state-of-the-art molecular simulation and
design with Rosetta, and it enables robust development of
complex simulation workflows.

4 | COMPONENTS

4.1 | Conda—Adaptable packaging

Originally developed for managing the Python scientific
software stack, conda has evolved into a de facto general
purpose standard for scientific software management, with
notable growth in the life sciences via the Bioconda pro-
ject.16 Conda deploys applications into isolated software
environments decoupled from the underlying operating sys-
tem. This approach enables per-project dependency manage-
ment, and precise definition and reproduction of a software
environment without system-wide administrator privileges.
Relocatable binary packages, built from a well-defined rec-
ipe in a strictly isolated environment, can be deployed from
shared distribution channels into multiple environments.

To support both existing and novel workflows, we devel-
oped Conda recipes packing both Rosetta suite command-
line executables and a PyRosetta build variant supporting
the pyrosetta.distributed namespace (described below). For

Rosetta users, integration via conda packages provides sup-
port for simplified multi-platform deployment, reproducible
capture of existing protocols, and simplified use of external
tools in novel protocols.

Reproducible and broadly redeployable packages can be
built via a containerized build process derived from the
conda-forge build infrastructure (see Installation and Sup-
port).17 For users who wish to incorporate Rosetta into their
workflows, these packages eliminate the time-consuming
resolution of source code, compilation modes, system librar-
ies and other dependencies. For protocol developers, these
packages can be used to capture development variants for
scientific testing.

4.2 | Pyrosetta.distributed—
RosettaScripts/python interface integration

The PyRosetta distribution has two primary requirements: an
exhaustive presentation of the internal components of the
Rosetta suite, and a zero-dependency deployment on multiple
platforms; this has successfully filled important roles for both
pedagogical and development prototyping applications.
Simultaneously, the ease-of-access, rapid prototyping sup-
port, reusability, and the speed of execution of RosettaScripts
has allowed it to become the lingua franca of Rosetta-based
protein design applications.

A lack of cross-compatibility between these tools has led to
common, but fragmented, workflows in which rosetta_scripts
executable outputs are reprocessed via ad hoc data analysis
scripts using Pandas, Scikit-Learn, and other components of

FIGURE 3 Scaling via distributed execution. (a) Parallel FastRelax walltime in multithreaded and distributed Dask clusters via pyrosetta.
distributed. Vertical bars indicate batch sizes equivalent to one task-per-core. Single-process multithreaded execution (blue) shows decreased
performance beyond eight threads per process before saturating the 24 available cores. Cross-node distributed execution (orange) limited to six
threads-per-process and four process-per-node scales to saturate all distributed cores without additional overhead. All benchmarks were run on AWS
m5.12xlarge instances with 24 physical cores per node, default network settings, and hyperthreading disabled

FORD ET AL. 47

the PyData software stack. Many recent advances in Rosetta-
based protein modeling have been implemented as Mover and
Filter components or as full RosettaScripts protocols. This has
led to an increased gap in the fraction of the suite's functional-
ity exposed via PyRosetta, as well as increased development
friction in integrating RosettaScript components into python-
based secondary analysis tools.

We sought to bridge this gap for two primary scenarios:
notebook-based interactive development and large-scale sci-
entific computing. Exposing the RosettaScripts DSL via a
high-level programming interface allows users to utilize the
nearly ubiquitous Jupyter interface for prototyping and data
analysis, capturing multi-step workflows in a single docu-
ment. We then tailored these APIs to support the core
python interfaces that are required for distributed execution;
this allows transition from notebook prototypes to large-
scale simulation applications that integrate Rosetta with mul-
tiple external libraries. We hypothesized that, in a manner
similar to our conda-based deployment integration, targeting
a widely adopted platform would enable broad utilization of
existing community supported tools and infrastructure.

4.3 | Integration components

The python software ecosystem relies on a small set of
shared core interfaces utilizing primitive language-native
data structures, pure function invocation, and object seriali-
zation to provide loosely coupled interoperability between
independent software components. Our component, the
“pyrosetta.distributed” namespace, utilizes established ele-
ments of the Rosetta internal architecture: the Pose model
and score representation, RosettaScript protocols, and Pose
serialization.

The adoption of a small set of core interfaces supports
integration with an array of scientific computing tools,
including support for interactive development environments,
common record-oriented data formats, statistical analysis,
and machine learning packages, and multiple distributed
computing packages. The pyrosetta.distributed package pro-
vides example integrations with several preferred packages
for data analysis (Pandas), distributed computing (Dask), and
interactive development (Jupyter Notebook), but is loosely
coupled to allow later integration with additional libraries.
Updated code examples for the components below are
available under the Supporting Information—distributed_
overview.ipynb.

4.4 | Data structures (pyrosetta.distributed.
packed_pose)

“Primitive” datatypes form a primary interface between many
python libraries and, though not strictly defined, typically

include the built-in scalar types (string, int, bool, float, …),
key-value dicts, and lists. Libraries operating on more com-
plex user-defined classes often expose routines inter-
converting to and from primitive datatypes, and primitive
datatypes can be efficiently serialized in multiple formats.

For interaction between Rosetta protocol components
and external libraries, we developed the pyrosetta.distrib-
uted.packed_pose namespace. This implements an isomor-
phism between the Pose object and dict-like records of the
molecular model and scores. The Pose class represents a
mutable, full-featured molecular model with nontrivial mem-
ory footprint. A Pose may be inexpensively interconverted
to a compact binary encoding via cereal-based serialization,
originally developed for the suite's internal job distribution
engines. This serialized format is used to implement the
PackedPose class, an immutable record containing model
scores and the encoded model, which is isomorphic to a
dict-based record. Adaptor functions within the packed_pose
namespace freely adapt between collections of Pose (pack-
ed_pose.to_pose), PackedPose (packed_pose.to_packed),
dict-records (packed_pose.to_dict), and pandas.DataFrame
objects (Figure 4a).

A dict-record and DataFrame interface provides zero-
friction integration with a wide variety of data analysis tools
and storage formats. For example, the record-oriented format
can be passed through statsmodels or scikit-learn based fil-
tering and analysis and written to any json-encoded text file,
avro record-oriented storage, or parquet column-oriented
storage. The pyrosetta.distributed.io namespace implements
functions that mirror the pyrosetta.io namespace, providing
conversion between PackedPose and the PDB, mmCIF, and
Rosetta binary silent-file formats.

Critically, the PackedPose record format can also be
transparently serialized, stored with a minimal memory foot-
print, and transmitted between processes in a distributed
computing context. This allows a distributed system to pro-
cess PackedPose records as plain data, storing and transmit-
ting numerous model decoys while only unpacking a small
working set into heavyweight Pose objects.

4.5 | Protocol components (pyrosetta.
distributed.tasks)

RosettaScripts uses an XML-based DSL to tersely encode
molecular modeling protocols with a pipeline-like dataflow.
The rosetta_scripts interpreter functions by parsing, XSD-
validating and initializing a single RosettaScripts protocol. It
then applies this protocol to input structures repeatedly to
produce simulation output. Recent work has expanded sup-
port for more complex dataflow, including multi-stage oper-
ations and additional logic; however, RosettaScripts is not
intended to be a general purpose programming language.

48 FORD ET AL.

http://distributed_overview.ipynb
http://distributed_overview.ipynb
http://pyrosetta.distributed.io

The pyrosetta.distributed.tasks namespace encapsulates
the RosettaScripts interface, allowing the DSL to be utilized
within python processes. Protocol components are represen-
ted as “task” objects containing an XML encoded script.
Task objects are serializable via the standard pickle inter-
face, and they use a simple caching strategy to perform on-
demand initialization of the underlying protocol object as
needed for task application.

Task components accept any valid pose-equivalent data
structure and return immutable PackedPose data structures by
(a) deserializing the input into a short-lived Pose object, (b)
applying the parsed protocol to the Pose and (c) serializing
the resulting model as a PackedPose. Two task classes,
SingleOutputRosettaScriptsTask and MultipleOutputRosetta
ScriptsTask define either a one-to-one function returning a
single output, or a one-to-many protocol component returning
a lazy iterator of outputs. All tasks operate as “pure
functions,” returning a modified copy rather than directly
manipulating input data structures (Figure 4b).

4.6 | Multithreaded and distributed execution

Rosetta-based simulations frequently involve execution of
numerous independent monte-carlo sampling trajectories
that all begin from a single starting structure; in other words,
they are “embarrassingly” or “trivially” parallel. The Rosetta
suite implements a job distribution framework (“JD2” and
“JD3”) to manage I/O and task scheduling for parallelizable
workloads of this type; this allows the rosetta_scripts inter-
preter to operate as a single process or within MPI, BOINC,
and other distributed computing frameworks. Semantics of
the RosettaScripts language have also evolved to incorporate
nontrivial forms of parallelism, including support for multi-
stage scatter/gather protocols (“Multistage RosettaScripts”).
Though fully functional, this framework is optimized for
operation as a standalone application and does not provide

straightforward integration with third party tools or general-
ized program logic.

The combination of immutable data structures and pure
function interfaces implemented in the pyrosetta.distributed
namespace provides an alternative approach to job para-
llelization by integrating RosettaScripts as a submodule that
is compatible with dask.distributed and other task-based dis-
tributed computing frameworks. By virtue of reliance on
standard python primitives, the pyrosetta.distributed nam-
espace is not tightly coupled to a single execution engine.
Single-node scheduling may be managed via the standard
multiprocessing or concurrent. Futures interfaces, providing
a zero-dependency solution for small-scale sampling or anal-
ysis tasks. Execution via MPI-based HPC deployments may
be managed via the mpi4py interface.

To support effective distributed execution, the pyrosetta.
distributed namespace is intended to be installed via a build
configuration of PyRosetta, provided by conda packages
described above, supporting multithreaded execution. This
variant utilizes existing work establishing thread-safety in
the suite, and it releases the CPython global interpreter lock
when calling compiled Rosetta interfaces. This enables
multi-core concurrent execution of independent modeling
trajectories via python-managed threads, as well as python-
level operations such as network I/O and process heartbeats
to occur concurrently with long-running Rosetta API calls.

4.7 | Interactive analysis and notebook-based
computing

Notebook-based interactive analysis, typified by the Jupyter
project,18 has become a dominant tool in modern data sci-
ence software development. In this model, data, code, out-
put, and visualization are combined in a single document,
which is viewed and edited through a browser-based inter-
face to a remote execution environment.

FIGURE 4 The pyrosetta.
distributed data types and task types.
(a) pyrosetta.distributed.
packed_pose datatypes freely
interconvert between mutable Pose and
immutable PackedPose, dict-record,
and DataFrame representations,
allowing integration with external
libraries. (b) pyrosetta.
distributed.tasks supports task-
based distributed computing via
serialization of immutable task and Pose
objects

FORD ET AL. 49

To facilitate interactive analysis, we extended the PyR-
osetta Pose interface to expose total, residue one-body, and
residue-pair two-body terms of the Rosetta score function as
NumPy structured arrays. Combined with the pandas.
DataFrame representation offered in pyrosetta.distributed.
packed_pose, this provides an expressive interface for interac-
tive model analysis and selection. We also integrated existing
documentation into the pyrosetta.distributed.docs namespace
to allow introspection-based exploration of Mover and Filter
RosettaScripts components. Existing tools for web-based bio-
molecular visualization, such as py3dmol19 and NGLview,20

extend this interface to a fully-featured biomolecular simula-
tion, analysis, and visualization environment.

Remote notebook execution has the distinct advantage of
allowing a user to access computational resources far
beyond the capabilities of a single workstation. By using
tools such as Dask via the integrations described above, a
remote notebook interface can be used to manage a distrib-
uted simulation spanning hundreds of cores for rapid model
analysis, and it offers a viable alternative to traditional
batch-based computing for some classes of simulation.

4.8 | Limitations and extensions

The pyrosetta.distributed namespace repurposes
features of the existing RosettaScripts implementation to
provide a task-based computing model. However, as the
suite was not originally designed and implemented around
this model, notable limitations exist. Most obviously, the
suite's global, static command-line options system is not
effectively exposed or managed in the pyrosetta.dis-

tributed namespace. Simulations requiring options-based
configuration can be supported via application-wide initiali-
zation from a single set of flags. However, components that
require options-based specification of individual modeling
steps cannot currently be represented as tasks. An implemen-
tation that delegates to a task-specific subprocess, which
may initialize the suite with arbitrary command-line options,
could overcome this limitation. Additionally, some protocol
components of the suite may be tightly coupled to the job
distributor, utilize global state, maintain internal caches, or
violate thread safety assumptions in ways that are incompati-
ble this framework. Integration and unit testing should be
used before large-scale simulation to ensure a protocol is
functioning as anticipated.

The Rosetta suite's existing Pose serialization format
directly encodes the structure of many internal classes with-
out a guarantee of forward or reverse compatibility. As a
result, the packed data formats described in this work are not
suitable for use across differing versions of the Rosetta suite,
and cross-version compatibility should be considered fortu-
itous at best. Compatibility across application versions, as

would be required for persistent storage or use in an incre-
mentally deployed distributed system, requires persistence
through alternative formats such as PDB, mmCIF, or Rosetta
silent files. Development of a robust, cross version serializa-
tion format through a tool such as Protocol Buffers, Thrift,
or a defined MessagePack or JSON schema could be used to
address this limitation in a performant manner.

5 | INSTALLATION AND SUPPORT

5.1 | Package access

The Rosetta suite is freely available for academic and non-
profit users, and it is available for commercial licensing. The
suite can be licensed via https://els.comotion.uw.edu/express_
license_technologies/rosetta and downloaded in source form at
https://www.rosettacommons.org/. Binary conda packages
described in this work can be built from source, with documen-
tation located under main/source/conda/README.md.

Binary packages for weekly source releases are also
available at https://conda.graylab.jhu.edu, licensed at https://
els.comotion.uw.edu/express_license_technologies/pyrosetta
and downloaded via instructions at http://www.pyrosetta.
org/dow.

As of this writing, build configurations are provided for
Linux and MacOS platforms. Execution on Windows is
supported via Conda and the Windows Subsystem for Linux.

5.2 | Relax benchmark

The parallel relax performance benchmark was performed
via AWS-ParallelCluster. The benchmark generation script
is available in the supporting information.

5.3 | Miniprotein design protocol

Disulfide-rich miniprotein de novo design was performed on
the O2 cluster at Harvard Medical School and GCP. The
XML protocol used for design, protein blueprint file, job
submission scripts, and library of designed protein models
generated in this study are available in the supporting
information.

ACKNOWLEDGMENTS

Portions of this research were conducted on the O2 High
Performance Compute Cluster, supported by the Research
Computing Group, at Harvard Medical School. See http://rc.
hms.harvard.edu for more information.

The authors would like to thank and acknowledge Sergey
Lyskov for development and maintenance of the PyRosetta
project, Jason Klima, Stacey Gerben and members of the

50 FORD ET AL.

https://els.comotion.uw.edu/express_license_technologies/rosetta
https://els.comotion.uw.edu/express_license_technologies/rosetta
https://www.rosettacommons.org/
https://conda.graylab.jhu.edu
https://els.comotion.uw.edu/express_license_technologies/pyrosetta
https://els.comotion.uw.edu/express_license_technologies/pyrosetta
http://www.pyrosetta.org/dow
http://www.pyrosetta.org/dow
http://aws-parallelcluster
http://rc.hms.harvard.edu
http://rc.hms.harvard.edu

Institute for Protein Design for gracious testing and revi-
sions, David Baker for mentorship, and the larger Rosetta
Commons community.

ORCID

Christopher D. Bahl https://orcid.org/0000-0002-3652-
3693

REFERENCES

1. Fleishman SJ, Leaver-Fay A, Corn JE, et al. RosettaScripts: A
scripting language interface to the Rosetta macromolecular model-
ing suite. PLoS One. 2011;6:e20161.

2. Chaudhury S, Lyskov S, Gray JJ. PyRosetta: A script-based inter-
face for implementing molecular modeling algorithms using
Rosetta. Bioinformatics. 2010;26:689–691.

3. Bender BJ, Cisneros A III, Duran AM, et al. Protocols for molecu-
lar modeling with Rosetta3 and RosettaScripts. Biochemistry.
2016;55:4748–4763.

4. Kim DE, Chivian D, Baker D. Protein structure prediction and
analysis using the Robetta server. Nucleic Acids Res. 2004;32:
W526–W531.

5. Moretti R, Lyskov S, Das R, Meiler J, Gray JJ. Web-accessible
molecular modeling with rosetta: The rosetta online server that
includes everyone (ROSIE). Protein Sci. 2018;27:259–268.

6. Cyrus Biotech|Molecular Modeling and Design. Available from:
https://cyrusbio.com/

7. Leaver-Fay A, Tyka M, Lewis SM, et al. ROSETTA3: An object-
oriented software suite for the simulation and design of macromol-
ecules. Methods Enzymol. 2011;487:545–574.

8. Bhardwaj G, Mulligan VK, Bahl CD, et al. Accurate de novo design
of hyperstable constrained peptides. Nature. 2016;538:329–335.

9. Conway P, Tyka MD, DiMaio F, Konerding DE, Baker D. Relaxa-
tion of backbone bond geometry improves protein energy land-
scape modeling. Protein Sci. 2014;23:47–55.

10. Buchko GW, Pulavarti SVSRK, Ovchinnikov V, et al. Cytosolic
expression, solution structures, and molecular dynamics simulation
of genetically encodable disulfide-rich de novo designed peptides.
Protein Sci. 2018;27:1611–1623.

11. Rocklin GJ, Chidyausiku TM, Goreshnik I, et al. Global analysis
of protein folding using massively parallel design, synthesis, and
testing. Science. 2017;357:168–175.

12. Nivón LG, Bjelic S, King C, Baker D. Automating human intui-
tion for protein design. Proteins. 2014;82:858–866.

13. Harrison PM, Sternberg MJ. Analysis and classification of dis-
ulphide connectivity in proteins. The entropic effect of cross-link-
age. J Mol Biol. 1994;244:448–463.

14. Rocklin M Dask Scaling Limits. Available from: http://
matthewrocklin.com/blog/work/2018/06/26/dask-scaling-limits

15. Lunacek M, Braden J, Hauser T The scaling of many-task comput-
ing approaches in python on cluster supercomputers. In: 2013 IEEE
International Conference on Cluster Computing (CLUSTER). ;
2013. pp. 1–8. Available from: https://doi.org/10.1109/CLUSTER.
2013.6702678

16. Grüning B, Dale R, Sjödin A, et al. Bioconda: Sustainable and
comprehensive software distribution for the life sciences. Nat
Methods. 2018;15:475–476.

17. Conda-forge: community driven packaging for conda. Available
from: https://conda-forge.org/

18. Perkel JM. Why Jupyter is data scientists' computational notebook
of choice. Nature. 2018;563:145–146.

19. Rego N, Koes D. 3Dmol.js: Molecular visualization with WebGL.
Bioinformatics. 2015;31:1322–1324.

20. Nguyen H, Case DA, Rose AS. NGLview-interactive molecular
graphics for Jupyter notebooks. Bioinformatics. 2018;34:1241–1242.

SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of this article.

How to cite this article: Ford AS, Weitzner BD,
Bahl CD. Integration of the Rosetta suite with the
python software stack via reproducible packaging and
core programming interfaces for distributed
simulation. Protein Science. 2020;29:43–51. https://
doi.org/10.1002/pro.3721

FORD ET AL. 51

https://orcid.org/0000-0002-3652-3693
https://orcid.org/0000-0002-3652-3693
https://orcid.org/0000-0002-3652-3693
https://cyrusbio.com/
http://matthewrocklin.com/blog/work/2018/06/26/dask-scaling-limits
http://matthewrocklin.com/blog/work/2018/06/26/dask-scaling-limits
https://doi.org/10.1109/CLUSTER.2013.6702678
https://doi.org/10.1109/CLUSTER.2013.6702678
https://conda-forge.org/
https://doi.org/10.1002/pro.3721
https://doi.org/10.1002/pro.3721

	Integration of the Rosetta suite with the python software stack via reproducible packaging and core programming interfaces ...
	1 INTRODUCTION
	2 RESULTS AND DISCUSSION
	2.1 Miniprotein batch design and interactive analysis
	2.2 Relax benchmarking

	3 CONCLUSION
	4 COMPONENTS
	4.1 Conda-Adaptable packaging
	4.2 Pyrosetta.distributed-RosettaScripts/python interface integration
	4.3 Integration components
	4.4 Data structures (pyrosetta.distributed.packed_pose)
	4.5 Protocol components (pyrosetta.distributed.tasks)
	4.6 Multithreaded and distributed execution
	4.7 Interactive analysis and notebook-based computing
	4.8 Limitations and extensions

	5 INSTALLATION AND SUPPORT
	5.1 Package access
	5.2 Relax benchmark
	5.3 Miniprotein design protocol

	ACKNOWLEDGMENTS
	REFERENCES

