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Abstract

Next-generation sequencing methods have not only allowed an understanding of

genome sequence variation during the evolution of organisms but have also pro-

vided invaluable information about genetic variants in inherited disease and the

emergence of resistance to drugs in cancers and infectious disease. A challenge

is to distinguish mutations that are drivers of disease or drug resistance, from

passengers that are neutral or even selectively advantageous to the organism.

This requires an understanding of impacts of missense mutations in gene expres-

sion and regulation, and on the disruption of protein function by modulating

protein stability or disturbing interactions with proteins, nucleic acids, small

molecule ligands, and other biological molecules. Experimental approaches to

understanding differences between wild-type and mutant proteins are most

accurate but are also time-consuming and costly. Computational tools used to

predict the impacts of mutations can provide useful information more quickly.

Here, we focus on two widely used structure-based approaches, originally devel-

oped in the Blundell lab: site-directed mutator (SDM), a statistical approach to

analyze amino acid substitutions, and mutation cutoff scanning matrix (mCSM),

which uses graph-based signatures to represent the wild-type structural environ-

ment and machine learning to predict the effect of mutations on protein stability.

Here, we describe DUET that uses machine learning to combine the two

approaches. We discuss briefly the development of mCSM for understanding the

impacts of mutations on interfaces with other proteins, nucleic acids, and

ligands, and we exemplify the wide application of these approaches to under-

stand human genetic disorders and drug resistance mutations relevant to cancer

and mycobacterial infections.

Statement for a Broader Audience: Genetic or somatic changes in genes

can lead to mutations in human proteins, which give rise to genetic disorders

or cancer, or to genes of pathogens leading to drug resistance. Computer soft-

ware described here, using statistical approaches or machine learning, uses the

information from genome sequencing of humans and pathogens, together with
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experimental or modeled 3D structures of gene products, the proteins, to pre-

dict impacts of mutations in genetic disease, cancer and drug resistance.
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mutations, protein stability and interactions, protein structure

1 | INTRODUCTION

Next-generation sequencing methods have not only
allowed an understanding of genome sequence variation
during the evolution of organisms1 but have also pro-
vided invaluable information about human genetic disor-
ders and cancer.2,3 At the same time, genome sequences
have facilitated our understanding of the emergence of
resistance to drugs in tumors as well as antibiotics in
infectious disease.4 A major challenge is to distinguish
mutations that are “drivers” of disease or drug resistance
from “passengers” that are neutral in these respects or
even selectively advantageous to the organism. This
requires understanding of the impacts of missense muta-
tions in gene expression and regulation, and on protein
function. Missense mutations can disrupt function not
only by modulating protein stability but also through dis-
turbing interactions with other biological molecules,
including proteins, nucleic acids or polysaccharides,
small molecule ligands, and metal ions.

Experimental approaches to understanding changes in
stability and interactions between wild-type and mutant
proteins are clearly most accurate but are also time-
consuming and costly. Over the past three decades, this
has encouraged the development of computational tech-
niques, not only sequence-based methods using support
vector machines (INPS),5 neural networks,6 and
decision trees (iPTREE-STAB and MuStab)7,8 but also
structure-based techniques using potential-energy-based
approaches,9–11 machine learning algorithms,12–19 or com-
binations of them.20 The development and validation of
these computational methods have also been supported by
databases documenting experimentally defined changes in
free energy between the wild-type and mutant
proteins.21–23

Here, we briefly review various computational tools
used to predict the impacts of mutations on protein function
through impairment of stability and interactions with other
molecules including proteins, nucleic acids, and small mole-
cules. We then focus on two structure-based approaches
that were originally developed in Cambridge in the Blundell
lab. The first of these, site-directed mutator (SDM),24,25 pub-
lished in 1997, is based on conformationally constrained,
environment-specific substitution tables (ESSTs).26 The sec-
ond more recent approach published in 2013, mCSM, uses

graph-based signatures to represent the wild-type structural
environment in order to use machine learning to predict
the effect of mutations on stability. The mCSM family of
software has been further developed by Douglas Pires and
David Ascher after they left the Blundell laboratory;27 the
current state of the mCSM software can be accessed at
the Ascher Laboratory in Melbourne, Australia (https://
biomedicalsciences.unimelb.edu.au/sbs-research-groups/
biochemistry-and-molecular-biology-research/ascher-
laboratory-structural-biology-and-bioinformatics).

In 2014, we brought together SDM and mCSM for
predicting the impacts of mutations on protein stability
as DUET.18 Here, we focus on developments that are
more recent. These include elaboration of SDM to con-
sider the effects of depth from the surface and the residue
packing density on the impacts of mutations on protein
stability28 and broadening the application of mCSM to
consider impacts on protein function not only of residue
mutations that impair interactions with other macromol-
ecules19 but also small molecule ligands, which are criti-
cal for understanding drug resistance.16 We exemplify
recent uses of these approaches to understand human
genetic disease, mutations in cancer from the Cancer
Gene Census of COSMIC,29 and resistance mutations
occurring in mycobacterial and other infections.

2 | SEQUENCE-BASED
PREDICTION OF IMPACT OF
MUTATION ON PROTEIN
FUNCTION

The availability of extensive exome sequencing data pro-
vides a wealth of previously unknown mutations that
are either causal or lead to increased susceptibility to
disease by affecting protein function, both outcomes pro-
viding challenges to human health and design of new
medicines. Computational approaches to prediction of
impacts of the mutations can be based on understand-
ing sequence conservation, for example, SIFT,30,31

PROVEAN,32 PANTHER-PSEP,33 MutationAssessor,34

MutPred,35 LRT,36 FATHMM,37 and DEOGEN.38 More
recently, machine learning has become more frequently
used, and be trained on data describing annotation of func-
tions, or sequence and structural features; for example,
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PolyPhen-2,39 MutationTaster,40 SNAP,41 SNPs&GO,42

nsSNPAnalyzer,43 PhD-SNP,44 SuSPect,45 DEOGEN2,46 and
PMut.47 Various ensemble-based methods, which exploit a
gamut of available independent predictors, have also been
developed. They include REVEL,48 MetaLR/support vector
machine (SVM),49 Eigen,50 CADD,51 DANN,52 KGGSeq,53

Condel,54 and PON-P.55 In addition, independent scoring
functions based on sequence conservation have been devel-
oped to quantify the impact of mutations: they include
PhyloP,56 SiPhy,57 GERP++,58 and GV-GD.59

Detailed descriptions of different variant predictors
have been reviewed elsewhere.60–64 Computational predic-
tion tools rely on established databases like VariBench,65

VariSNP,66 dbSNP,67 ClinVar,68 UniProtKB,69 and
PhenCode70 for variation benchmark data sets to develop,
train, and validate the software.

3 | STRUCTURE-BASED
PREDICTION OF THE IMPACT OF
MUTATION ON PROTEIN
STABILITY

Structure-based methods use a combination of sequence
and structural information. They can be grouped into sta-
tistical, physical, and empirical methods based on the
potential energy functions. Statistical potentials include
SDM,24,25,28 PoPMuSiC 2.0,9 CUPSAT,71 AUTO-MUTE,72

I-Mutant 2.0,13 DFIRE,73 Hoppe,74 PROTS,75 PROTS-RF,76

Delaunay tessellation based four-body statistical scoring
function,77 MAESTRO,20 and Rosetta.11 Methods based on
empirical energy functions include FoldX,78 ERIS,79

PEAT-SA,80 and LIE.81 More accurate but computationally
expensive physical-energy-based methods include
CC/PBSA82 and EGAD.83 Machine-learning approaches
include mCSM15 described below, as well as Pro-Maya, a
mutant stability predictor that uses available data on
mutations.84 iStable85 and DUET,18 described below,
employ machine learning to provide a consensus predic-
tion based on more than one independent predictor. A
review with further information about the software tools is
available.86 Databases that support the development and
validation of the software include ProTherm,21 Platinum,22

and SKEMPI,23 which contain data on changes in protein
stability, ligand affinity, and protein–protein interactions
upon mutation, respectively.

4 | SITE-DIRECTED MUTATOR

We first focus on SDM,24,25,28 a statistical method devel-
oped in the Blundell lab that exploits protein sequence
and structural data to predict the impacts of mutations

on protein stability (Figure 1). SDM uses ESSTs derived
from the analysis of amino acid substitutions that are tol-
erated within families of homologous proteins of known
3-D structure.26 In a recent comparison study among
14 most efficient mutant prediction tools, SDM228 was
ranked in the top five that are least biased toward stabi-
lizing and destabilizing mutants.87 SDM2 is available at
http://structure.bioc.cam.ac.uk/sdm2. Below we briefly
describe the method.

ESSTs are constructed using the TOCCATA database
(Skwark, Torres, Ochoa-Montano, and Blundell, manu-
script in preparation) that contains 2,054 protein
sequence-structure alignments of homologous families
taken from SCOP88 and CATH89 domain classification
databases and represents a total of 12,038 structures
(Figure 1a). In early versions, structural features includ-
ing the main-chain conformational angles, relative sol-
vent accessibility (RSA), and hydrogen bonding patterns
were used to define a set of local structural environments
for the purpose of calculating ESSTs.26 These structural
environments are characterized by distinct amino acid
substitution propensities and have been successfully used
to identify templates in homology modelling90 and find-
ing key catalytic residues,91 as well as prediction of
impacts on protein stability upon mutation.24 More
recently, in SDM2,28 we introduced a combination of
residue-occluded surface packing (OSP)92,93 and residue
depth.94,95 We have shown that the residue conservation
progressively increases with residue depth and packing
density and can be used to classify disease and non-
disease mutations.96 As default, SDM2 uses 216 ESSTs
defined by the combination of nine main-chain confor-
mations, three residue occluded surface packings, and
eight hydrogen bonding patterns [Figure 1(b)]. ESSTs
defined using OSP showed an improvement in the quality
of prediction compared to the previous version of SDM
that used 54 ESSTs with RSA.25

The reversible folding and unfolding processes, repre-
sented as a thermodynamic cycle, are used to estimate the
energetic contribution for a mutation of residue type j in
the wild-type protein to residue type k (Figure 1c). The rela-
tionship between the difference in free energy of unfolding
of the wild type and mutant and the respective free energy
changes associated with the mutation of residue j to k in the
unfolded and folded states is expressed as:

ΔΔG= ΔGU−F
k −ΔGU−F

j

� �
= ΔGU

jk−ΔGF
jk

� �
ð1Þ

As it is time-consuming to use experiments to mea-
sure free energies of denaturation of mutant ΔGU−F

k and
wild-type proteins ΔGU−F

j , SDM uses ESSTs to calculate
the difference in the stability scores (ΔΔS) of the
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unfolded (ΔSUjk) and folded (ΔSFjk) state for the wild-type
and mutant protein structures, respectively, as:

ΔΔS= ΔSUjk−ΔSFjk
� �

− ΔSDisruptjk −ΔSCavityjk

� �
ð2Þ

where

ΔSFjk =− ln
P rk=R j,εwt
� �

P r j=R j,εwt
� �

(
×
P rk=Rk,εmutð Þ
P r j=Rk,εmut
� �

)
ð3Þ

where P(rk/Rj, εwt) is the conditional probability for replace-
ment of residue type Rj in the wild-type environment εwt by
residue rk in an undefined environment and P(rj/Rk, εmut) is
the conditional probability for replacement of residue type Rk

in the mutant environment by residue rj in an undefined
environment. Reference-state probabilities P(rj/Rj, εwt) and
P(rk/Rk, εmut) are introduced to normalize probabilities
combined from different substitution tables. The difference
in stability score of the unfolded state ΔSUjk is calculated in
a similar way using conformationally constrained substi-
tution tables representing non-hydrogen-bonded, surface-
exposed amino acids whose main-chain dihedral angles
fall outside regular secondary structure regions of the
Ramachandran phi–psi map. In addition to the previ-
ously defined disruption penalty ΔSDisruptjk term for buried
residues (24), a cavity penalty term ΔSCavityjk for the substi-
tution of buried bulky hydrophobic residues (Phe, Leu,
and Ile) by Ala or Val is added.28 All residues with RSA
<17% are considered to be buried.

FIGURE 1 Site-directed

mutator (SDM) method.

(a) Sequence-structure

alignments from TOCCATA for

protein families are used to

calculate the ESSTs. (b) 216

ESSTs are calculated using a

combination of eight side-chain

hydrogen bonding patterns,

nine main-chain conformations

based on ϕ and ψ dihedral

angles, and three residue-

occluded surface packings.

(c) The folding–unfolding free
energy diagram represented as a

thermodynamic cycle for site-

directed mutagenesis. The

difference in free energy of

unfolding of the wild-type

residue j, and mutant residue k,

is related to the free energy

changes associated with the

mutation in the unfolded and

folded states. Using ESSTs, the

difference in stability score upon

mutation [as shown in

Equation (2)] is calculated

analogously with Equation (1).

As an example, the structure of

p53 (PDB 2OCJ) is used to

illustrate the mutation at

residue position 282 from

arginine to tryptophan. Parts of

the figure were derived from the

graphical abstract taken from

Ref. [27]
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5 | MACHINE LEARNING USING
MUTATION CUTOFF SCANNING
MATRIX

The family of mCSM computer programs uses the graph-
based approach based on Cutoff Scanning Matrix
(CSM)97 to predict the impact of point mutations not only
on protein stability but also on protein–protein, protein-
nucleic acid, and protein-ligand affinities.15 Feature vec-
tors, known as mCSM signatures, defined as inter-atomic
distance patterns around the mutated residue, are used to
describe the structural environment in the wild-type pro-
tein. Supervised machine learning is used to train predic-
tive models using mCSM signatures (Figure 2). The
mCSM predictive models for protein stability, protein–
protein, and protein-nucleic acid interactions are trained
using thermodynamic data sets taken from ProTherm,21

SKEMPI,23 and ProNIT21 databases, respectively. mCSM
is available at http://biosig.unimelb.edu.au/mcsm/.

The residue environment is defined using graph-
based distance patterns, constructed by collecting atoms
within a radial cutoff distance of 30 Å from the centroid
of the wild-type residue atoms. Atoms represent the
nodes of the contact graph and edges that connect them
are defined by the cutoff distance. The cumulative distri-
bution obtained from the distances of all pairwise atoms
in the contact graph forms the major component of
mCSM signature that represents the environment of the
wild-type residue. The cumulative distributions were seg-
mented using three types of atom classification as
described previously.98

The mCSM signature captures the environment of the
wild-type residue only and, therefore, homology models
of the mutants are not required as they are for SDM.
mCSM uses a pharmacophore count vector to describe
the frequencies of eight atom classes (hydrophobic, posi-
tive, negative, hydrogen acceptor, hydrogen donor, aro-
matic, sulfur, and neutral) based on PMapper program.99

FIGURE 2 Mutation cutoff scanning matrix (mCSM) method. Starting from the mutant site of the wild-type protein structure, the

method calculates an atom contact graph based on a given distance criterion that defines the wild-type residue environment. The cumulative

distribution obtained from the distances of all pairwise atoms in the contact graph is used to construct the mCSM signature. Pharmacophore

count vectors are used to describe the frequencies of atom classes found in the wild-type and mutant residues. The pharmacophore change

vector is used to quantify the difference between the mutant and wild-type pharmacophore count vectors. mCSM signatures and the

pharmacophore change vectors, along with their respective experimental thermodynamic stabilities and affinity data, were used to train

predictive models using supervised machine learning techniques to predict the effects of mutations on stability and affinity
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The difference between the mutant and wild-type
pharmacophore count vectors is used to define the
pharmacophore change vector, which is then appended
to mCSM signature. Experimental conditions including
pH, temperature, as well as the RSA of wild-type residue
are added to the mCSM signature.

Extensions to the mCSM method have been devel-
oped in Cambridge to predict the impact of mutation on
protein–ligand (mCSM-lig)16 and protein–protein interac-
tions (mCSM-PPI2),27 and more recently in Fiocruz, Bra-
zil and in Melbourne, Australia by Douglas Pires and
David Ascher for protein–nucleic acid (mCSM-NA),19

antibody–antigen (mCSM-AB)17 interactions and protein
conformations and dynamics in combination based on
normal mode dynamics (DynaMut).100

6 | DUET

The use of ESSTs to define substitution probabilities in
local structural environments and mCSM structural sig-
natures to define long-range interactions represent two
independent complementary approaches to predict the
impacts of mutations on protein stability. DUET18 was
developed to leverage the individual strengths of SDM
and mCSM into a consensus machine-learning-based pre-
dictor using a SVM101 trained with sequential minimal
optimization. The SVM-based supervised machine-
learning algorithm uses inputs as complementary fea-
tures, including residue secondary structural annotation
from SDM, pharmacophore change vector from mCSM,
as well as the individual predictions from SDM and
mCSM. The regression model tree is used prior to the
machine learning in order to optimize SDM prediction
results in combination with residue RSA. The method
was trained on the test set of 2,297 mutant stability data
taken from ProTherm database. The performance of the
predictive model was tested on two independent blind
sets that included thermodynamic stability data for
42 mutations in tumor suppressor p53 protein. In all
cases, the method achieved higher performance com-
pared to SDM and mCSM.18 DUET is available at http://
structure.bioc.cam.ac.uk/duet.

We have recently performed a comparison of DUET
and the latest version of the well-established force-field-
based mutant-stability predictor FoldX 5.0.78 The compari-
son was done using the largest ProTherm benchmark con-
taining 2,648 mutant stability data. DUET achieved a
significantly higher Pearson's correlation coefficient (r) of
0.68 between the predicted and the experimental stability
change compared to 0.51 obtained using FoldX (Figure 3).
The root mean square error obtained for DUET and FoldX
is 1.09 and 1.71, respectively.

7 | EXAMPLES: UNDERSTANDING
MUTATIONS IN GENETIC DISEASE,
CANCER AND DRUG/
ANTIMICROBIAL RESISTANCE

SDM2, mCSM, and DUET approaches have been used to
understand the effects of mutations on human cancer-
related genes in the COSMIC database,102 inhibition of
inosine-50-monophosphate dehydrogenase in Mycobacte-
rium tuberculosis,103 isoniazid and rifampicin resistance in
Mycobacterium tuberculosis,104 phosphodiesterase somatic
mutations implicated in cancer and retinitis pigmentosa,105

protein presenilin 2 linked to familial Alzheimer's
disease,106 rifampin resistance in Mycobacterium leprae,107

ESX-5 type VII-secreted protein implicated in the transmis-
sion of Mycobacterium tuberculosis,108 carbapenem resis-
tance in Acinetobacter baumannii,109 drug resistance in
epidermal growth factor receptor,110 POT1 gene implicated
in maintaining the telomere homeostasis,111 human Atg8
gene involved in autophagy,112 K13 propeller domain
associated with artemisinin drug resistance,113 missense
mutation in SLC6A1 associated with Lennox–Gastaut
syndrome,114 and TN1 Gene mutations involved in coat
plus syndrome.115

Some of these applications are ongoing, a most impor-
tant example of which is COSMIC. Experimental struc-
tural data relevant to COSMIC are limited. Most genes in
the Cancer Gene Census (the most frequently mutated
cancer genes with mutations in COSMIC) are multi-
domain, but many of the reported structures for the gene
products are single domain or functional substructures of

FIGURE 3 Scatterplot comparing DUET and FoldX stability

prediction using the ProTherm benchmark containing 2,468

mutant thermodynamic stability data. Data points for DUET and

FoldX are shown as dots (in blue) and triangles (in red),

respectively. Pearson's correlation coefficient (r) for DUET and

FoldX is shown at the lower right corner of the plot
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the complete protein. We have already spent 2 years
predicting models and the impacts of the 172,000 unique
mutations reported for the 700 gene products of the
Cancer Census (Alsulami, Torres, and Blundell, Un-
published). This has underlined the importance of full 3D
models for the multidomain and multicomponent systems
and software so that protein–protein, protein–nucleic acid,
protein–ligand and other interactions can be considered.
These factors are also important for understanding muta-
tions in genetic disease and drug resistance in cancer ther-
apeutics and antimicrobials.

An example of understanding genetic disease is the
application of the SDM and mCSM software to under-
standing von Hippel–Lindau Syndrome, which leads to
the development of clear cell renal carcinoma and is cau-
sed by mutations in the VHL gene that encodes protein
pVHL (Figure 4). We earlier sought to identify a patient's
risk of developing clear cell renal carcinoma from under-
standing the impacts of the mutations not only on pVHL
protein stability but also on the affinity for the binding
partners, HIF-1α, and Elongin B and C.116,117 At that
time of the first paper,116 SDM was the only structure-
guided program available from our lab. We showed that
the molecular mechanisms of renal cell carcinoma (RCC)
and pheochromocytoma (PCC) in VHL disease appear to
be decoupled: RCC can arise from disruption of HIF-1α
interactions or binding at the elongin B interface, while
PCC is driven by mutations at binding site of elongin
C. In the second publication when mCSM software117

was available, we used DUET18 to estimate impacts on
stability and mCSM software to assess the impacts on
protein–protein interactions. The observation of impor-
tant mutations in protein–protein interactions has proved
typical of many human Mendelian diseases, although
mutations that affect stability are very common.118–121

The software SDM and mCSM can also be used to
begin to understand the emergence of drug resistance.
Looking at single-point coding mutations in Mycobacte-
rium tuberculosis, strong correlations have been observed
between the structural features of mutations and their
link to antibiotic sensitivity.4 This suggests that predic-
tion of drug resistance mutations before they arise, using
our software with genomic sequences and structures,
could be useful in guiding drug development. This idea
has been applied in our efforts to develop small-molecule
inhibitors of GuaB2 to treat Mycobacterium tuberculosis
infections.122 Computational saturation mutagenesis on
the crystal structure of GuaB2 with VCC234718 using
SDM, mCSM, and mCSM-lig suggested that a resistance
mutation would likely occur at Y487, altering interac-
tions with the inhibitor but not NAD, while not dis-
rupting protein stability or the interactions between the
homo-tetramer units. In fact, Y487C was observed to be
an important resistance mutation. Other molecules were
identified that did not make these interactions and were
active against the Y487C mutant. Further work is
required to show that inhibitors that are active against
Mtb in vitro through the inhibition of GuaB2 have thera-
peutic benefits in vivo.

These and many other analyses highlight the impor-
tance of considering the structural environment of a muta-
tion in order to understand the molecular and biological
consequences. In evolution, they may indicate new func-
tions emerging. For genetic disease, they should help iden-
tify mechanisms of disease emergence, while for the
emergence of drug resistance they may help identify mole-
cules that are less likely to lead to the emergence of
resistance.

The authors recognize that there are limitations of
most computational approaches that attempt to predict

FIGURE 4 Clear cell renal carcinoma in von Hippel–Lindau disease. (a) Ternary complex of pVHL with Elongin B/C, critical for

pVHL stability and function. (b) Protein–protein interactions mediated by arginine (R107), mutation of proline at position 86 to arginine

alters complementarity of charge between subunits and destabilize protein–protein interactions, essential to function. Hydrogen bond

interactions are shown as springs in green
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mutational effects on the whole organism. As demon-
strated above, we have moved in the direction of recog-
nizing that mutations affect higher-level interactions
rather than just the stability of individual proteins, by
considering the impacts of mutations on the interactions
between various components of macromolecular assem-
blies. In cases of resistance to drugs and genetic disease,
the correlations are evident at a whole organism level.
However, the level of expression in vivo, how this
exceeds the threshold required for function in the organ-
ism and how alterations in stability will affect protein
levels and protein solubility are more difficult to assess.
Furthermore, for diploid organisms, it is unclear whether
a single mutation will show a phenotype. None of these
factors is currently considered. Hence, while predictions
of mutational effects on stability are undoubtedly impor-
tant, translation of these to predict disease phenotypes
will likely require individual disease-specific training sets
to calibrate predictions of programs like SDM2, mCSM,
and DUET. Thus, studying the impact of mutations on
in vivo protein expression, as well as within the context
of recessive and dominant mutants must in future
become central to the system-level understanding for the
whole organism.
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