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1 | INTRODUCTION

Christopher J. Oldfield |

Lukasz Kurgan

Abstract

The intense interest in the intrinsically disordered proteins in the life science
community, together with the remarkable advancements in predictive technol-
ogies, have given rise to the development of a large number of computational
predictors of intrinsic disorder from protein sequence. While the growing num-
ber of predictors is a positive trend, we have observed a considerable difference
in predictive quality among predictors for individual proteins. Furthermore,
variable predictor performance is often inconsistent between predictors for dif-
ferent proteins, and the predictor that shows the best predictive performance
depends on the unique properties of each protein sequence. We propose a com-
putational approach, DISOselect, to estimate the predictive performance of
12 selected predictors for individual proteins based on their unique sequence-
derived properties. This estimation informs the users about the expected pre-
dictive quality for a selected disorder predictor and can be used to recommend
methods that are likely to provide the best quality predictions. Our solution
does not depend on the results of any disorder predictor; the estimations are
made based solely on the protein sequence. Our solution significantly improves
predictive performance, as judged with a test set of 1,000 proteins, when com-
pared to other alternatives. We have empirically shown that by using the rec-
ommended methods the overall predictive performance for a given set of
proteins can be improved by a statistically significant margin. DISOselect is
freely available for non-commercial users through the webserver at http://
biomine.cs.vcu.edu/servers/DISOselect/.
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are defined as proteins or regions of protein that lack of
stable tertiary structure in isolation and that form an

Biologically functional proteins without stable structures,
known as intrinsically disordered proteins (IDPs), have
been a reported phenomenon for the past few decades.
IDPs have challenged the long held fundamental para-
digm of the prerequisite of structure for protein func-
tion.! IDPs and intrinsically disordered regions (IDRs)

ensemble of conformations.*> IDPs associate with a num-
ber of essential biochemical activities regardless of their
inability to exist in stabilized secondary or tertiary struc-
tures under conventional physiochemical conditions.*™®
They contribute to signaling and regulation”® and are
particularly prevalent among the proteins that interact
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with nucleic acids.”™® Computational studies suggest
that IDPs and proteins with IDRs are widespread not
only over the proteomes of all three kingdoms of life but
also in viral proteomes.'®*® At the same time, it has been
discovered that length and abundance for IDRs and IDRs
increase with complexity of the given organisms.'”’

Experimental characterizations of IDPs” are collected
as annotations in several community databases, such as
DisProt,”” MobiDB,?® and IDEAL.*® Unfortunately, the
rate of accumulation of experimental data of IDPs lags far
behind the rate at which new sequences are discovered;
DisProt and IDEAL account for 803*” and 913° proteins,
respectively. The lack of intrinsic disorder annotations is
compounded by the lack of effective homology-based tech-
niques analogous to those used for the structured proteins,
which prevents directly leveraging existing annotations.
One solution to this dearth of IDP data is use of existing
annotations to build predictors that can distinguish
ordered/structured from disordered regions based on a
protein sequence and apply these models to unannotated
proteins. This solution has been extremely successful;
more than 60 predictors have been developed over the last
few decades®*° and many show high accuracy in blind,
community assessments.’”*® Intrinsic disorder predictors
have a wide range of applications: from focused applica-
tion for structural characterization of a few proteins, for
example, References 39-41, to broad association studies,
for example, References 5, 15, 17, 19, 42, 43. These
research activities depend strongly on the reliability and
accuracy of prediction methods, which has encouraged the
continual development of improved predictors.

Intrinsic disorder predictors have been created from a
wide variety of architectures and data sets, and many of
them display exceptional performance on benchmark
data sets.**?****%7 They can be categorized into three
broad categories based on their underlying model for pre-
diction®**®; (a) ab initio methods, such as Globplot,*
IUPred® and NORSp,>" are based on the physiochemical
characteristics of proteins; (b) machine learning methods,
such as DISOPRED,”>>* DisEMBL,* VSL2B,” SPOT-
Disorder,>® and others,”’~®* are trained on experimental
annotations using a variety of machine learning algo-
rithms and (c) meta methods, such as ESpritz,®
MFDp,**% DISOPRED3,*” and others,****7* combine
multiple individual predictors and balance their strengths
and weaknesses. The relative performance of intrinsic
disorder predictors has been compared many times in
surveys and community assessments, for example, Refer-
ences 32, 36, 38, 44-47, 74-76. These comparisons are
based on independently constructed data sets from which
benchmark statistics are calculated. A common metric
for predictor performance is the area under the receiver
operating characteristic curve (AUC) value, which ranges
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from 1.0 for perfect prediction and 0.5 for random predic-
tion. Top preforming methods in some recent assess-
ments achieve AUCs of 0.81,%° 0.89,7° and 0.91.38

A common feature of surveys and benchmark assess-
ments is the aggregation of results across a data set with
many proteins. This practice provides a single metric for
each predictor that can unambiguously compare perfor-
mance of several predictors. However, this contrasts with
the mode in which predictors are used in practice, where
predictions are used to study individual proteins or
regions of proteins.”” In preliminary studies presented
here, we have found that per-protein performance varies
widely from protein to protein for all predictors tested.
This observation suggests that data set-level benchmark
performance evaluations are not an appropriate basis for
selecting a prediction method for a specific protein. This
practical problem has led us to design a novel tool, DIS-
Oselect, which estimates per-protein performance for a
range of different intrinsic disorder predictors.

DISOselect is designed to estimate AUC performance
for 12 disorder predictors when applied to a specific pro-
tein sequence. The selected 12 disorder predictors uni-
formly cover the three categories of methods and were
selected based on their computational efficiency, avail-
ability in the biggest disorder databases, MobiDB,*® and
favorable predictive performance*®**’; details are pro-
vided in Section 4.2. DISOselect does not require the out-
put of individual predictors, instead it considers only the
protein sequence and properties of the protein sequence
to estimate the AUC performance of a given disorder pre-
dictor. With estimates of AUC values for each of the
12 predictors, DISOselect suggests the predictor that is
likely to have the highest performance for a given input
protein. DISOselect is freely available online as a user-
friendly web application, at http://biomine.cs.vcu.edu/
servers/DISOselect/.

2 | RESULTS AND DISCUSSION
2.1 | Variability in per-protein disorder
predictor performance

We used the AUC measure, the most often used
measure of the predictive quality of disorder
predictors,?*30384446:477475.78.79 15 quantify perfor-
mance. We calculated the AUC values for each of the
12 predictors and for each protein in our training data set
with at least four ordered and disordered residues. The
minimum was imposed for a valid AUC calculation. Per-
formance of predictors varies widely from protein to pro-
tein in our data set (Figure 1). All predictors, except
GlobPlot, have a peak of highly accurately predicted


http://biomine.cs.vcu.edu/servers/DISOselect/
http://biomine.cs.vcu.edu/servers/DISOselect/

186 WI LEY. % PROTEIN KATUWAWALA ET AL.
. SOCIETY
75
&% —— disEMBL-465 4 —— disEMBL-HL
25 2
0.0 0
6 75
ESpritz-DisProt —— ESpritz-NMR
4 5.0
2 25
0 0.0
4
o 3
—— ESpritz-Xray 2 GlobPlot
5
1
0 0
3 75
—— |UPred-long IUPred-short
2 5.0
1 25
0 0.0
N\ 2
3 R
—— JRONN -~ \ —— SPOT-Disorder
2 B \ 10
1 /"/// \
y \
0 — 0
20
75
— vsL2B —— DISOPRED3
5.0 10
25
0.0 0
05 06 07 0.8 0.9 1.0 05 06 07 0.8 0.9 1.0
AUC Distributions AUC Distributions
FIGURE 1 Distribution of per-protein AUC values 12 disorder predictors. The computation was performed for the proteins in the

training data set

proteins and a long tail of proteins predicted with poorer
accuracy. The weight of this tail generally correlates with
the benchmark (data set-level) performance accuracy of
the predictor; better benchmark accuracy implies fewer
poorly predicted proteins. For instance, DISOPRED3 that
has high data set-level AUC (reported to equal 0.90 in*®)
has a smaller tail than the VSL2B that has lower data set-
level AUC (reported to be 0.82 in*®). However, we note
that AUC values for individual proteins vary widely from
the data set-level values. For instance, for VSL2B that has
the data set-level AUC = 0.82, Figure 1 reveals that 59.2%
proteins have AUCs >0.9 while 9.3% of proteins are
predicted with AUCs <0.6. Similarly, for DISOPRED3 that
has the data set-level AUC = 0.90, 9.5% of proteins are
predicted with AUCs <0.8 while 68.5% have AUCs >0.95.
This analysis is in agreement with the recent study on the
quality of the protein-level disorder predictions,”” and con-
trasts with a direct view of data set-level predictor perfor-
mance, which leads users to believe that any given protein
prediction will match the benchmark accuracy. This also

demonstrates the usefulness of a tool that can estimate
per-protein accuracy for an individual protein, and, if
errors between prediction methods are not correlated, sug-
gests that an optimal predictor can be selected on a per-
protein basis.

2.2 | Predictive performance of the
DISOselect model

To estimate performance of each of the selected 12 disor-
der predictors for arbitrary proteins, we designed DIS-
Oselect using a three layered architecture (see Materials
and Methods for details): (a) feature extraction, (b) extra-
tree regressor model and (c) empirical mapping from
model output to AUC values. This architecture was
applied to each of the 12 disorder predictors separately,
using our set of experimentally annotated proteins from
the training data set. Features were selected from 130 pos-
sible features generated from the input protein sequences
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TABLE 1

MSE (mean squared error)
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Performance of DISOselect for each of the 12 selected disorder predictors

PCC (Pearson correlation coefficient)

Similarity- Similarity-
Disorder Random based Improvement Random based Improvement
predictor DISOselect control control ratio DISOselect control control ratio
disEMBL-HL 0.009 0.05[+]  0.05[+] 5.6 0.36 0.01[+] 0.13[+] 2.8
IUPred-long 0.011 0.05[+]  0.04[+] 3.6 0.32 —0.01 [+] 0.18 [+] 1.8
IUPred-short 0.011 0.05[+]  0.05[+] 46 0.32 0.03[+] 0.07 [+] 46
VSL2B 0.008 0.05[+]  0.05[+] 6.3 0.31 0.03[+] 0.14 [+] 2.2
disEMBL-465 0.008 0.05[+]  0.05[+] 6.3 0.30 —0.03[+] 0.14 [+] 2.1
GlobPlot 0.011 0.05[+]  0.05[+] 4.6 0.28 —013[+] 0.09 [+] 31
ESpritz-NMR  0.009 0.05[+]  0.05[+] 5.6 0.28 0.02[+] 0.08 [+] 3.5
SPOT-disorder  0.010 0.05[+]  0.04[+] 4.0 0.24 0.00 [+] 0.00 [+] 48.0
DISOPRED3 0.004 0.04[+] 0.05[+] 12.5 0.24 —0.11 [+] 0.15[+] 1.6
ESpritz-Xray 0.007 0.05[+]  0.05[+] 7.1 0.23 —0.08 [+] 0.03 [+] 7.7
JRONN 0.008 0.05[+]  0.06[+] 7.5 0.19 —-0.01 [+] 0.00 [+] 190.0
ESpritz-DisProt  0.007 0.05[+]  0.04[+] 5.7 0.12 0.00 [+] 0.05 [+] 2.4

Note: MSE and Pearson correlation coefficients (PCC) values are calculated between the estimated AUC and the actual AUC of each proteins. Control
estimates of AUCs were taken from randomly picked proteins and proteins selected based on sequence similarity. Paired significance tests were performed
between the DISOselect estimated AUCs and the control AUCs: [+] denotes that our model is significantly better with p-value <.05. We used the paired ¢ test
for normal measurements and the Wilcoxon test otherwise; normality was tested with the Anderson-Darling test at the .05 significance.

to tailor the models for specific disorder predictors. Con-
sidered features are divided into five distinct categories:
amino acid (AA) composition, secondary structure
predicted from sequence, solvent accessibility predicted
from sequence, sequence complexity calculated from
sequence, and physicochemical properties (Table S1).
The 12 sets of empirically selected features were used to
train 12 different extra-tree regressor models using cross
validation over the training data set. Extra-tree regressor
models were selected based on empirical cross validation
tests on the training data set over several other model
types (Table S2). The outputs of the extra-tree regressor
models were mapped to AUC values using an empirical
lookup table based on predicted and target AUC values
in the training data set.

The performance of DISOselect was evaluated on the
independent test data set (Table 1) by comparison to two
controls: (a) random control, where the AUC values are
taken from a randomly chosen protein in the training
data set, (b) similarity-based control, which uses AUC
values taken from the most sequence similar protein in
the training data set. The similarity was computed using
the BLAST algorithm using its default parameters.*>®!
The random control represents the base prediction accu-
racy and similarity-based control represent a homology-
based prediction of the predictor performance. We note
that the test data set was designed to share low, <25%,
similarity with the proteins in the training data set. These
three sets of predictions—model, random control, and

similarity-based control—were evaluated by two mea-
sures (Table 1): (a) mean squared error (MSE) of esti-
mated AUCs and (b) correlation between estimated
AUCs and actual AUCs. The best performing of the two
control methods, random or similarity-based, was used to
calculate the ratio of improvement between our architec-
ture's performance and controls.

For all 12 selected predictors, the estimated AUCs
generated by DISOselect are found to perform well
(Table 1). Paired comparison of DISOselect's AUCs to
controls shows that our tool significantly outperforms
both controls for MSE-based comparison (p-value < .05)
and correlation-based comparison (p-value < .05). While
the raw MSE values and correlation values show modest
performance, their ratios of improvement to control
values show large magnitudes of the improvements. MSE
evaluations of the predictions are between fourfolds and
12.5-folds better than the best control, while correlation
values are between 1.6-folds and 7.7-folds better than the
controls. Overall, these results demonstrate that our
extra-tree regressors provide an accurate estimation of
the protein-level AUC for the 12 disorder predictors.

2.3 | Analysis of the DISOselect model

We next investigated which protein features contribute to
the estimation of AUCs by the DISOselect predictor. The
contribution of protein features to AUC estimation was
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FIGURE 2

Importance the five feature categories for the DISOselect's models designed for the 12 disorder predictors. We used a three-

step process to derive the scores for each model. First, the information gain of individual features was calculated from the extra-tree

regressors. Second, features were divided into the five classes and the information gain of the features in the same category was summed

up. Third, the summed values were dived by the sum of the information gain values of all features in the same model. The last step allow for

directly comparison of relative contributions of each feature category

interrogated in two different ways: (a) by quantifying
importance for the five categories of features
(AA composition, predicted secondary structure, predicted
solvent accessibility, sequence complexity, and physico-
chemical properties) in the extra-tree regression models;
and (b) by examining the highest ranking selected fea-
tures. This two-part analysis dissects architecture at both
the first layer, feature selection, and the second layer,
extra-tree regression. It also gives two levels of feature
granularity; at a coarse level, over the five feature catego-
ries, and at a fine level, over the individual features.

The feature importance was quantified with informa-
tion gain, which measures decrease in the classification
entropy due to the use of a given feature® and is used to
compute and optimize the extra-tree regressor models.
Examination of the contribution across the five feature
categories shows a largely consistent role for each of the
12 models (Figure 2). Our analysis shows that each of the
five feature categories contributes to AUC estimates;
however, the degree of these contributions varies sub-
stantially. Putative secondary structure is consistently
(across all 12 models) the largest contributor to our
models. It is not surprising to see a close relationship
between predicted local structural propensities and accu-
racy of disorder prediction. Disorder in the proteins with
high content of the secondary structures (i.e., helices and
strands) is likely harder to predict, while disorder in the
proteins largely or entirely composed of coils should be
easier to predict. The strong contribution of the putative
secondary structure echoes its use as predictive input for
many disorder predictors, such as MFDp®* MFDp2,°>%
CSpritz,” and Spritz,** to name a few. The next two most

important feature categories are physicochemical proper-
ties and AA composition, which are the second and third
most important, depending on the predictor. These two
categories are closely linked; as physicochemical proper-
ties are calculated from AA scales, they are functionally
linear combinations of the composition. This reveals
some bias in predictive performance in predictors for pro-
teins with certain properties, likely related to the details
of their training sets. The least contributing features are
sequence complexity and solvent accessibility. While
these parameters are correlated with intrinsic
disorder,**® they do not have a large contribution to dif-
ferential predictor performance in general.

To examine specific features that contribute to the
DISOselect's models, the top two features during feature
selection were compiled along with their correlations to
the actual AUC for each disorder predictor (Figure 3); we
used this correlation to select features. The resulting fea-
ture list has 18 features, rather than 2 x 12 = 24, indicat-
ing that only a few top features are shared between
multiple disorder predictors. Figure 3 reveals that the pre-
dominant features that govern the prediction for individ-
ual models are virtually exclusive to the corresponding
model (dark green shading), although multiple other fea-
tures contribute to the prediction in a less substantial way
(light green and white shading). As expected, the predomi-
nant features primarily focus on the most important fea-
ture categories summarized in Figure 2, including putative
secondary structure and physicochemical properties of
AAs. A notable exception is the average accessible surface
(ASA) area, which is relatively highly correlated with
three disorder predictors. However, ASA is positively
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FIGURE 3 Key features used in the 12 models. The performance of individual features is quantified with the Pearson correlation
coefficients (PCC) between feature values (rows) and the actual area under the receiver operating characteristic curve (AUC) for each model
(columns) that were quantified on the training data set. Detailed explanation of features is available in the Table S1. PCC values are color-
coded where dark green is for [PCC| > 0.3, light green for IPCC| between 0.15 and 0.30, white for [PCC| < 0.15, and gray with “x” symbol
indicate the a given feature is not included in the model for that predictor. The direction of arrows reveals the sign of PCC where upwards
arrows denote positive correlation while downward arrows denote negative correlation

correlated with SPOT-Disorder and DISOPRED3 perfor-
mance, but negatively correlated with ESpritz-DisProt per-
formance. This reflects the general trend that no single
property is consistently positively or negatively correlated
with performance across multiple disorder predictors,
suggesting that each disorder predictor has its own predic-
tive bias. Individual performance biases likely reflect the
makeup of the training sets and the selection of the
sequence-derived predictive inputs utilized by individual
predictors.

To sum up, our analysis reveals that the estimates of
the protein-level predictive performance generated by
DISOselect are primarily driven by the information
extracted from the putative secondary structure, physico-
chemical properties and AA composition of the input
protein chain. Moreover, models for individual disorder
predictors are very different as they rely on largely exclu-
sive sets of dominant predictive features. This result sug-
gests that a particular protein, with a particular set of
features, may be better predicted by some disorder pre-
dictors than others in a systematic way.

2.4 | Selection of accurately predicted
proteins using DISOselect

We evaluated whether the AUC values estimated by DIS-
Oselect for a specific disorder predictor can be used to
accurately identify proteins that are poorly vs. well

predicted by that particular method. We compared the
actual AUCs of the test proteins with progressively higher
values of the estimated AUCs for each of the 12 disorder
predictors (Figure 4). First, we sorted all proteins by their
estimated AUC values for a given disorder predictor in
the ascending order. Next, we removed 5% of the test pro-
teins with the lowest putative AUCs and evaluated the
actual AUC for the remaining 95% of the test proteins for
that disorder predictor. We incrementally reduced this
data set by the next 5% of the sorted proteins (all the way
until we ended up with the 5% of the proteins with the
highest putative AUCs) to assess whether the proteins
with higher estimated AUCs in fact secure higher actual
AUCs. The upward trends shown in Figure 4 demonstrate
that the proteins with higher estimated AUC values in
fact obtain higher data set-level AUCs. This result is con-
sistent across all 12 disorder predictors. The differences in
the actual AUC values between the results on the test
data set (left-most points in Figure 4) and the smallest set
of the 5% of proteins with the highest estimated AUCs
are very substantial. For instance, for DISOPRED3, the
5% of proteins with the best estimated AUCs secure
AUC = 0.950 when compared to AUC = 0.918 on the test
data sets, which translates to (0.950-0.918)/
(1-0.918) = 39% error reduction. The largest absolute
increase in AUC is for disEMBL-HL where the 5% of the
best predicted proteins secure AUC = 0.896 compared to
the AUC = 0.761 on the whole test data set, which corre-
sponds to (0.896-0.761)/(1-0.761) = 56% error reduction.
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FIGURE 4 The data set-level actual area under the receiver operating characteristic curve (AUC) values for subsets of the test proteins
that are sorted based on their AUCs values estimated by DISOselect. Individual panels correspond to different disorder predictors. Points in
each panel correspond to AUCs of the subsets of test proteins for which the estimated AUCs are above a given percentile of all estimated
AUCs, that is, the 20 mark on the x-axis corresponds to the 80% of the test proteins that have estimated AUCs that are above the 20th
percentile of estimated AUCs generated by DISOselect. The left-most point corresponds to the result on the complete test data set while the
right-most point corresponds to the 5% of test proteins with the highest estimated AUCs. The line is the third-degree polynomial fit into the
measured data

Figure 5 summarizes the above results by comparing improvements and the boxes delineate the first, second
AUCs between the complete test data set and the top 25% and third quartiles. The positive values of the differences
(in green), top 50% (in orange) and top 75% (in blue) of  indicate that AUCs for given subsets of the test proteins
the proteins selected based on the AUCs predicted by  are higher than for the complete test data set. The
DISOselect. The box plots represent the distribution of  corresponding numeric values together with the results
these differences across the 12 disorder predictors, where of the significance tests that compare the AUCs on the
whiskers correspond to the minimal and maximal  whole test data sets against the AUCs for each of the
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selected based on their AUCs values estimated by DISOselect and
the data set-level AUC. Positive values of the improvement indicate
that AUC for the subsets of the test proteins are higher than for the
complete test data set. The box plots represent the distribution of
the improvements across the 12 disorder predictors where whiskers

Improvements in the actual area under the

corresponding to the minimal and maximal improvements and
boxes denote the first, second and third quartiles

three subsets are provided in the Table S3. Figure 5
reveals that the proteins selected based on the favourable
estimates from DISOselect secure AUCs that are consis-
tently higher (over each of the 12 disorder predictors)
when compared to the results on the whole test data set;
this can be deduced from the fact that the minimal
improvements in Figure 5 are always positive (lower
whiskers point to values >0). On average (across the
12 disorder predictors) the 25% of proteins with the
highest putative AUCs generated by DISOselect secure
AUGs that are over 0.05 higher than the corresponding
AUCs on the complete test data set. Table S3 demon-
strates that the improvements in the AUCs values for the
proteins selected with assistance of DISOselect are statis-
tically significant (p-value < .01) for each of the 12 disor-
der predictors. In the nutshell, our analysis provides
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compelling support for the claim that DISOselect accu-
rately estimates AUCs that allow for the selection of pro-
teins that are well-predicted by a wide range of different
disorder predictors.

2.5 | Application of DISOselect to
recommend accurate disorder predictor

The section “Selection of accurately predicted proteins
using DISOselect” shows that DISOselect accurately iden-
tifies well-predicted proteins for each of the 12 disorder
predictors. Here, we investigated whether these 12 results
can be used jointly to recommend a disorder predictor
that produces accurate results for a given protein
sequence; in other words, whether DISOselect can be
used to accurately recommend a well-performing disor-
der predictor. To explore that we used the disorder pre-
diction from the method that has the highest AUC
estimated by DISOselect and we compared these per-
protein estimates on the test proteins with the results of
the 12 disorder predictors (Figure 6). For additional com-
parison, several meta-predictors were built—based on
the 12 individual predictors—that combine predictions at
the residue level to provide a single prediction. Details
of the design of these meta-predictions are explained in
the section “Meta-prediction models”. The two best meta-
predictors are shown for comparison (Figure 6). We also
considered an oracle approach that selects the prediction
from the disorder predictor with the highest actual AUC
for each test protein. Table 2 provides the corresponding
numerical results and evaluates statistical significance of
differences between the results of DISOselect and the
other 17 methods including the 12 disorder predictors,
four meta-prediction methods, and the oracle approach.
Our empirical analysis that is summarized in Table 2
reveals that the predictions selected with the help of DIS-
Oselect are significantly better than the results produced
by any of the 12 disorder predictors and meta-predictors
based on these 12 predictions (P-value <0.01). More spe-
cifically, the mean per-protein AUC of the predictions rec-
ommended by DISOselect is 0.97, compared to the 0.94 by
the best disorder predictor (SPOT-Disorder) or 0.95 by the
best meta-prediction method. Figure 6 reaffirms that DIS-
Oselect recommends predictions that are much better
than the results of the 12 methods, that is, the thick black
line that represents results from DISOselect is separated
from the dashed and colored lines that correspond to the
12 disorder predictors by a wide margin. Further, while
meta-prediction methods perform better than any individ-
ual method, they perform substantially worse than DIS-
Oselect. Moreover, the oracle method, which is denoted
with thick red line in Figure 6, is relatively close to the
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FIGURE 6 Comparison of the per-protein area under the receiver operating characteristic curve (AUC) values on the test proteins
between the 12 disorder predictors (dashed lines), the selection of the best disorder predictor using the highest estimated AUCs generated by
DISOselect (solid black line), the oracle method (solid red line), and the best two consensus-based disorder predictors constructed using a
simple logistic regression (LR) and a more sophisticated support vector regression (SVR) (solid blue and yellow lines, respectively). The
oracle method selects the disorder predictor with the highest AUC among the 12 disorder predictors. Lines show the per-protein AUCs that
are sorted in the ascending order for each of the 17 methods

TABLE 2 Comparison of the per-protein AUC values for the test proteins produced by the 12 disorder predictors, the oracle method
that selects the predictor with the highest AUC, the selection based on the highest estimated AUC produced by DISOselect, and four
different residue-level consensus-based disorder predictors that use logistic regression (LR) and support vector regression (SVR) models

Mean Per-protein AUC
per-protein at the worst Significance of differences
Category Predictor AUC quartile of proteins compared to DISOselect
Hypothetical method Oracle 0.983 0.984 p-value < .01 (significantly better)
Proposed model DISOselect 0.974 0.971
Consensus models Top2Predictor SVR 0.947 0.938 p-value < .01 (significantly worse)
Top2Predictor LR 0.947 0.936 p-value < .01 (significantly worse)
12Predictor SVR 0.942 0.929 p-value < .01 (significantly worse)
12Predictor LR 0.940 0.921 p-value < .01 (significantly worse)
Individual predictors SPOT-disorder 0.940 0.927 p-value < .01 (significantly worse)
DISOPRED3 0.935 0.921 p-value < .01 (significantly worse)
ESpritz-Xray 0.880 0.832 p-value < .01 (significantly worse)
ESpritz-NMR 0.865 0.809 p-value < .01 (significantly worse)
VSL2B 0.864 0.816 p-value < .01 (significantly worse)
disEMBL-465 0.853 0.768 p-value < .01 (significantly worse)
IUPred-short 0.843 0.768 p-value < .01 (significantly worse)
disEMBL-HL 0.816 0.719 p-value < .01 (significantly worse)
ESpritz-DisProt 0.772 0.649 p-value < .01 (significantly worse)
JRONN 0.733 0.603 p-value < .01 (significantly worse)
IUPred-long 0.718 0.584 p-value < .01 (significantly worse)
GlobPlot 0.646 0.537 p-value < .01 (significantly worse)

Note: We compared the mean per-protein AUCs computed over the test proteins and the AUCs for the worst (the least accurately predicted) quartile of the test
proteins (i.e., the 25% point in Figure 6). Methods are sorted by their mean per-protein AUCs. Significance of the differences in the per-protein AUCs of the
predictions selected by DISOselect and the predictions generated by the other methods (including the oracle) was assessed with the ¢ test for normal
measurements and the Wilcoxon test otherwise; normality was tested with the Anderson-Darling test at .05 significance; we sampled 50% of proteins in the test
data set 10 times at random and compared the corresponding 10 pairs of AUCs; the resulting p-values are listed in the last column.
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FIGURE 7

Evaluation of the differences in the protein-level area under the receiver operating characteristic curves (AUCs) for the

same test proteins between the predictions selected with DISOselect and the average AUC of the 12 disorder predictors (blue line), between
the predictions selected with DISOselect and the predictions generated by the most accurate disorder predictor at the data set level, SPOT-
Disorder (red line), and between the predictions selected with DISOselect and the best consensus-based method that relies on the support
vector regression (SVR) (green line). Points indicate where the difference between protein AUCs crosses zero. The proteins are sorted by the

value of the difference in the descending order

results of DISOselect, particularly when compared against
the margin of improvement between DISOselect and the
best of the 12 disorder predictors, SPOT-Disorder. Numer-
ical comparison in Table 2 shows that the oracle approach
secures the mean per-protein AUC = 0.98 versus 0.97
obtained by DISOselect. While this difference is statisti-
cally significant (p-value < .01), the magnitude of the dif-
ference is arguably small showing that DISOselect
performs high-quality selection of disorder predictors.

The analysis in Figure 6 is aggregated at the test data
set level for clarity, that is, we compared re-sorted per-
protein AUCs across different methods. Figure 7 offers a
direct comparison of predictive performance of the
results selected with DISOselect against the most accu-
rate disorder predictor (SPOT-Disorder), the best per-
forming meta-prediction method (Top2Predictor SVR),
and an average disorder predictor. When compared
against SPOT-Disorder, DISOselect selects a better disor-
der prediction for 64% of proteins, the same prediction
for 5% of proteins, and worse prediction for 31% of pro-
teins, and the average improvement in AUC equals 0.035
(red line in Figure 7). In other words, DISOselect
improves over SPOT-Disorder for two out of three pro-
teins. Similar results are obtained when comparing DIS-
Oselect with the best meta-predictor (green line in
Figure 7). DISOselect is better, the same and worse for
62, 4 and 34% of proteins, respectively, with the average
improvement in AUC of 0.028. When compared against
an average disorder prediction, DISOselect secures a

better result for 95% of proteins with the average
improvement in AUC of 0.152 (blue line in Figure 7).
Overall, we conclude that DISOselect is an accurate
approach for the selection of disorder predictors that pro-
vide high-quality predictions for a given protein of
interest.

3 | CONCLUSIONS

Our empirical analysis shows that the per-protein predic-
tive quality of popular disorder predictors varies widely
between different proteins. The users cannot expect that
the disorder predictor with the best benchmark-data set
level results will provide favorable results across all pro-
teins. These results suggest that a computational tool that
can accurately estimate per-protein predictive perfor-
mance for a given disorder predictor and a given protein
is needed. This tool would inform the users about the
expected predictive quality of a given disorder predictor
and could be also used to recommend an “optimal” pre-
dictor that provides the best results for a given protein of
interest.

To this end, we proposed the DISOselect method that
predicts predictive performance (quantified with the
AUC scores) for a representative set of 12 popular disor-
der predictors and which utilizes these results to recom-
mend the predictor that provides the best predictive
quality. The DISOselect's models rely on the information
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extracted from the putative secondary structure, physico-
chemical properties of residues and AA composition of
the input protein chain, which can be efficiently com-
puted from the protein sequence. Models for individual
disorder predictors are very different, rely on largely
exclusive sets of dominant features, and reveal that each
disorder predictor has a different predictive bias.

Empirical assessment on a large test data set shows
that DISOselect provides accurate estimates of the
protein-level AUC for each of the considered disorder
predictors. The disorder predictions selected using DIS-
Oselect are significantly more accurate than the results
produced by any of the 12 disorder predictors, including
the top-performing methods such as SPOT-Disorder and
DISOPRED3, and a selection of four disorder consensus
predictors. The mean per-protein AUC for the predictions
selected with DISOselect is 0.97, compared to an average
AUC of 0.82 generated by the 12 methods, and an aver-
age AUC of 0.94 for the consensus methods. We conclude
that DISOselect can be used to effectively estimate pre-
dictive performance of disorder predictors and to select
predictors that offer high-quality prediction for a given
input protein sequence.

A webserver that implements DISOselect is freely
available for non-commercial users at http://biomine.cs.
vcu.edu/servers/DISOselect/. DISOselect requires only
the FASTA-formatted protein sequences as input. Up to
1,000 proteins can be predicted in a single run. All com-
putations are performed on the webserver side. The
webserver outputs the putative AUC and the qualitative
performance (including the percentile of predicted AUC
value) for each of the 12 disorder predictors, which are
sorted in the descending order of the predicted AUC. The
predictor at the top of the list, which has the highest esti-
mated AUC, is recommended to the user as the best
option to collect the disorder predictions. For the user's
convenience, the main page of the webserver provides
links to the websites of these disorder predictors under
the “Help” section. The results are available via an
HTML page, which can be accessed via a direct link, and
a parsable text file. We will archive these results for at
least 1 month.

4 | MATERIALS AND METHODS

4.1 | Datasets

The source data set with 25,717 proteins with the native
intrinsic disorder annotations was originally collected
from the MobiDB resource®® and recently published as a
basis of a large-scale disorder prediction assessment.*® In
our recent work®”*® we amended the original data set by

excluding sequences with unknown/undetermined AA
types, which is necessary to obtain some of the disorder
predictions, and by reducing within-data set redundancy.
The latter was accomplished by clustering proteins at
25% pairwise similarity with BLASTCLUST.*® This simi-
larity reduction ensures that the data set uniformly sam-
ples the sequence space and that training and test data
sets extracted from these data share low, <25%, sequence
similarity. Empirical analysis in® demonstrates that the
predictive quality of the disorder predictors on the
reduced and improved data set with 6,271 proteins is sim-
ilar to the quality that was evaluated on the original data
set of 25,000 proteins.*® The 6,271 proteins include
105,709 disordered and 1,672,907 structured residues. We
divided these proteins at random into a training data set
with 5,272 proteins and test data set with 999 proteins.
The two data sets are available at http://biomine.cs.vcu.
edu/servers/DISOselect/. We used the training data set to
design and optimize models that predict the protein-level
performance for the specific disorder predictors. We
applied the test data set to assess performance of these
models on an independent (i.e., sharing low sequence
similarity) data set, to compare them to alternative pre-
dictive methods, and to evaluate effectiveness of the DIS-
Oselect system that recommends a well-performing
disorder predictor for a given protein sequence.

4.2 | Selection of the disorder predictors

We cover a diverse set of 12 widely used disorder predic-
tors. We selected 10 predictors from the list of 13 methods
that were assessed in a recent large-scale benchmark.*®
We excluded three of the 13 predictors (SEG,” Pfilt®! and
FoldIndex®?) since these older methods were ranked near
the bottom in that study.*® The 10 remaining predictors
include two versions of DisSEMBL (DiSEMBL-465: trained
using X-ray structures, and DisSEMBL-HL: trained to pre-
dict propensity for loop conformations)*; three flavours of
ESpritz (ESpritz-Xray: trained on the disorder annotations
from X-ray structures, ESpritz-NMR: trained on annota-
tions from NMR structures, and ESpritz-DisProt: trained
on the annotations from the DisProt database)®*; two ver-
sions of IUPred (IUPred-short: for short disordered regions
and TUPred-long: for long disordered regions)™; Glo-
bPlot*’; RONN>®; and VSL2B.>> We supplemented these
10 methods with two popular and accurate predictors:
DISOPRED3”” and SPOT-Disorder.’® DISOPRED was
ranked at the top in the CASP10 experiment, the last
CASP that evaluated disorder predictions.*® SPOT-
Disorder represents a new class of predictors that rely on
the deep learning models. The 12 methods uniformly sam-
ple the three categories of the predictive models including
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the ab-initio methods (IUPred-short, IUPred-long and Glo-
bPlot), the machine learning methods (RONN, DisEMBL-
HL, DiSEMBL-465, VSL2B, and SPOT-Disorder), and the
meta-methods (DISOPRED3, ESpritz-Xray, ESpritz-NMR
and ESpritz-DisProt). These predictors were developed
using all main sources of the disorder annotations, such as
crystal structures, NMR structures and other experimental
methods that are covered in the DisProt database.*”

We collected the disorder predictions for the training
and test data sets for the set of the 10 predictors that were
included in the recent benchmark study*® from the
MobiDB resource.®® We generated predictions for
DISOPRED3 and SPOT-Disorder by running the author-
provided code.

4.3 | Predictive model

Selection of a well-performing disorder predictor is a
two-step process. First, predictive quality that is quanti-
fied with AUC is estimated for each of the 12 disorder
predictors. Second, the 12 estimated AUCs are compared
and the method with the highest estimated AUC is rec-
ommended to the user. The first step provides the user
with an estimate of the predictive quality for a given dis-
order predictor. This result is useful in scenarios when
the user is committed to using a specific predictive tool.
The second step suggests a particular, best-performing
method and this option should be utilized when the user
is willing to collect prediction for any of the 12 tools. We
note that the predictions of these tools can be easily col-
lected from MobiDB at http://mobidb.bio.unipd.it/*¢ (for
the 10 methods) and via the webservers for DISOPRED3

(a)

Input sequence MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFR.....
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(http://bioinf.cs.ucl.ac.uk/psipred/) and SPOT-Disorder
(http://sparks-lab.org/server/SPOT-disorder/).

The architecture of DISOselect method is visualized
in Figure 8a. The corresponding pseudo-code is shown in
Figure 8b. The input protein sequence is used to generate
an information-rich profile. The profile includes
sequence-derived structural and physiochemical proper-
ties such as putative solvent accessibility, putative second-
ary structure, sequence complexity and several selection
physiochemical properties of the input AA residues. In
the first layer, the sequence profile is encoded into sets of
numeric features that are optimized for each of the 12 dis-
order predictors. The second layer uses 12 machine learn-
ing models to predict AUC values from the input features
for the 12 disorder predictors. These predictions are
mapped into the distribution of AUCs values from the
training data sets for the corresponding 12 disorder pre-
dictors in the third layer. This ensures that the predicted
AUCSs are calibrated to cover the entire spectrum of AUC
values that are covered by a specific disorder predictor.
Finally, the 12 predicted AUCs are compared and the
method with the highest putative AUCs is recommended
back to the user. The outputs generated by DISOselect
also include the AUC values for each of the 12 methods.

431 |
measure

Disorder prediction evaluation

Disorder predictors output putative propensity for intrin-
sic disorder for every AA residue in the input sequence.
Propensities are expressed as numeric scores where a
high value denotes larger likelihood for the disordered

(b)
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SegComp_Profile = SEG(Input_Sequence)
PhysChem Profile = Physiochemical Features (Input_Sequence)
SequenceProfile = Concatenate (
SA_Profile, SS_Profile,
SeqComp_Profile, PhysChem Profile)
//Generate predictions of AUC value for each of the 12 predictors
for Predictor n=1 to 12:
Features [n]=FeatureExtraction (SequenceProfile,n)
PredictedAUC [n]=ExtraTreeRegressor (Features[n],n)
MapPredictedAUC [n]=MapToAUCDistribution (PredictedAUC[n],n)
end

return MappedPredictedAUC

FIGURE 8 Architecture of the DISOselect method (a) and pseudo code of the DISOselect implementation (b)
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state. The binary prediction classifies each residue as
either structured or disordered, and is derived from the
propensities, that is, residues with propensity scores >
predictor-specific threshold are classified as disordered
while the remaining residues are classified as structured.
The measure that the most commonly used to assess the
predictive quality of the disorder predictors is the
AUC 3236:38444647.7579 AUJC is a threshold-agnostic mea-
sure of the putative propensities which makes it arguably
more informative than the threshold-specific measures
such as sensitivity and specificity. The threshold-specific
measures depend on the threshold values and in practice
their values correlate with the AUC values. In other
words, methods with higher AUC values typically secure
higher values of the binary measures as long as the
thresholds across the different disorder predictors are
adjusted to generate the same prediction rate (the same
number of predicted disordered residues). AUC is com-
puted as the area under the curve composed of the true
positive rates (on the y-axis) and false positive rates
(on the x-axis) computed for thresholds that equal to the
set of all unique propensities generated by a given disor-
der predictor. The true positive rate is defined as the
number of true positives (correctly predicted disordered
residues) divided by the number of the native disordered
residues. The false positive rate is defined as the number
of false positives (structured residues predicted as disor-
dered) divided by the number of all structured residues.
The AUC values range between 0.5 (for random predic-
tions) and 1 (for perfect predictions).

4.3.2 | Sequence profile

The sequence profile includes a comprehensive set of
structural and physiochemical protein properties which
are widely recognized as influential to disorderness.”*'®
They include the sequence itself, solvent accessibility
predicted from the input protein sequence with
ASAquick,'°>'%* secondary structure predicted with the
single-sequence (fast) version of PSIPRED,'**'* sequence
complexity computed using the SEG algorithm,'® and
selected physiochemical properties of the input AA resi-
dues including hydrophobicity, hydropathy, charge, struc-
tural entropy, polarity, volume, size, flexibility, refractivity,
transfer and solvation energies, and propensity for coil,
turn, strands, helix and disordered conformations. These
properties were quantified using the AA indices collected
from the AAindex resource'® and the disorder propensity
index from.”” The selection of the solvent accessibility and
secondary structure predictors was motivated by their
computational efficiently, stemming from the fact that
they make predictions from a single sequence, that is,

without the computationally expensive calculation of the
multiple sequence alignments. The sequence profile was
used to generate 130 features that aggregate the structural
and physiochemical protein properties at the whole-
protein level. These features are detailed in the Table S1.
They include 21 features computed directly from the input
sequence (AA composition and sequence length), 3 fea-
tures computed from the putative solvent accessibility,
2 features from the sequence complexity, 8 features from
the putative secondary structure, and 96 features based on
the physiochemical properties.

433 |
models

Empirical design of predictive

The layers 1 and 2 of the DISOselect's architecture
(Figure 8a) were designed using empirical selection of fea-
tures and machine learning models to maximize quality of
predictions of the per-protein AUC scores for individual
disorder predictors. The design process had two steps,
where we first removed similar features (i.e., we reduced
mutual similarity between features) and then we selected
the best combination of models and selected predictive fea-
tures. This two-step design was done separately for each of
the 12 disorder predictors, resulting in predictive models
that are sensitive to the disorder predictor-specific biases
in the predictive performance. All design activities were
performed exclusively on the training data set. In the first
step, we quantified the mutual similarity for all pairs of
the 130 features based on the Pearson correlation coeffi-
cients (PCCs). For each pair of highly correlated features (|
PCCI > 0.65), we removed one of them that has lower pre-
dictive performance, that is, which has lower value of PCC
with the per-protein AUC scores of a specific disorder pre-
dictor. This step results in the removal of between 21 and
40 features, depending on the disorder predictor.

The second step relied on a wrapper-based approach to
select the best machine learning models in combination
with selection of predictive feature sets. First, we quantified
the predictive performance of each feature that was
retained in the first step based on its PCC with windowed
per-protein AUC values of a specific disorder predictor.
Second, we select a subset of features with [PCC| > thresh-
old where the value of the threshold is selected to provide
the highest predictive quality for a predictive model that
relies on the corresponding feature set. Three types of
regression algorithms were tested for use in our predictive
model: linear regression,'”” nearest neighbor regression,'®®
and extra tree regression.'” We did not explore deep learn-
ing regression methods because our data set that includes
5,272 proteins (data points) and 130 input features (that are
used to represent the input protein sequences) would not
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provide enough data for this approach. The predictive qual-
ity was measured based on the threefold cross validation
on the training data set and was quantified with PCC
between outputs of a given machine learning model and
the per-protein AUC scores of the given disorder predictor.
We started with threshold = 0 (we used all features retained
in the first step) and we incremented it by 0.01 until the
cross validated PCC of the given model type starts to
decrease. The selected feature sets ranged in size between
24 and 38 for the extra tree regression, 29-46 for the
nearest neighbor regression, and 51-64 for the linear
regression, depending on the considered disorder predictor.
After the feature selection was completed, we optimized
parameters of the machine learning algorithms via a grid
search for each of the 12 disorder predictors, with the aim
to maximize the PCC for the threefold cross validation on
the training data set. For instance, for the extra tree regres-
sion we parameterized the maximum depth of the trees
(using 0-20 range), number of trees in the forest (100-180
range), minimum number of samples required for a split
(0-30 range), and the number of features to consider when
calculating best split (0-50 range). Table S2 summarizes
the results secured by the three parameterized machine
learning models for the selected feature sets. The average
(over the 12 disorder predictors) PCC for the nearest neigh-
bor regression, linear regression, and extra tree regression
models are 0.15, 0.13 and 0.31, respectively. The
corresponding MSEs between the predicted and actual
AUC values equal 0.018, 0.011 and 0.007, respectively.

Our empirical results on the training data set show a
clear advantage for the extra tree regression model,
which we selected to implement the DISOselect methods.
The extra tree regression is a supervised algorithm
inspired by the decision forest algorithm. It is a version of
the extremely randomized random forests where the
computation of the optimal features that are used to grow
the tree is done randomly,''® with the underlying aim to
minimize overfitting."'! This is particularly useful in the
context of our prediction task given the low (<25%) simi-
larity between the proteins in our data sets. Moreover,
the training of the extra trees regression is computation-
ally efficient given the random nature of the tree-building
procedure, which contrasts with a more exhaustive sea-
rch performed by the traditional random forests.'*

4.4 | Meta-prediction models

A conventional approach to combining predictions from
several different methods is meta-prediction, where sev-
eral prediction methods are combined to give a single
prediction, usually at the residue level. For comparison
with our predictor selection method, we developed

B oos-WiLey L

several residue-level meta-prediction methods based on
the 12 individual predictors examined in this study. We
used several variations on meta-predictor construction:
two-different architectures—logistic regression (LR) and
support-vector regression (SVR), and different input
predictors—either all 12 predictors or only the best of the
predictors. The best predictors were selected based on the
data set level performance on our training set (Table 1).
Based on these assessments, we selected two prediction
methods—SPOT Disorder and Disopred3—as signifi-
cantly better than the other individual methods. This
gave four meta-predictors: 12Predictor LR, 12Predictor
SVR, Top2Predictor LR and Top2Predictor SVR.

Prediction scores from the individual predictors were
initially rescaled to be in the same range of 0-1. The
rescaling was based on the default thresholds of respec-
tive predictors as values from minimum to threshold to
be in the range of 0-0.5 and values from threshold to
maximum to be in the range of 0.5-1.

The logistic regression model was trained with the
threefold cross validation on the training data set with
default L2 regularization penalty by balanced class
weights according to the proportions of training set using
the L-BFSG optimization algorithm. The SVR models
were trained with the threefold cross validation on the
training data set after subsampling 10% of each fold ran-
domly to minimize the training time. We used the radial
basis function kernel and performed a grid search for the
penalty parameter C (between 27> and 2°), kernel coeffi-
cient gamma (between 0 and 1), and tolerance for stop-
ping criteria (between 10~ and 103).
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