Skip to main content
. 2019 Nov 7;29(1):201–210. doi: 10.1002/pro.3761

Table 1.

Performance of the machine learning classifiers using binary profile on balanced data set for various window sizes

Pattern (classifier) Training data set Validation data set
Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC
Pat5(SVC) 67.42 60.90 64.16 0.28 0.71 67.18 55.69 61.43 0.23 0.68
Pat7(SVC) 66.52 64.12 65.32 0.31 0.72 66.26 60.00 63.13 0.26 0.70
Pat9(RF) 65.39 65.77 65.58 0.31 0.73 65.69 59.69 62.69 0.25 0.70
Pat11(RF) 66.07 65.17 65.62 0.31 0.72 69.08 60.62 64.85 0.30 0.71
Pat13(RF) 65.62 65.77 65.69 0.31 0.72 69.69 62.31 66.00 0.32 0.71
Pat15(RF) 66.52 65.24 65.88 0.32 0.72 68.00 59.23 63.62 0.27 0.71
Pat17(RF) 67.64 61.12 64.38 0.29 0.71 68.15 58.92 63.54 0.27 0.69
Pat19(RF) 66.37 62.47 64.42 0.29 0.71 67.69 59.54 63.62 0.27 0.70
Pat21(RF) 67.87 61.57 64.72 0.29 0.71 67.38 60.15 63.77 0.28 0.70
Pat23(RF) 67.57 62.02 64.79 0.30 0.71 66.00 59.85 62.92 0.26 0.69

Note: Various classifiers were used for building models and the performance obtained by the best classifier (mentioned in the bracket) for each window size has been reported.