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A B S T R A C T

Systemic lupus erythematosus (SLE) is an autoimmune multi-
system disease that commonly affects the kidneys. It is charac-
terized by persistent autoantibody production that targets a
multitude of self-antigens. B-cells, plasmablasts and plasma
cells, as the source of these autoantibodies, play a major role in
the development of lupus nephritis (LN), and are therefore
promising therapeutic targets. To date, however, randomized
clinical trials of B-cell therapies in LN have not lived up to
expectations, whereas uncontrolled cohort and observational
studies of B-cell antagonists have been more promising. In this
article, we will review the current experience with B-cell therapy
in LN and highlight the pitfalls that may have limited their suc-
cess. We will conclude by suggesting B-cell-centric approaches
to the management of LN based on what has been learned from
the overall B-cell experience in SLE.
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I N T R O D U C T I O N

Systemic lupus erythematosus (SLE) is an autoimmune disease
characterized by loss of self-tolerance resulting in persistent
generation of autoantibodies. These autoantibodies are classi-
cally directed against nuclear antigens, but can also target
many others including cytoplasmic, cell membrane and
phospholipid-associated antigens, blood cells and endothelial
cells, with the total number of autoantibody specificities identi-
fied exceeding a hundred [1]. Kidney injury is a major morbid-
ity of SLE and most often is caused by immune-complex
accumulation in the kidney [lupus nephritis (LN)]. The man-
agement of LN usually involves an ‘induction’ phase that aims
to decrease inflammation and suppress the autoimmune path-
ways contributing to it, and a ‘maintenance’ phase that aims to
keep those pathways at bay, limiting relapses. The currently
available medications for the management of LN are associated
with significant adverse effects and have limited success rates,
thus the need for new agents is high and urgent.

Our understanding of SLE and LN pathogenesis has evolved
over the past few decades, and the multiple and diverse roles of
the various effector cells of the immune system have been better

elucidated. In this regard B-cells have received considerable at-
tention. Although an in-depth review of B-cells in the patho-
genesis of SLE is beyond the scope of this article, some key
studies are important to note. Shlomchik et al. [2] and
Vlahakos et al. [3] demonstrated that lupus-prone mice lacking
B-cells did not develop nephritis, and injection of antibodies
from lupus mice into normal mice resulted in glomerular
immune-complex deposition and development of a lupus-like
nephritis. The relevance of B-cells to LN is not limited to auto-
antibody production. Mice with B-cells that do not secrete anti-
bodies were still able to develop nephritis [4]. B-cells also act as
antigen-presenting cells, can promote T-cell activation and pro-
duce inflammatory cytokines [5]. These and other data
(reviewed in [6–8]) have positioned B-cells as a potentially
high-value therapeutic target for the treatment of SLE and LN.
The evolution and application of B-cell therapies (Figure 1) to
human LN will be reviewed here.

T H E R A P E U T I C B - C E L L S T R A T E G I E S

B-cell depletion

CD20 promotes B-cell activation and was one of the first
B-cell surface antigens exploited for B-cell depletion. Lupus-
prone MRL/lpr mice treated with anti-CD20 monoclonal anti-
bodies (mAbs) had a fall in anti-double-stranded DNA (dsDNA)
antibody titers and attenuation of their autoimmune nephritis [9]
(Figure 1). Lupus-prone NZB/W F1 mice treated with anti-CD20
mAbs showed a delay in disease onset and decreased progression
of nephritis [10]. These findings were not solely autoantibody-
mediated as there was a reduction in T-cell activation after B-cells
regenerated and antibody levels returned to baseline [10]. B-cell
depletion was also shown to impair protein and pathogen CD4þ-
mediated T-cell activation and clonal expansion [11].

Another target antigen that can decrease the number of
B-cells when engaged is CD22, a transmembrane protein
mainly expressed on mature B-cells (but not plasma cells or
memory B-cells) [12, 13]. Lupus-prone mice were found to ex-
press functionally deficient CD22 [14], which can contribute to
enhanced autoimmunity as CD22 is believed to be an inhibitor
of B-cell receptor (BCR) signaling [15]. In addition, polymor-
phisms in the CD22 gene were identified in human SLE [16].
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Importantly, neither CD20 nor CD22 is expressed on plas-
mablasts or plasma cells [17], and depletion with an anti-CD20
mAb did not affect plasma cell survival in mice [18].
Plasmablasts and plasma cells produce antibodies and autoanti-
bodies in SLE. Plasma cell depletion resulted in decreased auto-
antibody production, improved survival and LN in NZB/W F1
and MRL/lpr mice [19–21]. Plasma cells are also thought to be
the source of persistent antigen-specific antibodies [22], which
decreased when B-cells and plasma cells were depleted at the
same time [18], suggesting that targeting B-cells and their prog-
eny, plasma cells, might have a synergistic effect on B-cell-
driven autoimmunity.

Another approach to achieve a more comprehensive deple-
tion of B-cells (and plasma cells) is targeting CD19, which has a
broader range of B-cell lineage expression including plasma-
blasts and plasma cells. Its use is currently being evaluated in
autoimmune diseases in humans [23]. Alternatively, CD19þ

B-cells can be suppressed (rather than depleted) when CD19 is
co-engaged with FccRIIb [24]. This was demonstrated using
XmAb5871, an engineered anti-CD19 mAb that also binds
FccRIIb. XmAb5871 suppressed humoral immunity and

reduced serum immunoglobulin levels without depleting B-cells
in severe combined immunodeficiency (SCID) mice engrafted
with human SLE peripheral blood mononuclear cells [25].

B-cell neutralization

B-cell activating factor (BAFF, also known as B-lymphocyte
stimulator) and a proliferation-inducing ligand (APRIL) are
two members of the tumor necrosis factor (TNF) superfamily
that promote B-cell survival and differentiation (Figure 1) [26–
28]. They are predominantly secreted by dendritic cells, macro-
phages and neutrophils. BAFF is known to bind three receptors;
BAFF receptor (BAFF-R), transmembrane activator and cal-
cium modulator and cyclophilin ligand interactor (TACI) and
B-cell maturation antigen (BCMA), while APRIL only binds to
TACI and BCMA. B-cells express all three receptors, but
plasma cells predominantly express BCMA.

There is ample evidence suggesting a role for BAFF in SLE.
Circulating BAFF levels are higher in NZB/W F1 and MRL/lpr
mice during the onset and progression of SLE, and treatment of
NZB/W F1 mice with a soluble TACI-Ig or BAFF-R-Ig fusion
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FIGURE 1: A schematic of the current targets of B-cell therapy. LYN, Lck/Yes novel tyrosine kinase; SYK, spleen tyrosine kinase; BTK,
Bruton’s tyrosine kinase.
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protein prolonged survival and inhibited development of pro-
teinuria [29, 30]. BAFF-deficient NZM lupus-prone mice had
less severe proteinuria and reduced mortality [31]. In addition,
in patients with SLE, CD19þ B-cell expression of BAFF and
APRIL correlated with disease severity (as measured by the SLE
disease activity index) and anti-dsDNA titers, and plasma cells
had increased BAFF and APRIL expression [32]. Interestingly,
BAFF levels are elevated in African-Americans with SLE com-
pared with patients of European ancestry [33], which may par-
tially explain their greater degree of B-cell activation [34] and
possibly a worse prognosis.

B-cell depletion and neutralization strategies have been ap-
plied to the treatment of human LN with some mixed but also
some promising results. These studies will be discussed in the
remainder of this review to provide insight into how B-cell ther-
apies may be best deployed for patients with LN.

B - C E L L D E P L E T I O N F O R L N I N D U C T I O N

The first multinational randomized controlled trial of B-cell ther-
apy to improve renal response rates in LN was the lupus nephri-
tis assessment with rituximab (LUNAR) study [35]. Rituximab is
a chimeric IgG mAb directed against CD20, and is currently
used in the management of B-cell dyscrasias and autoimmune
diseases such as rheumatoid arthritis. LUNAR randomized 144
patients with proliferative LN (ISN/RPS Class III/IV 6 V), and a
mean serum creatinine concentration and urine protein-to-
creatinine ratio (uPCR) of 1.0 6 0.5 mg/dL and 4.0 6 2.9 mg/mg,
respectively, to receive rituximab (four 1 g doses on Days 1, 15,
168, 182) or placebo in addition to standard-of-care [pulse meth-
ylprednisolone followed by oral prednisone and mycophenolate
mofetil (MMF)]. The study did not demonstrate significantly
more complete or partial renal responses than placebo at
52 weeks. The overall renal response (complete plus partial) was
57% for the rituximab group and 46% for the placebo group.
However, patients treated with rituximab had more improve-
ments in complement and anti-dsDNA levels, and a larger de-
crease in proteinuria than the controls.

Ocrelizumab, a humanized anti-CD20 mAb was subse-
quently evaluated in 223 patients with Class III/IV 6 V LN in
the BELONG trial [36]. Patients were randomized to placebo or
one of two ocrelizumab doses plus either MMF or cyclophos-
phamide as background immunosuppression. Although
BELONG was stopped early due to an imbalance in serious
infections in the ocrelizumab groups, 148 patients completed
>32 weeks of therapy. Reminiscent of the LUNAR trial, the
ocrelizumab-treated patients showed a nonsignificant increase
(12% over control) in overall renal response, but significant im-
provement in complement and anti-dsDNA levels.

These negative results were unexpected given the established
role of the B-cell in SLE. Several concerns over trial design were
raised. These included adding B-cell therapy to intense back-
ground therapy with corticosteroids and immunosuppression,
insufficient sample size, insufficient sensitivity in determining
complete B-cell depletion, failure to account for tissue B-cells
that may be harder to kill, lack of effect on plasma cells and in-
sufficient length of follow-up [37]. These concerns have led to

some innovations in LN trial design as outlined below, and im-
portantly, have not discouraged the evaluation of anti-B-cell
therapies in LN (Table 1).

Add-on trials in which a novel therapeutic is given with
standard-of-care background immunosuppression are com-
mon in LN because of the potential for rapid disease progres-
sion and the uncertain efficacy of the novel drug being tested.
However, the benefits of immunosuppressive therapies beyond
those which may be attributed to corticosteroids alone can take
>1–2 years to become apparent [38, 39], raising the possibility
that any beneficial effects of B-cell therapies added to high-dose
corticosteroids may have been masked. For example, in
BELONG, ocrelizumab showed no additive improvement for
patients receiving >1 g of intravenous methylprednisolone,
who had a higher rate of renal response regardless of concomi-
tant therapy, but did appear to have efficacy in patients who
had been given less methylprednisolone initially. Rituximab has
also been shown to be ‘steroid-sparing’ in the treatment of LN.
In a single-center cohort 50 consecutive patients with ISN/RPS
Class III, IV or V LN were treated with rituximab (two 1 g doses
on Days 1, 15), methylprednisolone (two 500 mg doses on Days
1, 15) and MMF without any oral steroids, and achieved excel-
lent renal responses with 90% complete or partial remission af-
ter a median follow-up of 37 weeks [40]. Finally, a small study
examined the potential of rituximab to facilitate rapid weaning
of corticosteroids and minimization of maintenance immuno-
suppression in severe SLE and LN. A total of 12 patients with
multiorgan involvement, including LN (three patients with
Class IV, four with Class III þ V and five with Class V), were
treated with rituximab administered as four weekly doses of
375 mg/m2, followed by two additional doses 1 and 2 months
after the last weekly infusion, cyclophosphamide (10 mg/kg on
Days 4 and 17) and methylprednisolone (15 mg/kg on Days 1, 4
and 8). Oral prednisone was started at 0.8 mg/kg/day for
2 weeks, but rapidly tapered to 5 mg at 3 months and was main-
tained afterward. At 12 months all patients were in complete re-
nal remission (defined by 24 h proteinuria <0.5 g/day and GFR
within 10% of baseline). After a mean follow-up time of
51.6 months, 9 out of 12 patients remained in remission with
minimal maintenance immunosuppression [41]. Taken to-
gether, these findings suggest that it may be necessary to design
future LN trials with less background corticosteroid.

The concern that LUNAR and BELONG failed because of
incomplete B-cell depletion in the periphery, lymphoid tissues
or the kidney is being addressed by the NOBILITY trial
(NCT02550652). NOBILITY is similar to LUNAR, but the
B-cell drug is obinutuzumab, a new-generation humanized
anti-CD20 mAb with superior antibody-dependent cellular cy-
totoxicity and antibody-dependent cellular phagocytosis. In tri-
als of B-cell malignancies, obinutuzumab was more effective at
depleting peripheral and lymphoid tissue B-cells than rituximab
[42–44]. The expectation of NOBILITY is that the enhanced cy-
totoxicity will translate into improved outcomes, as the degree
of B-cell depletion has been associated with clinical response in
LN [45].

The lack of plasma cell depletion with anti-CD20 mAbs
might be circumvented by targeting CD19 instead, which is
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expressed on B-cells and plasma cells. An anti-CD19
mAb, XmAb5871 is currently under study in human SLE
(NCT02725515), but proliferative LN is excluded. Alternatively,
plasma cells can be targeted with proteasome inhibitors (PIs).
Proteasomes are the major nonlysosomal degradation system
for proteins, and proteasome inhibition leads to the accumula-
tion of misfolded proteins within the endoplasmic reticulum.
Plasma cells are particularly sensitive to proteasome inhibition
due to their high rate of antibody synthesis [46]. PIs have effects
other than plasma cell depletion that could also be relevant for
the treatment of LN. For example, in mice bortezomib can abro-
gate Type-I interferon activity [20], probably by inducing apo-
ptosis in Toll-like receptor-activated plasmacytoid dendritic cells
[47]. Bortezomib also prevents degradation of IjBa, thus inhib-
iting the activation of the transcription factor NF-jB [48, 49].
NF-jB plays multiple roles in SLE including B- and T-cell devel-
opment, maturation of dendritic cells and cytokine secretion
[50]. NF-jB mediates the synthesis of TNF-a, interleukin (IL)-
1b, IL-6 and IL-8, and is one of the most important regulators of
proinflammatory gene expression [51]. Thus PIs may have a
role in reducing inflammation in LN.

Preliminary studies have examined PI inhibition in LN.
Bortezomib depleted peripheral and bone marrow plasma cells,
reduced interferon-a activity, decreased anti-dsDNA antibod-
ies, decreased proteinuria and led to improvement in C3 levels
in 12 patients with SLE, 5 of whom had active LN previously
treated with cyclophosphamide or MMF [52]. Unfortunately,
bortezomib was discontinued in seven patients due to adverse
reactions. In five patients with refractory LN and high histologi-
cal activity on kidney biopsy bortezomib resulted in a partial

renal remission in four patients [53]. Most patients also had an
improvement in serological markers. With these encouraging
findings, bortezomib is currently being evaluated in a Phase 2
trial for SLE (NCT02102594) and ixazomib, another PI, is being
evaluated in LN (NCT02176486). Ixazomib differs from borte-
zomib as it is a second-generation PI, that is given orally and
may have less neurotoxicity [54]. Newer PIs that selectively in-
hibit the immunoproteosome, but not the constitutive protea-
some, are being developed for use in autoimmunity
(NCT03393013). Immunoproteasomes are typically expressed
in hematopoietic cells but can also be expressed in other cells
exposed to an inflammatory milieu. The selectivity of immuno-
proteasome inhibitors may reduce the risk of adverse effects ob-
served with inhibition of all cellular proteosomal activity [55],
and help specifically target sites of inflammation.

B - C E L L N E U T R A L I Z A T I O N F O R L N
I N D U C T I O N

There have been three randomized controlled trials of BAFF
antagonists for the treatment of SLE. Although active or severe
LN was excluded from these trials some information about the
effects of BAFF inhibition on LN can be gleaned from their
results. Belimumab is a humanized monoclonal antibody that
inhibits the soluble form of BAFF, and was shown to be effective
for nonrenal SLE in two large trials (BLISS-52 and BLISS-76)
[56, 57]. Although patients with active nephritis (defined as a
serum creatinine >2.5 mg/dL or >6 g/day of proteinuria) were
excluded, a post hoc analysis of patients with a history of LN
demonstrated a dose-dependent reduction in renal flares

Table 1. Current clinical trials evaluating B-cell therapies in SLE and LN

Target Drug Study title Study status Disease target Study phase Identifier

CD20 Rituximab (anti-
CD20 mAb)

Rituximab objective outcome meas-
ures trial in SLE

Recruiting SLE Phase 2 NCT03054259

RING Recruiting LN Phase 3 NCT01673295
Obinutuzumab
(anti-CD20 mAb)

A study to evaluate the safety and ef-
ficacy of obinutuzumab compared
with placebo in participants with LN

Recruiting LN Phase 2 NCT02550652

CD19 XmAb5871 A study of the effect of XmAbVR 5871
in patients with SLE

Active SLE Phase 2 NCT02725515

BAFF/APRIL RC18 (TACI-anti-
body fusion
protein)

Study of RC18 administered subcuta-
neously to subjects with SLE

Recruiting SLE Phase 2 NCT02885610

Belimumab (anti-
BAFF)

Efficacy and safety of belimumab in
patients with active LN

Active LN Phase 3 NCT01639339

AMG 570 (bisep-
cific
peptibody—BAFF
and ICOS ligand)

Single ascending dose study of AMG
570 in healthy subjects

Active SLE Phase 1 NCT02618967

Immunoproteasome KZR-616 A study of KZR-616 in patients with
SLE with and without nephritis

Recruiting SLE Phase 1/2 NCT03393013

Combination Rituximab,
belimumab

Rituximab and belimumab for LN Active LN Phase 2 NCT02260934
Synergetic B-cell immodulation in
SLE

Recruiting SLE Phase 2 NCT02284984

A study to evaluate the efficacy and
safety of belimumab administered in
combination with rituximab to adult
subjects with SLE–BLISS–BELIEVE

Recruiting SLE Phase 3 NCT03312907
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compared with placebo during follow-up [58]. Belimumab is
currently being tested as an add-on agent for LN induction
therapy in the BLISS–LN trial (NCT01639339). Given the ques-
tions surrounding LUNAR regarding insufficient duration of
follow-up, patients in BLISS–LN will be observed for 2 years
rather than 1 year.

Two large studies (>2000 patients) of tabalumab, an mAb
that binds soluble and membrane-bound BAFF, were done in
nonrenal SLE [59, 60]. Patients with severe active LN, defined
as an uPCR >200 mg/mmol, creatinine clearance <30 mL/min
or by physician assessment were excluded. In contrast to the
BLISS trials, the outcome of these studies was not clear cut, and
post hoc analysis did not demonstrate any difference in renal
outcomes for patients who had LN and were treated with taba-
lumab compared with those treated with placebo [61].

Blisibimod is a fusion protein of antibody Fc region and
BAFF binding domains that also binds soluble and membrane-
bound BAFF. Blisibimod was evaluated in a Phase 2 trial of pre-
dominantly Hispanic patients with moderate-to-severe SLE,
but not severe LN (PEARL-SC) [62]. Although treatment with
blisibimod did not significantly improve the SLE response in-
dex-5, a subgroup analysis of patients with baseline proteinuria
(uPCR 1–6 mg/mg) demonstrated a significantly greater reduc-
tion in proteinuria in those treated with blisibimod, along with
improved levels of C3, C4 and anti-dsDNA. It remains to be
seen whether these results hold up in CHABLIS-SC1
(NCT01395745), a recently completed Phase 3 study of blisibi-
mod in patients with SLE.

Taken together, the results of BAFF inhibition in LN are mixed,
but seem to support investigation of BAFF inhibitors to prevent
LN flares. The blisibimod data may also support induction treat-
ment of LN, a question that will be answered by BLISS–LN.

Another approach to B-cell growth factor inhibition was
through atacicept, a human recombinant fusion protein of
TACI and the Fc portion of human IgG1 (TACI-IgG).
Atacicept blocks BAFF and APRIL. A Phase 2/3 study adding
atacicept to corticosteroids plus MMF in LN was terminated
early because of a high incidence of hypogammaglobulinemia
[63]. A trial of atacicept in moderate-to-severe SLE was also ter-
minated early due to a higher incidence of death in the atacicept
group [64]. A third study of atacicept in nonrenal SLE
(ADDRESS II NCT01972568) did not show a safety signal, but
showed only a nonsignificant trend toward improvement [65].

B - C E L L T H E R A P Y F O R L N M A I N T E N A N C E

The post hoc analysis of BLISS-52 and BLISS-76 suggested beli-
mumab could prevent LN flares and may therefore be useful in
the maintenance of remission [58]. The CALIBRATE trial
(NCT02260934) is the first prospective investigation to test
B-cell directed therapies for induction and maintenance in LN.
In CALIBRATE, patients initially receive rituximab plus cyclo-
phosphamide, given as two 1 g and 750 mg doses, respectively,
2 weeks apart. Patients are then randomized to placebo or beli-
mumab (10 mg/kg Weeks 4, 6, 8, then every 4 weeks). This
unique design tackles the observation that B-cell depletion
results in a marked increase in serum BAFF levels [66], and that
in SLE patients treated with rituximab, relapse was associated

with significantly elevated serum BAFF levels after B-cell repo-
pulation [67]. Animal studies in nonautoimmune mice not only
showed similar results after B-cell depletion with cyclophospha-
mide, but also demonstrated that repopulation of B-cells in a
high BAFF environment led to cells with an autoimmune phe-
notype and glomerular immunoglobulin deposition [68]. The
underlying hypothesis of CALIBRATE is that B-cell repopula-
tion in a BAFF-poor environment may attenuate reactivation of
autoimmunity and prevent disease flares.

B - C E L L T H E R A P Y I N R E F R A C T O R Y L N

The efficacy of rituximab in refractory LN is currently being
evaluated prospectively in a randomized clinical trial: rituximab
for lupus nephritis with remission as a goal (RING,
NCT01673295). The RING trial is supported by several studies
describing the use and utility of rituximab for LN refractory to
conventional approaches. For example, an Italian multicenter
observational cohort described 145 SLE patients in whom ritux-
imab was added on to 76% of the cohort after they had not
responded to at least one other immunosuppressant [69].
LN was present in 68% of patients (mean serum creatinine
1.09 6 0.63 mg/dL; mean proteinuria 4.04 6 2.91 g/day).
A complete or partial renal response was seen in 94% of
patients. Proteinuria decreased from 4.1 6 2.9 at baseline to
1.1 6 1.9 g/day (P¼ 0.021) after 12 months.

Additional evidence for rituximab in refractory LN comes
from a systematic review of 26 studies that reported the out-
comes of 300 refractory LN patients given rituximab [70]. Most
(60%) of the patients had Class III/IV 6 V LN, and all had been
treated previously with cyclophosphamide, MMF or both.
Complete or partial remission was achieved in 74% after receiv-
ing rituximab. However, a cautious interpretation of these
results is warranted. Kidney pathology was not available in 30%
of patients, the definition of refractory LN was inconsistent and
not explained for 30% of patients, the duration of prior immu-
nosuppression was not analyzed, rituximab was added to ongo-
ing immunosuppression in 62% of the patients, and rituximab
dosing was not uniform. Rituximab was generally given as four
weekly doses of 375 mg/m2 or two doses of 1 g given 2 weeks
apart, but some trials gave two doses of 750 mg/m2 given 2
weeks apart, and others gave 500 mg every 2 weeks for two to
four doses. Assuming depletion of peripheral blood CD19 cells
as measured by routine flow cytometry represents the correct
biomarker to follow for rituximab efficacy, it is conceivable that
rituximab regimens can be personalized for individual patients
by using peripheral B-cell counts to determine when to dose
and how much to use.

Future directions

Although there is considerable circumstantial evidence that
B-cell-targeted therapies may be effective in the initial treat-
ment of LN, this still needs to be verified in a randomized con-
trolled trial. Based on the presumptive mechanisms of actions
of B-cell therapies, and the results of pre-clinical and clinical tri-
als we suggest three regimens that may be worth consideration
for future randomized clinical trials (Table 2). As a disclaimer,
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we are not suggesting these regimens be used off-label, but rig-
orously evaluated in trials.

Regimen 1 is corticosteroid-free. This protocol takes advan-
tage of the anti-inflammatory activities of PIs to eliminate the
need for high-dose corticosteroids to immediately attenuate
intra-renal inflammation. This may not be sufficient, and one
could consider adding a complement inhibitor with the protea-
some inhibitor to help control inflammation without corticoste-
roids, as has been demonstrated recently in vasculitis-
associated glomerulonephritis [71]. The single published study
of proteasome inhibition in human LN showed a very rapid
(within the first 11-day cycle of bortezomib) depletion of pe-
ripheral blood plasma cells [52], so one induction course will
likely be sufficient. Anti-CD20 therapy would be started mid-
proteasome course to ensure that B-cells would be depleted by
the time the proteasome inhibitor was stopped, because plasma
cells returned within 10 days of withdrawing bortezomib [52].
Notably, a similar regimen was tested in murine LN and was
shown to effectively deplete long-lived plasma cells, delay onset
of nephritis and improve overall survival [72]. After B-cells
have been depleted anti-BAFF therapy could be given to pre-
vent B-cell repletion in an environment conducive to autoreac-
tive cell development. The duration of anti-BAFF therapy is
unknown, nor is it clear whether or what type of maintenance
immunosuppression would be needed; however, the CALIBRATE
trial should answer these questions, as there no maintenance im-
munosuppression will be given in that trial.

Regimens 2 and 3 (Table 2) incorporate high-dose pulse
methylprednisolone to rapidly control inflammation while at
the same time depleting B-cells and plasma cells (Regimen 2).
Both regimens are otherwise corticosteroid-free, and both offer
the possibility of no maintenance immunosuppression. Of note,
evaluating corticosteroid-free/reduced regimens in a lupus trial
is challenging, possibly because of prevailing attitudes on how
lupus must be treated, and the almost ubiquitous use of cortico-
steroids for anyone with LN. For example, the RITUXILup trial
(NCT01773616) [40] inspired Regimen 3, MMF version
(Table 2), but failed to enroll adequately due to difficulty in

identifying and recruiting patients that had not been exposed to
corticosteroids, and was closed down.

Finally, there are other ways to target B-cells in LN. For ex-
ample, Bruton’s tyrosine kinase and spleen tyrosine kinase are
important in BCR signaling, and inhibitors of these tyrosine
kinases have shown efficacy in murine LN models. Similarly, an
oral JAK2 kinase inhibitor has been shown to ameliorate exper-
imental LN and, among other anti-inflammatory activities, also
depleted autoreactive plasma cells [73]. Tyrosine kinase inhibi-
tion in glomerular disease has recently been reviewed in this
journal [74].
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Table 2. Proposed future B-cell-targeted strategies for management of ISN/RPS Class III/IV 6 V LN

Proposed regimen Target Timeline Expected response
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