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Abstract

We present a GPU implementation of the continuous constant pH molecular dynamics (CpHMD) 

based on the most recent generalized Born implicit-solvent model in the pmemd engine of the 

Amber molecular dynamics package. To test the accuracy of the tool for rapid pKa predictions, a 

series of 2-ns single-pH simulations were performed for over 120 titratable residues in 10 

benchmark proteins that were previously used to test the various continuous CpHMD methods. 

The calculated pKa’s showed a root-mean-square deviation of 0.80 and correlation coefficient of 

0.83 with respect to experiment. 90% of the pKa’s were converged with estimated errors below 0.1 

pH units. Surprisingly, this level of accuracy is similar to our previous replica-exchange 

simulations with 2 ns per replica and an exchange attempt frequency of 2 ps−1 (Huang, Harris and 

Shen, J Chem Info Model, 2018). Interestingly, for the linked titration sites in two enzymes, 

although residue-specific protonation state sampling in the single-pH simulations was not 

converged within 2 ns, the protonation fraction of the linked residues appeared to be largely 

converged, and the experimental macroscopic pKa values were reproduced to within 1 pH unit. 

Comparison with replica-exchange simulations with different exchange attempt frequencies 

showed that the splitting between the two macroscopic pKa’s is underestimated with frequent 

exchange attempts such as 2 ps−1, while single-pH simulations overestimate the splitting. The 

same trend is seen for the single-pH vs. replica-exchange simulations of a hydrogen-bonded 

aspartyl dyad in a much larger protein. A 2-ns single-pH simulation of a 400-residue protein takes 

about one hour on a single NVIDIA GeForce RTX 2080 graphics card, which is over 1000 times 

faster than a CpHMD run on a single CPU core of a high-performance computing cluster node. 

Thus, we envision that GPU-accelerated continuous CpHMD may be used in routine pKa 

predictions for a variety of applications, from assisting MD simulations with protonation state 

assignment to offering pH-dependent corrections of binding free energies and identifying reactive 

hot spots for covalent drug design.

Graphical Abstract

jana.shen@rx.umaryland.edu. 

SOFTWARE AVAILABILITY
The software will be distributed as a part of the Amber molecular dynamics package (Amber20).

Supporting Information Available
A supplemental table, additional analysis for linked titration, and residue-specific titration plots as well as convergence analyses for all 
residues of the 11 proteins are included.

HHS Public Access
Author manuscript
J Chem Inf Model. Author manuscript; available in PMC 2019 December 27.

Published in final edited form as:
J Chem Inf Model. 2019 November 25; 59(11): 4821–4832. doi:10.1021/acs.jcim.9b00754.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Molecular dynamics (MD) simulations are widely used in structure-based drug design and to 

understand biophysical processes on a molecular level,1,2 but one weakness of the most 

common simulations is that they require the protonation states of the titratable sites to be 

fixed. Typically, the protonation states of these residues are set to match those of model 

compounds representing single amino acids in water at pH 7, but these states may not be 

correct, as the pKa of a titratable site in the protein environment may differ significantly 

from the model pKa in solution. Sometimes, structure-based pKa prediction tools, such as 

the empirical method Propka3 and the Poisson-Boltzmann solver based methods APBS-

PDB2PQR,4 H++,5 and DelPhiPKa,6 are used to obtain estimates of the protonation states 

prior to running simulations; however, these tools do not directly account for the dynamic 

flexibility of the protein, which may lead to incorrect assignment of protonation states. Most 

importantly, even if the initial assignment is correct, protonation states may change in the 

course of conformational dynamics, as demonstrated in pH-dependent protein folding,7,8 

protein-ligand binding,9–11 enzyme catalysis,12 and ion/substrate transport across the 

membrane.13,14

One solution to the above problems is to use constant pH molecular dynamics (CpHMD) 

methods to determine protonation states on the fly during the MD simulation.15–20 CpHMD 

methods treat the pH as a macroscopic thermodynamic variable of the simulation, similar to 

how temperature and pressure are commonly handled in MD simulations. By linking the 

protonation states of the titratable residues to the solute conformation, the effects of 

conformational flexibility on the pKa estimates are explicitly taken into account. Several 

CpHMD methods have been developed in the past, and they generally fall into two 

categories: The Monte-Carlo based methods,15,16,18,20 which maintain a constant pH by 

periodically attempting Metropolis Monte Carlo moves to protonate or deprotonate titratable 

sites and continuous CpHMD,17,21–26 which is rooted in the λ-dynamics method for free 

energy calculations27 and treats the protonation states of the titratable sites as continuous 

dynamic variables of the system. Continuous CpHMD lets systems escape local energy 

minima by allowing transient access to partially protonated states which are unphysical and 
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must be discarded from the final pKa calculations. In contrast, Monte-Carlo based CpHMD 

allows only fully protonated or deprotonated states, but as a result they tend to converge 

more slowly. Additionally, the proper way to extend these methods to fully explicit solvent is 

unclear.19,20 A more extensive discussion of the various CpHMD methods can be found in 

the reviews.28,29

Both Monte-Carlo and continuous CpHMD simulations have historically required some 

enhanced sampling technique, such as temperature-30,31 or pH-based replica exchange,22,32 

to obtain converged pKa estimates. However, at the present time, replica exchange is not 

necessarily attractive for computation on Graphics Processing Units (GPUs), as in some 

molecular dynamics packages, including Amber, each replica requires a separate graphics 

card, and to ensure frequent exchange between neighboring replicas, a large number of 

parallel replicas are sometimes needed. Such simulations would require a relatively 

expensive GPU cluster and could prevent the method from being widely used.

Here we present the first implementation of the generalized Born (GB) based continuous 

CpHMD method in the GPU-accelerated pmemd program33 of the Amber molecular 

dynamics (MD) package.34 The performance of the code was benchmarked in pKa 

predictions for Asp, Glu, and His sidechains of 10 small and medium sized proteins. 

Considering that common users may not have access to a GPU node equipped with multiple 

GPU cards, single pH titration simulations were used. We restricted the simulation length to 

2 ns to facilitate comparison with our previous work, where the pKa’s were calculated using 

pH replica-exchange (pH-REX) titration simulations of 2 ns per replica on the CPUs.35 We 

note that even though the time scale for conformational rearrangements in implicit solvent is 

much shorter than in explicit solvent, 2 ns may be insufficient for conformational relaxation 

to specific pH conditions, particularly for buried residues and those undergoing strong 

electrostatic or hydrogen-bond interactions. However, the objective of this work is to 

demonstrate the tool not for constant pH simulations but for pKa predictions given a user-

specified simulation time, e.g, 2 ns. Encouragingly, despite the short simulation length, the 

calculated pKa values of ten benchmark proteins agree well with our previous pH-REX 

results and experimental data. Interestingly, although the microscopic pKa’s for the linked 

residues in two enzymes were not converged, the single-pH simulations were able to 

reproduce the experimentally observed macroscopic pKa’s. On a single NVIDIA 2080 

graphics card, a 2-ns single-pH simulation of a 400-residue protein takes about one hour. 

Thus, we envision the GPU-accelerated continuous CpHMD tool will be routinely applied to 

predict pKa’s on commodity hardware.

METHODS AND PROTOCOLS

The Compute Unified Device Architecture (CUDA) code of the GB molecular dynamics 

method in the pmemd.cuda program33 of Amber (version 2018)34 was modified. The 

energies, forces, and other numbers computed with the code matched those given by our 

CPU implementation, subject to the precision differences between the GPU and CPU code. 

As in the CPU implementation, the code is currently limited to using the GB-Neck2 model36 

for both conformational and titration dynamics. Although the method does not impose a 

limit on the total number of titration sites, the maximal number of titratable sites is currently 
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set to an arbitrary number 1000 (Asp/Glu has 2 titratable groups due to double-site titration), 

which however can be changed in the future.

We performed single-pH simulations on 11 proteins: the 36-residue villin headpiece 

subdomain (HP36, pdbid 1VII), 45-residue binding domain of 2-oxoglutarate dehydrogenase 

multi-enzyme complex (BBL, pdbid 1W4H), 56-residue N-terminal domain of ribosomal 

protein L9 (NTL9, pdbid 1CQU), 56-residue turkey ovomucoid third domain (OMTKY, 

pdbid 1OMU), 105-residue reduced form of human thioredoxin (pdbid 1ERT), 129-residue 

hen egg-white lysozyme (HEWL, pdbid 2LZT), 143-residue hyperstable Δ+PHS variant of 

staphylococcal nuclease (SNase, pdbid 3BDC), 124-residue ribonuclease A (RNase A, pdbid 

7RSA), 155-residue E. coli ribonuclease H (RNase HI, pdbid 2RN2), 185-residue oxidized 

form of Bacillus circulans xylanase (xylanase, pdbid 1BCX), and 389-residue unbound β-

secretase 1 catalytic domain (BACE1, pdbid 1SGZ). These proteins have been previously 

used to validate our CPU implementation of the same continuous CpHMD method.35

The initial structures for the simulations were taken from our previous paper.35 We started 

from the PDB coordinates by adding acetylated N terminus and amidated C terminus caps, 

building any disulfide bonds, and adding hydrogens with the CHARMM program (version 

c42a1).37 The protonation states of the titratable residues were set so that Asp/Glu were 

deprotonated and His/Lys/Arg/Cys/Tyr were protonated. The structures then underwent 50 

steps of steepest descent minimization in GBSW implicit solvent38 with a harmonic force 

constant of 50 kcal/mol/Å2 applied to each heavy atom. Next, dummy atoms were added to 

the Asp/Glu residues, and the structure was minimized for 10 steps of steepest descent and 

10 steps of Newton-Raphson minimization. These final structures were then converted to the 

structure files with the Leap utility in Amber.34

All simulations used the Amber ff14SB force field39 and the GB-Neck2 implicit-solvent 

model.36 All bonds containing hydrogens were constrained with the SHAKE algorithm,40 

the salt concentration was set to 0.15 M, and a 2 fs timestep was used. For the 2 proteins 

without His residues (HP36 and NTL9), 14 single-pH simulations were run with pH 1–7.5 in 

0.5 unit increments, and for the other proteins 18 simulations were run with pH 1–9.5 in 0.5 

unit increments. Each simulation lasted 2 ns except for BACE1 simulations which were 

extended to 10 ns each. The CpHMD settings and options were the same as in our previous 

replica-exchange simulations,35 except that the latter also employed a pH replica-exchange 

protocol, in which exchanges between adjacent pH replicas were attempted every 250 MD 

steps (exchange attempt frequency of 2 ps−1). In the current work, we performed additional 

replica-exchange simulations for SNase and RNase H with exchanges attempted every 500 

and 1000 MD steps which correspond to the exchange attempt frequencies of 1 ps−1 and 0.5 

ps−1, respectively. Larger pH ranges were used in the replica-exchange simulations. For the 

2 proteins without His, 16 replicas were used with pH 0–7.5 in increments of 0.5 units, and 

for the other proteins 20 replicas with pH ranging from 0–9.5 in increments of 0.5 units were 

used.

To calculate pKa’s, the probability of deprotonation (unprotonated fraction) was fit to the 

generalized Henderson-Hasselbalch (HH) equation, as in our previous work.35 For 

simplicity, the word generalized will be omitted in later discussions. The statistical errors in 
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the pKa’s were estimated from the covariances of the fit parameters. For the macroscopic 

pKa of histidine, the total unprotonated fraction was used in the fitting. For the pKa’s of HID 

and HIE, the fractions of the respective tautomers were used (see more explanation in the 

footnote of Table 1).

RESULTS AND DISCUSSION

Titration simulations of model peptides.

First, we verified that the GPU-based single-pH titration simulations with the model 

parameters from our previous work35 can reproduce the reference experimental pKa’s of 

model alanine pentapeptides, CH3CO-Ala-Ala-X-Ala-Ala-NH2, where X represents Asp, 

Glu, or His. These reference pKa’s are also referred to elsewhere as model or solution pKa’s. 

For each pentapeptide, 5 independent 2-ns titration simulations were performed at each of 

the 8 evenly spaced pH conditions with an interval of 0.5 units, in the pH ranges 2–5.5 for 

Asp, 2.5–6 for Glu, and 5–8.5 for His. Fig. 1 displays the unprotonated fraction versus pH 

(titration data) for each residue and the least-square fit to the HH equation. Fitting of all 40 

data points for each peptide returned a pKa of 3.71 for Asp, 4.17 for Glu, and 6.33 for His. 

These pKa’s are within 0.1 units of the previous CPU-based replica-exchange pKa’s and 

within 0.2 units of the experimental values (Table 1). This level of agreement is acceptable 

and therefore we decided that we could use the previously derived model parameters for the 

titration simulations of proteins.

Error estimates for the model pKa’s.

From the least-square fit of five titration datasets (40 data points) to a single HH equation, an 

error for the pKa, i.e., fitting parameter, can be obtained. This fitting error is below 0.03 for 

model Asp, Glu, and His, demonstrating a high precision of the pKa (Fig. 1). We were also 

interested in the error (reproducibility) of the calculated pKa given only one titration dataset 

(one data point for each pH). To address this question, a bootstrap method was used, where 

the unprotonated fractions at different pH were combined to generate every possible 

combination out of 58 virtual sets of titration data, where 5 is the number of simulations per 

pH and 8 is the number of pH conditions. Thus, 58 pKa’s were obtained, from which an 

average and standard deviation were calculated (Figure S3). As expected, the bootstrap 

procedure gave identical pKa’s but larger errors compared to those obtained from the best 

fits of all five datasets (Table 1). The bootstrap errors are only somewhat larger than the 

standard deviations from the CPU replica-exchanges simulations,35 which is surprising, as 

previous work based on the continuous CpHMD in CHARMM,21,30 which uses the GBSW 

model38 and CHARMM22 protein force field42 as well as the discrete CpHMD in Amber, 

which employs the GB-OBC model43 (igb=2)31,32 and Amber99SB force field44 indicated 

that the single-pH model titration data are very noisy, with errors much larger than those 

from the replica-exchange simulations. We will continue the discussion of pKa convergence 

and error in the context of protein titration simulations.

Timing of the GPU-accelerated simulations.

To demonstrate the feasibility of GPU CpHMD titration for routine use on a single desktop 

equipped with a graphics card, we examined the wall clock time of 2-ns simulations of the 
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benchmark proteins on a Nvidia GeForce RTX 2080 graphics card. The GPU wall clock 

time increases with the system size, from 5 minutes for the 36-residue HP39 to 17 minutes 

for the 185-residue xylanase, and about one hour for the 389-residue BACE1 (Fig. 2a). 

Compared to a single core on the AMD Opteron 6276 processor cluster node, the wall-clock 

speedup on the GPU increases with system size and reaches about 2400 times. Thus, 

CpHMD simulations no longer require a high-performance computing cluster and are 

significantly more cost effective on commodity GPUs.

We compared the speed of the GPU CpHMD titration with the GPU-accelerated GBSW-

based continuous CpHMD21,30 in the CHARMM-OpenMM interface.45 The latter 

implementation was reported to output a trajectory of about 81 ns/day for SNase on a Nvidia 

GeForce GTX 780 Ti graphics card.45 Using our implementation, SNase ran at 250 ns/day 

on an RTX 2080 card. Considering the difference in single-precision floating point 

operations per second (FLOPS) between 780 Ti and 2080 cards (5.3 vs. 10.1) and the Amber 

benchmark data for GB simulations on various graphics cards (http://ambermd.org/

GPUPerformance.php), we estimated the speed of our GPU implementation to be slightly 

faster than the implementation in the CHARMM-OpenMM interface.

Protein titration simulations: overall comparison to the replica-exchange simulations and 
experiment.

We performed single-pH titration simulations of 10 benchmark proteins, comprising 4 small 

proteins and 6 enzymes, on a single GPU card. Each protein was run for 2 ns at single pH 

values between 1 and 7.5/9.5, with a pH spacing of 0.5 units. We compared the calculated 

pKa’s to our previous replica-exchange simulations on CPUs,35 which used the same amount 

of sampling (2 ns per replica, with replicas separately by 0.5 pH units) (Table 2). Assuringly, 

the pKa’s are very similar, with a root-mean-square deviation (RMSD) of 0.54, linear 

regression slope (m) of 0.97 and Pearson’s correlation coefficient (R) of 0.93 (Fig. 3a). The 

comparisons for Asp, Glu, and His pKa’s are given in Table 3. In terms of the pKa shifts 

relative to the model values, a comparison between the GPU single-pH simulations and CPU 

replica-exchange simulations gives m of 0.78 and R of 0.84.

A comparison between the pKa’s calculated form the single-pH simulations and experiment 

yields a RMSD of 0.80, m of 1.0 and R of 0.83 (Fig. 3c). The comparisons for Asp, Glu, and 

His pKa’s are given in Table 3. A comparison of the corresponding pKa shifts to experiment 

yields m of 0.75 and R of 0.68 (Fig. 3d). These statistics are comparable to those for our 

previous replica-exchange simulations, which had a RMSD of 0.87, R of 0.81 for pKa’s, and 

R of 0.61 for pKa shifts.35 This finding is surprising, as previous work based on both 

continuous30 and discrete31,32 constant pH MD showed that the pKa accuracies from single-

pH simulations are much lower than those from temperature or pH replica-exchange 

simulations. We will continue the discussion later.

Analysis of the pKa errors by residue types.

Now we examine the calculated pKa’s of Asp, Glu, and His individually by calculating the 

comparison statistics (Table 3) and by plotting the histograms of the pKa differences 

between the GPU single-pH and CPU replica-exchange simulations or experiment (Fig. 4). 
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Assuringly, the histograms of the differences between the single-pH and replica-exchange 

pKa’s for Asp, Glu, and His are peaked around 0 and span a range of −1 to 1 unit, with Asp 

showing a few data counts between 1–2. Both the comparison statistics and histograms of 

the differences between the single-pH and experimental pKa’s (or pKa errors) indicate 

differences among the three types of residues.

The distribution of the pKa errors for His is broad and essentially flat, in contrast with those 

for Asp and Glu, which are narrower and peaked around 0. The rmsd of the His pKa’s with 

respect to experiment is 1.04, larger than the rmsd of 0.92/0.61 for Asp/Glu pKa’s. 

Significantly, there is essentially no correlation (correlation coefficient of −0.08 in Table 3) 

between the calculated and experimental pKa’s for His, while the R value for Asp/Glu is 

0.78/0.64. The performance of the single-pH simulations for His pKa’s is slightly worse than 

the previous replica-exchange simulations (R of 0.16 and RMS error of 0.81).35 Close 

examination revealed that salt bridges involving His are more persistent in single-pH as 

compared to replica-exchange simulations. In our previous work,35 we found that the 

original GB-Neck2 parameters gave significantly higher pKa’s for His involved in 

electrostatic interactions with acidic groups. Close examination revealed overstabilization of 

salt bridges involving His. Therefore, we decreased the imidazole hydrogen Born radius 

from 1.3 to 1.17 Å, following a similar modification of the Born radii of the guanidinium 

hydrogens of Arg which weakened the salt-bridge strength to a similar value as in explicit 

solvent.36 Our modification of the His Born radius brought nearly all calculated His pKa’s 

down and closer to experiment; however, for partially buried His involved in strong 

attractive electrostatic interactions, the pKa’s remained somewhat overestimated. We 

suggested that the major source of error is the underestimation of desolvation energy, which 

results in an underestimated pKa downshift (see a detailed analysis and discussion in our 

previous work35). This is clearly an area that requires further testing and improvement.

Although Asp and Glu differ in only one methylene group, the histograms of the pKa errors 

show noticeable differences. Most of the pKa errors for Glu are within ±0.5 units and do not 

extend beyond ±1; however, there are several larger pKa errors (above 2 units in magnitude) 

for Asp and the histogram appears to be somewhat skewed to the left (more negative errors). 

The sidechain of Asp is shorter than that of Glu by one methylene group and as a result, the 

carboxylate oxygen can form a hydrogen bond with its own or a neighbor backbone amide 

group. These sidechain-to-backbone hydrogen bonds were observed in our simulations with 

both Amber and CHARMM force fields. The hydrogen bond formation or breakage perturbs 

the protonation state of Asp and contributes to the larger fluctuation in the model peptide 

titration (Table 1) and perhaps also the protein titration simulations (Fig. 4a). In the 

parameterization of the GB-Neck2 model,36 the strengths of the Glu· · · Lys and Glu· · · Arg 

salt bridges were examined; however, the strengths of the Asp· · · Lys and Asp· · · Arg salt 

bridges were not. As the structural differences in Asp and Glu lead to changes in the 

interactions formed by the sidechains, perhaps a slight adjustment is needed for the Asp 

parameters, which are currently the same as for Glu.
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Most pKa’s are converged within 2 ns but some require longer sampling time.

To assess the convergence of protonation-state sampling and pKa’s, we examined the 

running estimates of the unprotonated fractions at different pH and the running estimates of 

the pKa values (Fig. S6). The unprotonated fractions of a majority of the 120 residues with 

experimental values and the corresponding pKa’s appear to stabilize within 2 ns. The 

convergence behavior seems comparable to the previous replica-exchange simulations,35 

consistent with the model peptide titration data discussed earlier. We note that pKa, which is 

calculated by fitting unprotonated fractions from all pH conditions, converges more quickly 

than unprotonated fractions. For example, the pKa of Asp162 in BBL is converged, although 

the unprotonated fraction at one of the pH conditions appears to slightly increase between 1 

ns and 2 ns (Fig. S6). To quantify the convergence of the calculated pKa’s, we plotted the 

histograms of the convergence error estimates, obtained as the pKa differences between the 

2-ns and 1.5-ns pKa simulations for Asp, Glu, and His (Fig. 4g–i). The errors for Glu and 

His pKa’s fall in the range of ±0.1. Except Asp19/Asp21 in SNase, Asp10/Asp70 in RNase 

H, and Asp26 in thioredoxin, the errors for Asp pKa’s fall in the range of ±0.2. The slower 

convergence of the Asp pKa’s compared to Glu pKa’s is consistent with the larger deviations 

between the calculated and experimental pKa’s of Asp. Curiously, the unprotonated fractions 

of Asp19/Asp21 in SNase and Asp10/Asp70 in RNase H are not converged and their 

titration data do not follow a single sigmoidal trend. We will come back to the discussion of 

these residues.

Higher mixed fractions are correlated with insufficient sampling.

One potential drawback of continuous CpHMD is the presence of mixed states, defined here 

as λ values between 0.2 and 0.8. Although mixed states are necessary and their presence can 

accelerate sampling, they are unphysical and a high occupancy of them may lower the 

accuracy of a CpHMD simulation. We were puzzled that the previous replica-exchanges 

simulations35 showed somewhat higher mixed fractions than the continuous CpHMD 

simulations in CHARMM.30 In contrast, the mixed fractions in the current single-pH 

simulations are very low, below 10% at all pH for a majority of residues (Fig. S6), consistent 

with the CpHMD simulations in CHARMM with a lower replica exchange frequency30 (see 

later discussion). A few residues which showed a mixed fraction above 30% are: Asp26 of 

thioredoxin, Glu79/Asp84/His150 of xylanase, His114 of RNase H, and His12/His48 of 

RNaseA, and none of them displayed converged protonation-state sampling. The worst case 

is His150 of xylanase, which had a mixed fraction of 35 to 55% at pH below 6. His150 is 

deeply buried, with an experimental pKa below 2.3, compared to the estimate of 3.9 from 

our 2-ns simulations. 2 ns is likely too short to complete the conformational rearrangement 

accompanying the protonation of His150. While the present data show that the mixed 

fractions are correlated with insufficient sampling, it remains to be seen if they decrease in 

much longer trajectories.

Statistical error estimates for the calculated pKa’s.

Unlike replica-exchange titration, single-pH simulations are independent of each other and 

therefore the pKa error obtained in the least-square fit of one set of titration data may be a 

good representation of the statistical error. To test this hypothesis, we performed an 

Harris and Shen Page 8

J Chem Inf Model. Author manuscript; available in PMC 2019 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



additional three sets of single-pH simulations at 9 evenly spaced pH conditions between 5 

and 9 for RNase A to explore the statistical errors of the His pKa’s. Table 4 lists the 

calculated pKa’s and least-square fitting errors based on the original set of titration data and 

the pKa’s and errors from the bootstrap procedure based on a total of 39 virtual sets of 

titration data. The calculated pKa’s deviate by 0.1 units at most and the fitting errors using 

one dataset are similar and highly correlated with the bootstrap errors. Although this test is 

not a rigorous proof, it suggests that the fitting error derived from a single set of titration 

simulations can be an approximate representation of the statistical error. The ease of 

obtaining error estimates is an advantage for single-pH over replica-exchange simulations, 

for which deriving error estimates is less straightforward. We list the pKa fitting errors for all 

titratable residues in Table 2. The corresponding histograms are given in Figure 4j–l. Except 

for a handful of residues with fitting errors around 0.2–0.3, the errors are smaller than 0.1, 

demonstrating that the statistical noise in the calculated pKa’s from the single-pH 

simulations is generally low.

Single-pH simulations could not converge microscopic pKa’s but captured macroscopic 
pKa’s of linked residues in SNase and RNase H.

A close examination of the residues that do not display a single sigmoidal trend, Asp19/

Asp21 of SNase and Asp10/Asp70 of RNase H, revealed linked (coupled) titration, i.e., 

protonation of one residue is linked to the protonation of the other. As a result, the titration 

plot of one residue shows evidence of pH-dependent titration of the other residue and the 

transition from the fully protonated to the fully deprotonated persists over a very wide pH 

range (>4 pH units for Asp19/Asp21 in RNase and Asp10/Asp70 in RNase H, see Fig. 5 and 

Fig. 6). Interestingly, although the residue-specific unprotonated state fractions of of these 

linked residues are not converged (Fig. S6), the convergence of the total unprotonated 

fractions of the two linked residues is much better (Fig. S4 and S5).

For linked titration, the residue-specific microscopic pKa’s cannot be experimentally 

determined. Rather, the signals, e.g., NMR chemical shifts, are fit to a coupled two-proton 

model, which results in two macroscopic pKa’s representing the stepwise titration events.46 

To obtain macroscopic pKa’s from simulations, the average number of protons bound to the 

two residues (Nprot) at different pH values can be fit to an analogous statistical mechanics 

model,24,47,48

Nprot = 10
pK2 − pH

+ 2 × 10
pK1 + pK2 − 2pH

1 + 10
pK2 − pH

+ 10
pK1 + pK2 − 2pH , (1)

where the denominator is the partition function, and the fitting parameters, pK1 and pK2, are 

the macroscopic pKa’s. The resulting macroscopic pKa’s for the linked residues in SNase are 

1.5 and 6.1 (Fig. 5i) and for those in RNase H are 1.7 and 7.1 (Fig. 6i). Note, linked titration 

events can also be studied by a decoupled-site model representing the sum of two HH 

equations.49,50

To identify which residue should be assigned the higher pKa, we can observe which residue 

becomes protonated first as pH decreases. For SNase, since the occupancy of Asp19−/
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Asp21H is higher than Asp19H/Asp21− at pH above 4.5, i.e., Asp21 protonates first (Fig. 

5m), Asp21 has the higher pKa. Thus, we assigned Asp19 and Asp21 the pKa’s of 1.5 and 

6.1, in excellent agreement with the respective experimental assignment of 2.2 and 6.5. 

Similarly for RNase H, since the occupancy of Asp10H/Asp70− is higher than Asp10−/

Asp70H at pH above 6 (Fig. 5j), we assigned Asp10 and Asp70 the pKa’s of 7.1 and 1.7, in 

good agreement with the respective experimental assignment of 6.1 and 2.6.

Comparison of single-pH and replica-exchange simulations with an exchange attempt 
frequency of 2 ps−1.

Interestingly, the residue-specific titration data of Asp19/Asp21 in SNase (Fig. 5b and f) and 

Asp10/Asp70 in RNase H (Fig. 5b and e) from our previous replica-exchange simulations 

did not offer noticeable evidence of coupling. A comparison to the single-pH titration data 

reveals that the occupancies of the singly protonated states are much lower while those of 

the mixed states are much higher, up to 30% for SNase and up to 45% for RNase H in the 

pH range where two singly protonated states seem to compete in the single-pH simulations. 

The decreased amount of coupling seen in the replica-exchange simulations is consistent 

with the underestimation of the higher pKa and the splitting between the low and high pKa 

observed in experiment. Since the fraction of mixed states was much higher in the replica-

exchange compared to single-pH simulations, we hypothesized that the underestimation of 

pKa splitting could be due to insufficient sampling time for the conformation to relax to the 

specific pH conditions in the replica-exchange simulations. In these simulations,35 the 

exchange attempt frequency (EAF) was every 250 MD steps (or 2 ps−1), rather than every 

500 (1 ps−1) or 1000 MD steps (0.5 ps−1), as used in our previous CHARMM-based 

CpHMD.30 Our decision to increase EAF was inspired by the reported observation that high 

EAF improved pKa estimates in the discrete-CpHMD simulations in Amber.32 We will come 

back to this discussion in Concluding Remarks.

A high frequency of exchange attempts may not allow sufficient conformational relaxation.

To test if the lack of conformational relaxation is responsible for the decreased amount of 

coupling in our previous replica-exchange simulations, we performed additional replica-

exchange simulations with EAFs of 1 ps−1 and 0.5 ps−1 for SNase and EAF of1 ps−1 for 

RNase H. As seen from Fig. 5 and 6, at the lower EAFs, the occupancies of the singly 

protonated states increase to similar levels as in the single-pH simulations, while the mixed 

fractions decrease to below 10% as in the single-pH simulations. Importantly, the higher 

macroscopic pKa’s increase by about 2 units, to similar values as from the single-pH 

simulations of SNase and RNase H. The increased amount of coupling is also reflected in 

the noisier residue-specific titration data, which no longer conform to the one-proton HH 

equation. Additionally, the solvent-accessible surface areas (SASA) and number of hydrogen 

bonds of the two residues predicted by simulations with the lower EAFs of 1 and 0.5 ps−1 

agree more closely with the single-pH results than the simulations with the high EAF of 2 ps
−1 (Fig. S1 and Fig. S2), which offers a direct piece of evidence for the insufficient 

conformational relaxation for the coupled residue pairs with the EAF of 2 ps−1. Interestingly, 

for both proteins, the nucleophile (residue with the lower pKa) has a larger SASA and 

number of hydrogen bonds compared to the proton donor (higher pKa), in agreement with 
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the findings from CpHMD simulations using the CHARMM force field and the GBSW 

model.51

Having demonstrated that a high EAF may lead to insufficient conformational relaxation for 

linked residues, we wondered if the pKa’s of other independent residues are affected as well. 

A comparison of the pKa’s from the SNase simulations with different EAFs and single pH 

values (no exchange) showed that, although the differences are much smaller than for the 

couple residues, the pKa’s from the two slower exchange (EAF of 1 and 0.5 ps−1) 

simulations agree with each other and with the single-pH simulations much better as 

compared to the fast exchange (EAF of 2 ps−1) simulations (Table S1). A similar trend is 

observed for the RNase H simulations (Table S1). These data are consistent with the findings 

in regards to the linked titration and support the notion that an EAF of 2 ps−1 may not allow 

sufficient conformational relaxation. In other words, the relaxation time for adapting to 

changes of protonation states is likely above 0.5 ps for the tested proteins.

Hydrogen-bonded dyad in BACE1 requires enhanced sampling or significantly longer 
simulations.

To further test the ability of single-pH simulations to quantitatively reproduce the 

experimental apparent pKa’s of coupled sites in enzymes, we performed titration simulations 

of BACE1, which is more than three times as large as HEWL, a frequently used benchmark 

protein for pKa calculations,16,32 and more than twice as large as xylanase, the largest 

protein among the 10 benchmark proteins studied here. Most importantly, the aspartyl dyad 

of BACE1 (Asp32 and Asp228) is subject to much stronger hydrogen bonding than the 

linked residues in SNase and RNase H.51 Our previous replica-exchange simulations with an 

EAF of 2 ps−1 35 and the hybrid-solvent continuous CpHMD in CHARMM12 correctly 

predicted the pKa order of the dyad but underestimated the two macroscopic pKa’s and 

magnitude of their splitting. The current single-pH simulations also reproduced the 

experimental pKa order; however, compared to the experimental data, the macroscopic pKa 

assigned to Asp32 is too high by 1.4 units, and Asp228, which is the dyad residue with the 

lower pKa did not protonate even at pH 1 (the lowest simulation pH). The latter may be 

attributed to a persistent hydrogen bond between the carboxylate oxygens of the dyad, 

whereby Asp228 was exclusively acting as a hydrogen bond acceptor (data not shown). The 

overestimation of the higher pKa and underestimation of the lower pKa, i.e, overestimation 

of the pKa splitting, is consistent with the single pH simulations of the linked titration in 

SNase and RNase H. To attempt to break the hydrogen bond, we prolonged the single-pH 

simulations to 10 ns; however, while the pKa of Asp32 remained largely unchanged, Asp228 

remained deprotonated in the entire pH range (Figure S6). This data suggests that for buried, 

linked residues with strong hydrogen bonding, pH replica-exchange or significantly longer 

simulation length is required. Detailed exploration of linked titration involving strong 

hydrogen bonds is a topic of our future work.

Comparison of the 2-ns and 10-ns single-pH simulations of BACE1.

Although no experimental titration data are available for BACE1 except for the dyad pKa’s, 

comparison of the 2-ns and 10-ns single-pH simulations may allow us to further assess the 

convergence behavior of pKa calculations for larger proteins. Out of a total of 50 titratable 
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residues, the majority showed negligible pKa changes when extending the simulations from 

2 to 10 ns; however, 10 residues showed pKa changes of 0.5–1.5 units (Table S1). The 

second largest change is for Asp83; its pKa increased from 2.2 based on the 2-ns simulations 

to 3.4 based on the 10-ns simulations. The latter is closer to the pKa of 5.3 from the replica-

exchange simulations (Table S1). Trajectory analysis revealed that in the first 2 ns, Asp83 

sometimes formed a salt bridge with Arg96 at pH above 3, and as the simulation continued, 

the salt bridge became less frequently sampled. This trend continued throughout the 10-ns 

simulations, which explains why the calculated pKa shows an increasing trend and it is not 

converged at 10 ns (Figure S6). This data suggests that for Asp83, a single-pH simulation 

requires longer than 10 ns to converge the pKa, and replica-exchange simulations are 

effective in breaking the salt bridge and accelerating convergence.

The largest change is for His360, which has a pKa of 4.7 based on the 2-ns simulations and 

the pKa increased by 1.5 units to 6.2 based on the 10-ns simulations. Trajectory analysis 

showed that although starting out as largely buried, His360 became exposed to solvent in the 

prolonged simulations, which resulted in the pKa increase. Curiously, the replica-exchange 

simulations gave a pKa of 4.8, similar to the 2-ns single pH simulations. We hypothesize that 

His360 did not have sufficient time to become solvent exposed at low pH conditions due to 

the frequent exchange attempts, and that is why the calculated pKa is similar to that from the 

2-ns simulations. Another question is whether His360 becoming exposed to solvent is 

realistic. Our extensive replica-exchange simulations based on a hybrid-solvent CpHMD 

method in CHARMM indicated that this is not the case.10,12 Although the GB-Neck2 model 

has been demonstrated to enable accurate folding of a set of small proteins,36 explicit 

solvent representation remains more accurate and yields pKa’s in better agreement with 

experiment.18,22 Thus, prolonged CpHMD simulations may worsen the pKa calculations as 

the conformational states deviate further from the crystal structure, as demonstrated by a 

previous discrete CpHMD simulation.18 Future work may shed more light on these issues.

CONCLUDING REMARKS

We presented and validated a GPU implementation of the generalized Born continuous 

CpHMD in the Amber pmemd.cuda program. A 2-ns single-pH simulation of a 400-residue 

protein runs in about 1 hour on a single NVIDIA Geforce 2080 graphics card, which 

represents a three-orders-of-magnitude speedup compared to the wall-clock time on a single 

CPU core of a high-performance computing cluster node (AMD Opteron 6276). Most 

calculated pKa’s of Asp, Glu, and His sidechains of the 10 proteins from 2-ns single-pH 

simulations were converged and in close agreement (RMSD of 0.54) with our previous 

replica-exchange simulations on CPUs.35 Compared to the experimental pKa’s, the single-

pH simulations gave a RMSD of 0.80 units, which is slightly lower than the RMSD of 0.87 

from our previous replica-exchange simulations. Surprisingly, the errors in the protein pKa’s 

from the single-pH simulations were generally small (below 0.2 units). This finding is in 

stark contrast to the reported data from the continuous CpHMD in CHARMM21,30,52 and 

the discrete CpHMD in Amber,31,32 which found that errors from single-pH simulations 

were much larger than those from replica-exchange simulations. Perhaps the most 

unexpected finding is that the single-pH simulations were able to correctly predict the pKa 

order of the linked residues in SNase and RNase H and reproduce the experimental 
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macroscopic pKa’s to about 1 pH units, although the pKa splitting was overestimated. By 

contrast, our previous replica-exchange simulations, which used an exchange attempt 

frequency (EAF) of 2 ps−1 35 underestimated the pKa splitting and gave a significant amount 

of mixed states which were largely absent in the single-pH simulations. Additional replica-

exchange simulations with less frequent exchange attempts gave similar pKa’s and 

conformational behavior as the single-pH simulations, suggesting that an EAF of 2 ps−1 may 

not allow sufficient conformational relaxation at specific pH conditions. A more extensive 

study will be carried out in the future to further investigate the topic.

We suggest that the above finding does not contradict a previous study32 using the GB-

OBC43 based discrete CpHMD, which found that an EAF of 50 ps−1 significantly improved 

the pKa of a salt-bridged residue (Asp66 in HEWL), which did not titrate with an EAF of 

0.5 ps−1. While our single-pH simulations did not encounter this issue (Table 2), likely 

because salt bridges are significantly weakened in the newer GB-Neck2 model,36 we suggest 

that conformational relaxation time for buried residues, such as the aforementioned linked 

pairs, is much longer than solvent-exposed ones. As a result, too frequent exchanges may not 

allow internal residues to adjust themselves and the local environment to a change in pH. 

This may explain why the pKa’s of buried residues are more sensitive to the EAF, while 

pKa’s of solvent-exposed residues are not. For example, a deeply buried Asp26 in 

thioredoxin has a calculated pKa of 6.2 from replica-exchange and 7.2 from single-pH 

simulations. The latter is in better agreement with the experimental pKa of 9.9.

It is indisputable that enhanced sampling in either temperature30,31 or pH space22,32 

accelerates protonation-state sampling and thereby the convergence of calculated pKa’s. The 

analysis of the pKa results from the 2-ns, 10-ns single-pH and replica-exchange simulations 

of BACE1 confirmed this point and further explored the topic of replica-exchange 

frequency. Although the pKa order of the catalytic dyad, Asp32/Asp228, was correctly 

predicted, Asp228 did not protonate at pH 1 (the lowest simulation pH), due to a persistent 

hydrogen bond, which requires enhanced sampling or significantly longer sampling time to 

break. As a result, the extent of coupling and pKa splitting were overestimated. By contrast, 

the extent of coupling and pKa splitting were underestimated in the replica-exchange 

simulations with an EAF of 2 ps−1. Thus, our future work will explore the usage of either 

much longer single-pH simulations or an optimum EAF to make the most accurate and 

efficient predictions of pKa’s for tough cases, i.e., buried, salt-bridged, and linked titratable 

residues.

A most recent study53 demonstrated the capability of replica-exchange GBNeck2-CpHMD 

for accurate prediction of downshifted Cys and Lys pKa’s. Work is underway to benchmark 

the performance using single-pH simulations. Another area of interest is the improvement of 

His pKa’s, which have the largest errors in the current dataset. Although there remains much 

room for improvement, our present data are encouraging and demonstrate that single-pH 

simulations may be routinely performed on a desktop computer equipped with a single GPU 

card for a variety of applications, from assisting MD stimulations with protonation state 

assignment to offering pH-dependent corrections of binding free energies10 and nucleophilic 

hot spots for covalent drug design.53
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Figure 1: Simulated titration data for the model alanine pentapeptides in solution.
Unprotonated fraction as a function of pH for Asp (a), Glu (b), and His (c). Green curves are 

the best fits to the HH equation. The calculated pKa’s based on all five sets of titration data 

and the fitting errors are shown.
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Figure 2: Timing of the GPU-based titration simulations.
(a) The time (in hours) required to run a 2-ns single-pH simulation on a single NVIDIA 

Geforce 2080 graphics card for the 11 proteins discussed in the main text. (b) GPU speedup 

relative to one core on the AMD Opteron 6276 processor node with 64 cores. The 

simulations ran on 2–8 cores and the time was extrapolated to one core.
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Figure 3: Comparison of the pKa’s and pKa shifts from the GPU single-pH simulations to the 
CPU replica-exchange simulations or experiment.
The GPU pKa estimates compared to (a) CPU and (b) experiment and the corresponding 

plots ((c) and (d)) for the pKa shifts. The model pKa’s from Thurlkill et al.41 were used for 

calculating the shifts. Data for Asp, Glu, and His resides are colored magenta, dark red, and 

blue, respectively. The diagonal (y = x) and linear regression lines are colored black and 

green, respectively. RMSD, regression slope (m) and Pearson’s correlation coefficient (R) 

are shown. The regression was performed with a zero intercept (R only changed in the 

second decimal point). In c and d, only pKa’s with NMR determined pKa’s are included. In 

d, the data for Asp26 in thioredoxin are hidden for clarity (the experimental pKa shift > 4).
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Figure 4: 
(a-c) Comparisons of the Asp, Glu, and His pKa’s from the GPU single-pH and CPU 

replica-exchange simulations(ΔpKa(CPU) = GPU pKa−CPU pKa). (d-f) Comparisons of the 

single-pH results and experiment (ΔpKa(Expt) = GPU pKa−Expt pKa). (g-i) Histograms of 

the convergence error estimates (δpKa
run) obtained from the difference between the 2-ns and 

1.5-ns pKa’s. Asp26 of Thioredoxin (δpKa
run =−0.34) falls off the plot. (j-l) Histograms of 

the statistical error estimates δpKa
fit  from the pKa fitting. The linked residues, Asp19/Asp21 

in SNase and Asp10/Asp79 in RNase H, are excluded in the error estimates.
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Figure 5: Titration data of the linked residues D19 and D21 in SNase from single-pH and replica-
exchange simulations.
From top to bottom rows, single-pH and replica-exchange simulations with different 

exchange attempt frequencies are shown. (a-h) Unprotonated fraction as a function of pH 

and best fit to the residue-specific HH equation for D19 (a-d) and D21 (e-h). Each data point 

is a pie chart showing the probability of the four protonation states: D19H/D21H (blue), 

D19−/D21− (red), D19H/D21− (magenta), and D19(−)/D21H (orange). Cyan indicates that 

one of the residues is in a mixed state. (i-l) Total number of protons as a function of pH and 

best fit to the linked-titration model. (m-p) Probabilities of the singly-protonated (magenta 

for D19H/D21− and orange for D19−/D21H) and mixed states (light cyan for D19 titration 

and dark cyan for D21 titration) as functions of pH. The macroscopic experimental pKa’s are 

2.2 and 6.5 for D19 and D21, respectively.
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Figure 6: Simulated titration of the linked residues D10 and D70 in RNase H from single-pH and 
replica-exchange simulations.
From top to bottom rows, single-pH and replica-exchange simulations with different 

exchange attempt frequencies are shown. (a-f) Unprotonated fraction as a function of pH 

and best fit to the residue-specific HH equation for D10 (a-c) and D70 (d-f). Each data point 

is a pie chart showing the probability of the four protonation states: D10H/D70H (blue), 

D10−/D70− (red), D10H/D70− (magenta), and D10(−)/D70H (orange). Cyan indicates that 

one of the residues is in a mixed state. (g-i) Total number of protons as a function of pH and 

best fit to the linked-titration model. (j-l) Probabilities of the singly-protonated (magenta for 

D10H/D70− and orange for D10−/D70H) and mixed states (light cyan for D10 titration and 

dark cyan for D70 titration) as functions of pH. The experimental macroscopic pKa’s are 6.1 

and 2.6 for D10 and D70, respectively.
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Table 1:

Calculated pKa’s of the model alanine pentapeptides from the GPU single-pH simulations compared to the 

CPU replica-exchange results and experiment

GPU CPU
c

Expt
d

Fit
a

Bootstrap
b

Asp 3.7±0.03 3.7±0.10 3.8±0.05 3.67±0.04

Glu 4.2±0.02 4.2±0.06 4.1±0.05 4.25±0.05

His 6.3±0.03 6.3±0.10 6.4±0.03 6.54±0.04

HID
e 7.0±0.03 7.0±0.08 7.0±0.05 n/d

HIE
f 6.4±0.03 6.4±0.11 6.5±0.02 n/d

a
pKa’s and errors from the fitting of all data points (see main text).

b
pKa’s and errors from a bootstrap procedure (see main text).

c
pKa’s from our previous replica-exchange simulations with errors calculated as the standard deviations of the pKa’s from five sets of replica-

exchange simulations.35

d
NMR-determined pKa’s by Thurlkill et al.41 These pKa’s were used as the reference (model) values in our simulations.

e
The pKa of HID is associated with HIP ⇋ HID.

f
The pKa of HIE is associated with HIP ⇋ HIE.
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Table 2:

Protein pKa’s calculated from the GPU single-pH simulations compared to the CPU replica-exchange 

simulations and experiment
a

Residue Expt REX Single Residue Expt REX Single Residue Expt REX Single Residue Expt REX Single

BBL HP36 OMTKY HEWL

Asp129 3.9 2.8 3.3(0.09) Asp44 3.1 2.1 2.4(0.06) Asp8 2.7 2.5 2.9(0.08) Glu7 2.6 3.5 3.5(0.04)

Glu141 4.5 4.1 3.9(0.04) Glu45 4.0 3.7 3.8(0.02) Glu11 4.1 3.9 4.1(0.02) His15 5.5 6.5 6.5(0.03)

His142 6.5 6.9 7.2(0.01) Asp46 3.5 3.6 3.2(0.03) Glu20 3.2 3.7 3.8(0.05) Asp18 2.8 1.1 1.4(0.02)

Asp145 3.7 2.6 2.5(0.06) Glu72 4.4 4.1 4.1(0.05) Asp28 2.3 3.6 4.3(0.05) Glu35 6.1 4.6 5.7(0.06)

Glu161 3.7 3.3 3.6(0.07) Glu44 4.8 4.6 4.5(0.02) Asp48 1.4 1.8 1.8(0.02)

Asp162 3.2 3.2 2.6(0.06) RNase A His53 7.5 6.6 6.2(0.07) Asp52 3.6 3.3 3.8(0.03)

Glu164 4.5 4.0 4.1(0.10) Glu2 2.8 3.2 3.2(0.09) Asp66 1.2 2.1 2.4(0.15)

His166 5.4 6.0 5.8(0.04) Glu9 4.0 3.4 3.8(0.03) RNase H Asp87 2.2 1.8 2.0(0.17)

His12 6.2 6.4 7.5(0.04) Glu6 4.5 4.3 4.9(0.29) Asp101 4.5 4.8 4.3(0.06)

NTL9 Asp14 2.0 2.4 3.8(0.08) Asp10* 6.1 4.8 7.1(0.18) Asp119 3.5 2.4 2.7(0.10)

Asp8 3.0 2.1 2.6(0.04) Asp38 3.5 2.8 2.6(0.08) Glu32 3.6 3.2 3.3(0.09)

Glu17 3.6 3.4 3.5(0.04) His48 6.0 7.2 7.7(0.06) Glu48 4.4 2.5 3.8(0.12) SNase

Asp23 3.1 2.9 2.9(0.08) Glu49 4.7 2.6 2.6(0.05) Glu57 3.2 4.1 4.7(0.06) His8 6.5 6.5 6.4(0.06)

Glu38 4.0 3.6 3.6(0.09) Asp53 3.9 4.3 3.8(0.02) Glu61 3.9 2.8 2.4(0.05) Glu10 2.8 3.7 4.0(0.02)

Glu48 4.2 3.8 4.0(0.06) Asp83 3.5 2.9 2.4(0.07) His62 7.0 6.9 6.6(0.07) Asp19* 2.2 1.8 1.5(0.17)

Glu54 4.2 3.8 3.9(0.02) Glu86 4.1 3.5 3.4(0.03) Glu64 4.4 3.1 3.4(0.04) Asp21* 6.5 4.1 6.1(0.17)

His105 6.7 6.3 6.5(0.07) Asp70* 2.6 2.6 1.7(0.17) Asp40 3.9 2.8 3.2(0.09)

Thioredoxin Glu111 3.5 3.5 3.6(0.03) His83 5.5 6.2 6.1(0.05) Glu43 4.3 3.7 3.7(0.10)

Glu6 4.8 3.9 4.8(0.11) His119 6.1 6.1 5.8(0.03) Asp94 3.2 3.2 3.0(0.07) Glu52 3.9 3.9 3.8(0.04)

Glu13 4.4 4.4 4.5(0.03) Asp121 3.1 3.5 2.4(0.02) Asp102 <2.0 3.4 3.5(0.15) Glu57 3.5 3.4 3.5(0.02)

Asp16 4.0 4.0 4.1(0.06) Asp108 3.2 3.1 3.0(0.04) Glu67 3.8 4.5 4.2(0.01)

Asp20 3.8 2.9 3.0(0.01) Xylanase His114 <5.0 7.0 6.8(0.05) Glu73 3.3 3.9 3.8(0.04)

Asp26 9.9 6.2 7.2(0.27) Asp5 3.0 3.3 4.2(0.06) Glu119 4.1 3.9 3.8(0.04) Glu75 3.3 2.6 3.4(0.22)

His43 n/d 6.1 5.9(0.03) Asp12 2.5 2.5 3.1(0.06) His124 7.1 6.2 5.5(0.06) Asp77 <2.2 1.9 2.0(0.07)

Glu47 4.1 4.3 4.4(0.04) Glu79 4.6 5.1 5.6(0.10) His127 7.9 6.6 6.4(0.02) Asp83 <2.2 2.1 2.6(0.31)

Glu56 3.3 4.5 3.9(0.21) Asp84 <2.0 3.4 3.9(0.08) Glu129 3.6 4.6 3.3(0.05) Asp95 2.2 4.3 4.3(0.11)

Asp58 5.3 3.8 4.6(0.25) Asp102 <2.0 3.3 4.3(0.08) Glu131 4.3 4.3 4.5(0.05) Glu101 3.8 3.5 3.9(0.08)

Asp60 2.8 3.6 2.5(0.11) Asp107 2.7 3.1 3.6(0.14) Asp134 4.1 4.3 4.3(0.12) His121 5.2 6.8 6.7(0.05)

Asp61 4.2 4.6 4.1(0.05) Asp120 3.2 4.0 3.6(0.06) Glu135 4.3 4.2 4.2(0.04) Glu122 3.9 3.0 3.3(0.11)

Asp64 3.2 3.1 2.8(0.03) Asp122 3.6 3.4 3.4(0.07) Glu147 4.2 3.9 3.7(0.09) Glu129 3.8 4.5 4.2(0.05)

Glu68 4.9 4.3 4.2(0.05) His150 <2.3 4.8 3.9(0.09) Asp148 <2.0 2.4 2.8(0.05) Glu135 3.8 4.2 3.9(0.05)

Glu70 4.6 5.0 5.1(0.02) His157 6.5 7.3 7.5(0.03) Glu154 4.4 3.8 3.6(0.05)

Glu88 3.7 3.8 3.3(0.04) Glu173 6.7 7.0 6.9(0.13) all mud 0.64 0.60

Glu95 4.1 3.5 3.9(0.02) BACE1 rmsd 0.87 0.80

Glu98 3.9 3.9 3.6(0.07) Asp32* 5.2 4.2 6.6(0.25)

Glu103 4.4 4.7 4.6(0.01) Asp228* 3.5 2.4 <1
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a
Experimental pKa’s were taken from our previous work.35 The REX data were taken from our previous replica-exchange simulations with an 

exchange attempt frequency (EAF) of 2 ps−1.35 The errors in the pKa’s estimated from the least-square fits are given in parentheses. The statistics, 

mean unsigned deviation (mud) and root-mean-square deviation (rmsd) from the experimental values are calculated for residues with NMR 
determined pKa’s. As such the two BACE1 residues are excluded. The linked residues are indicated by * and their pKa’s were obtained from the 

best fits to the coupled titration model (Equation 1).

J Chem Inf Model. Author manuscript; available in PMC 2019 December 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harris and Shen Page 26

Table 3:

Comparisons of Asp, Glu, and His pKa’s from the GPU single-pH simulations and CPU replica-exchange 

simulations and experiment
a

Res N maxd mud rmsd R

Single vs. REX

Asp 48 2.0 0.49 0.66 0.84

Glu 54 1.3 0.28 0.42 0.84

His 18 1.1 0.35 0.44 0.90

Single (REX) vs. experiment

Asp 42 2.7 (2.1) 0.69 (0.75) 0.92 (1.06) 0.78 (0.71)

Glu 54 2.1 (1.2) 0.45 (0.54) 0.61 (0.70) 0.64 (0.53)

His 18 1.6 (1.5) 0.90 (0.67) 1.04 (0.81)
−0.08 (0.16)

b

a
The maximum unsigned deviation (maxd), mean unsigned deviation (mud), root-mean-square deviation (rmsd), and Pearson’s correlation 

coefficient (R) are listed. The replica-exchange (REX) statistics for His is taken from our previous work,35 and those for Asp and Glu are 
recalculated. Only residues with NMR determined pKa’s are included.

b
See main text for discussion.
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Table 4:

Error analysis for the pKa’s of histidines in RNase A.

Residue Fit
a

Bootstrap
b

H12 7.5±0.11 7.5±0.08

H48 7.6±0.14 7.7±0.13

H105 6.7±0.04 6.8±0.06

H119 5.6±0.07 5.7±0.06

a
pKa’s and fitting errors based on the first set of simulations.

b
pKa’s and errors estimated from the bootstrap method using three sets of simulations.
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