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Abstract

Understanding the genetic and molecular features of phenotypic heterogeneity across individuals 

is central to biology. As new technologies enable fine-grained spatially resolved molecular 

profiling, we need new computational approaches to integrate data from the same organ across 

different individuals into a consistent reference, and to construct maps of molecular and cellular 

organization at histological and anatomical scales. Here, we review previous efforts and discuss 

challenges involved in establishing such a Common Coordinate Framework, the underlying map of 

tissues and organs. We focus on strategies to handle anatomical variation across individuals and 

highlight the need for new technologies and analytical methods spanning multiple hierarchical 

scales of spatial resolution.
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Satija, Regev, Marioni & colleagues recommend approaches to create a reference map of the 

human body down to the single-cell level – a task made challenging by the diverse human form.

Introduction

Recent technological advances in single-cell and spatial genomics have opened the door to 

profiling tissues in greater depth – both with molecular profiling at the level of single cells, 

and in more spatial detail. The convergence of these technologies now presents a remarkable 

opportunity, taken up by a worldwide initiative (Regev et al., 2017): to build an atlas of cells, 

tissues, and organs throughout the human body that captures their molecular characteristics 

and their spatial location and organization.

In order to create atlases that integrate high-resolution molecular and spatial information 

across individuals, however, it will be necessary to have a Common Coordinate Framework 

(CCF) to reference and address diverse types of biological data (Box 1). This coordinate 

system would serve as a reference map that can assign a reproducible address to every 

location in the human body. While an individual coordinate system would be relatively 

straightforward to construct for one person, a human CCF needs to represent data collected 

across individuals of different ages, genders, genetic backgrounds, and body sizes. In this 

way, a CCF will enable the robust comparison of data collected across individuals, while 

accounting for variability driven by spatial differences. Such a mapping will open the way to 

high resolution studies across large numbers of individuals, for example in the context of 

genetic association studies, or for identifying aberrations in disease relative to a healthy 

reference.

Constructing a common reference framework poses a significant methodological challenge, 

particularly given the inherent anatomical diversity across individuals. Additionally, while 

certain elements of human anatomy can be uniquely defined, not all body locations are 

stereotypical, nor can they be reproducibly and invariantly defined across all humans in a 

consistent manner. Because the extent of anatomical reproducibility varies across scales, 

identifying mappable features (‘landmarks’) at multiple levels of resolution represents a key 

challenge for building a CCF (Box 1). While significant, these challenges also highlight 

opportunities for a human CCF, in terms of spatially registering individual datasets, 

anchoring precise comparisons across individuals, and enabling spatial meta-analyses of 

molecular data. Finally, the required resolution of the CCF itself will depend upon the 

biological questions of interest, with some studies requiring very fine-scale mapping, while 

coarser level information will suffice for others.

Here, we consider previous strategies to construct anatomical atlases at the level of 

individual tissues and organs in both humans and in model systems, as well as approaches 

for mapping in other fields, with potential relevance in biology. We discuss coordinate 

systems that can be used to define a human CCF, and review data collection procedures and 

computational methods motivated by construction and alignment of spatial datasets. Finally, 

we highlight outstanding challenges for working with human tissues, and the need for data 

types and analytical tools that can bridge multiple scales of hierarchical resolution.
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Organizational differences across tissues and scales pose distinct 

challenges for CCF construction

The strategy for constructing an anatomical template and downstream coordinate system 

depends on the nature of the system. To illustrate how the sample type influences the 

selection of the strategy, consider two extremes of diversity of tissues in the human body. On 

one extreme, the anatomical organization of the tissue is highly similar across all samples, 

during, for example, the very first stages of embryogenesis. On the other extreme, cells are 

organized in a seemingly random and perhaps also dynamic fashion, for example in a tumor. 

Most human tissues fall on a spectrum between these two extremes (Figure 1).

Each extreme would be best served by different methods to map specimens to a CCF (Figure 

1). In the highly organized extreme, the optimal strategy is to know the physical location of a 

sample, cell, etc. a priori by registering it to a pre-existing coordinate system. The 

alternative, better suited to samples lacking a clear organizational structure, is to learn the 

sample’s location based on cellular, histological, and/or anatomical features collected 

directly as data – that is, the map is a learned function. Because samples will fall on a 

spectrum between the completely reproducible to completely random organization, a 

successful CCF should integrate these two approaches – a combination of direct registration 

and data-driven learning of location. In this way, we can relate to prior knowledge and 

biological concepts, while also discovering novel features in the human CCF.

Similar contrasting options have appeared in prior efforts to build reference maps of 

biological knowledge in other contexts. For example, when assembling a transcriptome, one 

possibility is an ab initio approach (Trapnell, Pachter and Salzberg, 2009; Yassour et al., 
2009; Guttman et al., 2010), where RNA transcripts are aligned to a reference template 

(here, the genome) – that is, the transcript’s location is known. In contrast, de novo 
approaches (Grabherr et al., 2011; Xie et al., 2014) permit creating a transcriptome by 

assembly without the aid of any reference. A further example is the two approaches applied 

to sequencing the human genome for the Human Genome Project: the first, physical 

mapping, used restriction enzymes or optical mapping techniques to align large chunks of 

genome sequence based on small areas of overlap (that is, it is already known where the 

piece belongs) (Jing et al., 1998). By contrast, shotgun sequencing sheared the DNA into 

small, random pieces – and by sequencing many of these pieces, it was possible to 

computationally reconstruct the genome, in a process analogous to learning a cell’s or 

sample’s location without registering it first.

The spectrum of sample reproducibility exists not only across distinct specimens, but even 

within the same organ when considering multiple scales. In the gastrointestinal tract, for 

example, the major anatomical structures (stomach, esophagus, small and large intestine, 

etc.) are invariantly present across individuals and easily identified, though their exact 

positions or sizes may vary. Focusing within the small intestine, the duodenum, jejunum, and 

ileum are conserved substructures, but the boundaries separating them are imprecise (San 

Roman and Shivdasani, 2011), and may be challenging to consistently annotate. Zooming in 

further, to the histological scale, reveals the presence of repeating intestinal crypts with 

similar structures but differences in quantity and exact location across individuals. 
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Therefore, even within a single specimen, a combination of direct measurement and data-

driven approaches may be needed to position data at different anatomical scales.

This challenge highlights a broader question for efforts to chart atlases – what is the desired 

anatomical scale for the human CCF? If constructed on a macro-scale, a CCF could be used 

to locate major organs and body systems, and study their relative position across individuals. 

A macro-CCF, potentially generated from whole-body imaging datasets, would aid in the 

understanding of how age, gender, and height affect gross human anatomy. A meso-scale 

CCF likely would assume a fixed position for these macroscopic structures, and then explore 

variation at a finer scale, for example, differences in the structure and location of branched 

airways in the lung, or renal cortex and renal medulla in the kidney. Extending further, a 

micro-scale CCF would reference a histological and cellular view of individual samples, and 

represents an opportunity to explore fine-scale organization at the cell neighborhood, 

cellular or even sub-cellular level, and observe how interactions between cells influence their 

phenotype (Box 1).

The choice of scale therefore has significant impact on both the required underlying data and 

downstream analysis methods. As we discuss below, prior atlas efforts have typically taken 

place at meso-scale resolution, with reference imaging data generated at the organ level. A 

key challenge for future studies is to extend atlas construction to the micro-scale, but with 

the ability to also relate these coordinates to meso- and macro-scale atlases. This challenge, 

particularly in the absence of technologies for whole-body imaging at histological 

resolution, suggests that a single human CCF may not be an optimal aim for current studies. 

Instead, we argue for the construction of a hierarchical framework, which, to our knowledge, 

has not been previously implemented, as an achievable and important goal for current 

studies to build a human atlas.

Reference coordinate systems for a CCF

We first describe previous coordinate systems that can be used for physical registration of 

specific locations within organs or the human body, and then briefly discuss key areas where 

methodological developments will facilitate creation of a reference coordinate system for a 

human body CCF.

Anatomical plane coordinates

Anatomical plane coordinates (Box 1) represent a framework for navigating anatomical 

atlases based on physical space, where XYZ coordinates represent the right, anterior, and 

superior (RAS; equivalently rostro-caudal, latero-lateral, dorso-ventral) axes (Lancaster et 
al., 1997; Mazziotta et al., 2001; Li et al., 2003). This system typically consists of 

conventional Cartesian coordinates that have been conveniently oriented with respect to the 

sagittal, cortical, and axial anatomical planes: X represents the left–right dimension of the 

specimen, Y the anterior–posterior dimension, and Z the inferior–superior dimension. In the 

corresponding data matrix, a specific voxel can be indexed as [X, Y, Z], where these three 

coordinates specify its position along each dimension (Figure 1). These coordinates have the 

advantage that they are the native space of physical tissues as they are directly imaged (e.g., 
by scanners), and can thus be applied to any 2D or 3D imaging dataset. As no scaling or 
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nonlinear warping are used in the registration of samples to the anatomical planes, these 

coordinates can be interpreted as physical distances. However, for samples with significant 

variation in overall size or shape, simple anatomical plane coordinates will not be sufficient 

for direct comparison across specimens. Instead, samples must be normalized (or registered) 

to defined templates to account for inter-specimen variation in absolute distance from the 

coordinate axes. Similar challenges apply to spherical and cylindrical coordinate systems, 

which may be better tailored to describe curved anatomical structures, such as the interface 

between the femur and its surrounding cartilage (Kauffmann et al., 2003), but also require 

spatial normalization for inter-sample comparison.

Landmark-based axial coordinates

Landmark-based axial coordinates (Box 1) are a flexible extension of anatomical plane 

coordinate systems, where the origin point and reference orientation are anchored using 

conserved anatomical landmarks, rather than anatomical planes (Figure 1). The coordinate 

system itself can be Cartesian or polar; its unifying feature is not the way distance is defined 

but rather that key anatomical landmarks are the primary reference point. These systems 

(typically referred as stereotaxic coordinates) are widely used to precisely describe 

actionable locations for diverse surgical procedures, and are thus an attractive concept for 

human atlas efforts, where tissue samples and biopsies will often be obtained through 

resections and post-mortem examinations (Aguet et al., 2017; Regev et al., 2017; HuBMAP 

Consortium, 2019). They have been used to define reference frameworks in mammalian 

brains, and, in particular, applied in experimental studies with small animals, such as mice 

(Paxinos and Franklin, 2012), where organism-specific stereotaxic instruments are available, 

thus enabling precise localization for electrode placement, injection, and stimulation.

A canonical example of a human landmark-based spatial framework is the Talairach & 

Tournoux coordinate system, which sought to encompass both the remarkable consistency in 

overall human brain structure and the different shapes and sizes of individual brains 

(Talairach and Szikla, 1967). Here, the anatomical landmarks are the anterior commissure 

(AC) and posterior commissure (PC), two of the axon bundles (commissures) that cross the 

brain midline at different defined points, with the AC representing the origin (‘stereotaxic 

zero’), and the line connecting the AC and PC representing a principal axis. Once these 

landmarks and other key areas are manually defined, a simple nine-parameter linear 

transformation aligns a new volume to the original specimen. As discussed below, this initial 

‘spatial normalization’ has served as an invaluable procedure in constructing anatomical 

template models of the human brain based off multiple samples, which can be iteratively 

improved upon through additional samples.

Complex, nonstandard coordinate systems

The above methods are well suited to cases where anatomical axes are meaningfully 

preserved across specimens, or when there are clear anatomical landmarks that can serve as 

origins and axes. However, this is not the case in all organs and systems, thus requiring 

special adaptations to accommodate unusual shapes or poorly conserved structures. For 

example, the Normalized Thoracic Coordinate System annotates the geometrical centers of 

thoracic vertebrae to define principal axes, followed by a spline-based coordinate system to 
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define an origin and axes based on manually annotated polynomial models of the spine 

curve (Wang, Bai and Zhang, 2008). In another example, a local coordinate system for knee 

cartilage was constructed by fitting a cylindrical coordinate system to the bone-cartilage 

interface of the femur (Kauffmann et al., 2003). These complex coordinate systems differ 

from the landmark-based axial coordinates in the use of local nonlinear warping functions 

that allow for a greater degree of anatomical variation between samples mapped onto the 

coordinate system. These nonlinear approaches can tackle tissues where there is little spatial 

preservation in the conventional sense, as long as there are recurrent features across 

specimens. For example, an intratumor coordinate system could be constructed using the 

tumor/immune or tumor/stroma interface as an axis for orientation. Even in the absence of 

an interpretable physical coordinate system, nonlinear transformations can enable consistent 

segmentation and categorization of diverse data, as has previously been described for the 

human heart or lung (Fonseca et al., 2011; Li et al., 2012).

Key developments needed for a CCF reference system

Despite the broad applicability of these approaches, we anticipate that additional 

methodological developments will be needed to represent complex structures in the human 

body, focusing on two key areas. First, at the histological scale, human organs often cannot 

be characterized by fully stereotypical architectures. However, they may exhibit alternative 

conserved histological modules or repetitive geometrical structures, that is, anatomical or 

histological features, such as the branching structure of the human lung bronchioles, or the 

repeating (but non-fixed number) colonic crypts that characterize the intestinal mucosa. 

Second, existing coordinate systems model datasets at a single scale, such that the 

coordinate system remains static even when zooming in or out in spatial scale. However, 

when we aim to construct relevant frameworks that map from cells, to tissues, to organs, to 

whole body, the development of hierarchical coordinate systems that can transition between 

levels of resolution remains a key outstanding challenge (Figure 2). For example, because 

the resolution of MRI does not allow profiling of individual cells, mapping of cells with 

different morphologies or cell densities to precise locations will be challenging. Addressing 

this and similar challenges will call for new mapping and integration approaches that can 

transition and connect between different coordinate systems and levels of resolution.

Constructing an anatomical template: diverse strategies for diverse 

systems

Before creating either an anatomical or landmark-based coordinate system, the first step is to 

construct an ‘anatomical template’ that represents an initial spatial reference (Figure 3). 

While this reference may be iteratively improved, it serves as an initial scaffold upon which 

a downstream coordinate system can be constructed and new data can be mapped. 

Regardless of the precise context or organ system, a fundamental challenge towards the 

integrative analysis of multiple individuals and samples is image registration (Box 1) – how 

to project spatial datasets into a common space where common features overlap across 

specimens (Zitová and Flusser, 2003).
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Image registration approaches typically begin with a global registration (Box 1), followed by 

a local transformation (Box 1) (Christensen, Joshi and Miller, 1997; Sommer et al., 2013). 

Global methods look for an affine transformation (e.g., rotation) that maximizes the 

correspondence between the samples, and operate on every pixel of the image. These 

methods account for broad variance in anatomical diversity, particularly regarding size and 

scale differences across samples, as well as for technical sources of variance (for example, 

microscope alignment). Subsequently, local methods warp the image to account for local 

distortions, for instance by using radial basis functions (RBF) to define the transformation 

(Fornefett, Rohr and Stiehl, 2001). Newer approaches based on differential geometry that 

involve searching for the best diffeomorphic mapping have also been applied (Ashburner, 

2007).

Methods for image registration can be roughly partitioned into two classes: intensity-based 

and landmark-based (Box 1). Intensity-based registration, such as that applied in the Allen 

Brain Atlas (Oh et al., 2014; Kuan et al., 2015; Allen Institute, 2017), aligns images based 

on their intensity with the goal of maximizing the correlation between the intensity matrices. 

Landmark-based methods, such as the Talairach affine transformation described above, aim 

to identify direct correspondences on key anatomical features that are present across 

datasets. These may be manually annotated, but are often detected automatically based on 

their high information content, such as curvature (Ram, Babu and Sivaswamy, 2009). The 

precise strategy may combine features of both intensity- and landmark-based approaches 

and depends on the tissue of interest and available spatial reference data. Here, we consider 

three broad categories of sample types, which fall along the organizational spectrum (Figure 

1), and discuss how strategies for template construction can be tailored to these samples.

A highly stereotypical reference sample

At one end of our spectrum are highly stereotypical systems, where anatomical positions 

from one sample can be ‘invariantly aligned’ to an independent specimen. This use-case 

requires both biological and technical reproducibility, which is only feasible in model 

organisms. For example, when constructing a map of the mouse brain, the Allen Brain Atlas 

Common Coordinate Framework versions 2 and 3 used 1,675 mouse specimens that were 

identically aged and isogenic, such that additional similar samples can be aligned to the CCF 

for analysis (Oh et al., 2014; Kuan et al., 2015; Allen Institute, 2017). The experimental data 

used to build the third version of the mouse CCF originated from a powerful system that 

couples two-photon microscopy with automated vibratome sectioning (Ragan et al., 2012), 

leading to high-quality images with minimal tissue distortions. The resulting images of the 

brain slices from a single specimen were aligned using a 12-parameter affine transformation, 

then stacked together to create a 3D reconstructed volume. The 1,675 reconstructed volumes 

were registered together using a non-linear iterative procedure, previously adopted to 

construct an MRI study of the human brain in a pediatric population (Fonov et al., 2011). 

First, 41 volumes were globally aligned and averaged to form an initial seed (Kuan et al., 
2015). Then, the 1,675 volumes were registered to the seed by maximizing the mutual 

information across volumes. The corresponding deformation fields, used to register each 

volume, were also averaged, leading to a mean transformation that was inverted and used to 

transform the average volume back to original coordinates, thus creating the seed for the 
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next iteration (Box 1). The iterative procedure was interrupted when the mean deformation 

field was smaller than a chosen threshold.

The Drosophila BrainAligner project leveraged a similar strategy, first creating a seed based 

on 295 specimens, followed by registration of more than 2,500 additional samples (Peng et 
al., 2011). The BrainAligner software used landmark-based alignment, where landmarks 

were initially designated based on high curvature (‘corners or edge points’) in the data, and 

automatically detected in target images. Notably, while we focus first on the average 

template derived from mean-intensities, these efforts construct probabilistic atlases that 

retain and leverage information on individual variation (discussed below).

Such iterative procedures provide an attractive approach for constructing a population-based 

template without overly relying on a single volume (Kovacević et al., 2005; Chuang et al., 
2011). Inevitably, the choice of the initial samples that will form a reference template will be 

a key challenge for human atlas efforts, particularly since the limited number of sampled 

individuals, and the differences between them that cannot be controlled for, will prohibit 

iterative efforts. In this case, it may be advisable to choose a single shape that minimizes the 

average mismatch between the samples and the reference after alignment, known as the 

sample Fréchet or Karcher mean (Figure 3A) (Grove and Karcher, 1973). The actual 

computation depends on the metric definition and data type. For the Gromov-Wasserstein 

metric, a fast algorithm for calculating the Fréchet mean has been developed (Peyré, Cuturi 

and Solomon, 2016), and other statistical approaches for construction of templates from 

images have also been described (Allassonnière, Amit and Trouvé, 2007; Ma et al., 2008). A 

variation on this approach was employed by the Edinburgh Mouse Atlas Project (EMAP 

eMouse Atlas Project (http://www.emouseatlas.org)), which used diverse MRI technologies 

to construct anatomical models of the developing mouse embryo (Richardson et al., 2014). 

In a fixed strain, the spatial structure of the embryo is well understood and reproducible; 

moreover, specific spatially resolved expression profiles are also well characterized (e.g., 
gradients of expression induced by signaling molecules). However, there can be significant 

anatomical heterogeneity depending on developmental time. The Edinburgh Mouse Atlas 

overcomes this heterogeneity by constructing separate anatomical references for each 

developmental time point (known as ‘Theiler’ stages). The atlas thus consists of more than 

50 sequentially distinct models, each constructed with conceptually similar high-resolution 

imaging techniques (including uMRI, optical projection tomography, and episcopic 

microscopy). While these models are not connected to each other, generating such 

connections has recently been achieved in other domains with approaches based on optimal 

transport theory (Bonneel, 2018).

Similar inter-individual organ structure with differences in cell type location or organ 
dimensions

Unlike efforts in model organisms, building a human atlas must address the challenge of 

inter-individual variation, even in organs that have a stereotypical structure (Figure 2). For 

example, the International Consortium for Brain Mapping (ICBM) is constructing an 

anatomical reference template of the human brain, based on data from multi-section MRI 

(typically 1mm3 resolution) and aims to profile 7,000 human subjects spanning ages 18–90 
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years, including 342 twin pairs (half monozygotic, half dizygotic) (Mazziotta et al., 2001). 

However, individual differences in organ size and shape (due to age, gender, and natural 

variation), as well as technical inconsistencies in MRI imaging, create significant challenges 

for unsupervised alignment of different specimens.

To overcome challenges in terms of inter-individual variability, the ICBM used a modified 

process that incorporated supervision to construct an iterative series of templates (ending 

with the commonly used ICBM-152 template). Each of the initial seed volumes was first 

registered to the Talairach atlas, through manual landmark annotation followed by an affine 

transformation, prior to averaging to construct an initial template. Volumes were then re-

aligned to this average template using an unsupervised, intensity-based approach, reducing 

the risk of inaccurate manual annotation. This strategy not only uses supervision to enhance 

alignment quality, but also results in a coordinate framework that is conceptually linked to 

an existing system, thus enabling the propagation of prior biological knowledge.

Such semi-supervised registration followed by population averaging represents a powerful 

and flexible approach that can be applied whenever manually annotated landmarks can be 

used to facilitate image registration (Figure 3B). Additional examples include a normative 

human lung atlas using selected airway and vascular tree landmarks (Li et al., 2003), and a 

biventricular cardiac atlas constructed using six landmarks spread across both ventricles (Bai 

et al., 2015). We anticipate that this strategy will be powerful for efforts to build a human 

atlas, particularly when invariant anatomical features can be easily identified in close 

collaboration with clinical, surgical, and anatomical experts. For example, the Cardiac Atlas 

Project and Society for Cardiovascular Magnetic Resonance (SCMR) have provided diverse 

images to a panel of independent experts, generating a series of ‘ground truth’ annotated 

datasets that can be used to test landmark-detection methods (Fonseca et al., 2011).

Highly non-stereotypical samples

On the other extreme of possible tissue organizations, there exists substantial inter-individual 

variability, such that a reference 3-dimensional coordinate system is harder, or perhaps 

impossible, to define (Figure 1). Such variability occurs in pathological instances, such as 

tumors, but it can also arise in healthy settings, for example due to disordered structures as 

in the microscopic airways or vasculature. However, particular ‘landmark features’, such as 

the distance of a cell from a blood vessel or from the margin of the tumor or normal tissue 

can be compared across samples. Currently, no general strategies exist for modeling these 

types of systems – they will require the development of new multi-scale hierarchical 

approaches.

An alternative approach: Reconstructing an atlas from its own features

A conceptually different approach to constructing both anatomical templates and coordinate 

systems is to learn their representation, or their salient features, directly from organ, tissue 

and cell data, either exploiting prior information, or entirely de novo (Figure 3C). In this 

way, a CCF is constructed ‘bottom-up’, where data collected on individual components of a 

system enable the identification of features that will form the scaffold for constructing a 

broader spatial map. These efforts require learning methods tailored to distinct data types, 
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but when feasible, should in principle allow for spatial reconstruction even at single-cell 

resolution without any prior knowledge.

For example, there has been significant interest in the potential to reconstruct complex 

tissues using single-cell RNA-seq data from fully dissociated tissue. Such a strategy is 

possible when information about a cell’s spatial location is represented at least in part by its 

molecular profile. We first demonstrated the feasibility of this approach in both the zebrafish 

embryo (Satija et al., 2015) and annelid brain (Achim et al., 2015). In both cases, publicly 

available in situ gene expression databases could be used for spatial inference of a profiled 

cell’s spatial location, with mapping resolution determined by the number of known in situ 
patterns, data quality, and tissue structural organization. Similar approaches have since been 

successfully applied in the mouse blastocyst, mouse brain, Drosophila embryo, and 

mammalian liver (Habib et al., 2016; Halpern et al., 2017; Karaiskos et al., 2017; Mori et al., 
2017; Stuart et al., 2019). Remarkably, these methods can even be extended to operate fully 

unsupervised in a de novo setting (that is, without any in situ reference data) (Nitzan et al., 
2018) assuming spatial ‘smoothness’ in gene expression space. Such approaches extend the 

concept of ordering cells along a developmental continuum (‘pseudotime’) to ordering cells 

along a spatial gradient (‘pseudospace’) (Scialdone et al., 2016; Aizarani et al., 2019).

Given the success of these approaches to spatially map cells based on their gene expression 

patterns, it is useful to consider which situations are suitable for applying these methods. We 

highlight two here: spatial restriction with a stereotypical location and gradients. First, when 

cell types are both spatially restricted and stereotypically located, annotation of molecular 

data provides a direct representation of spatial location. For example, in the mouse cortex 

these strategies should work well for excitatory cell types that are arranged in layers but less 

well for inhibitory cells, which are dispersed through the tissue. The annelid brain also 

shares many of the same characteristics that enable learning location information. Second, 

morphogen or signaling gradients are often driven by gene expression and in turn drive 

downstream gene regulation, such that expression patterns reflect the underlying signaling 

environment and can be used to connect cells to their spatial location along the gradient. The 

gradient case is demonstrated in the zebrafish and mouse embryo and liver examples above 

(Satija et al., 2015; Habib et al., 2016; Halpern et al., 2017). Additionally, new spatial gene 

expression methods such as MERFISH and Slide-seq (Moffitt et al., 2018; Rodriques et al., 
2019) have highlighted cells types that exhibit continuous gradients in the expression of 

gene modules that are correlated with spatial position in the brain. However, the extent of 

spatial representation by single cell profiles is unknown in many tissues. High-parameter 

spatial data provides a unique opportunity to discover these patterns. In addition, other 

molecular modalities, such as scATAC-seq, could also include representations of spatial 

position, which may be better understood either in the context of in situ chromatin profiling 

(Thornton et al., 2019), or by harmonizing these with RNA-seq profiles prior to or as part of 

the mapping process (Stuart et al., 2019).

A similar strategy can be used to map data to a reference set of known locations with image-

based, instead of molecular, features. In recent years, many studies in the field of computer 

vision have suggested that the visual features of an image provide useful information about 

its location. Such applications have been mostly focused on photo geolocalization: for 
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example, predicting that a photo is taken in Paris by recognizing the visual features of the 

Eiffel Tower. Initially, the geolocalization problem is formulated as a supervised 

classification task, where a classifier is provided hand-crafted visual features of images 

(Hays and Efros, 2008). Recent advances using deep convolutional neural networks allow 

automatic feature extraction and end-to-end machine learning models (Weyand, Kostrikov 

and Philbin, 2016; Vo, Jacobs and Hays, 2017; Seo et al., 2018). Although the structure and 

content of imaging readouts of biological samples are different than photos of geographic 

locations, the same principle can be leveraged because different regions of organs and 

tissues have both different structural (visual) and molecular characteristics, which can in turn 

be used to find approximate tissue location prior to image registration. Furthermore, such 

feature-based geolocation approaches can be instrumental in unraveling similar 

morphological patterns within or across tissues by leveraging the uncertainty of the 

predictions and finding several possible mapping locations for a given image. We envisage 

these approaches having potentially broad applicability in a biological context, particularly if 

learning algorithms can identify features that bridge multiple anatomical scales, enabling 

(for example) histological data to be mapped onto a meso-scale atlas.

Mapping new datasets onto an existing reference

Once a coordinate system has been assembled it has multiple potential uses. Perhaps most 

obviously, an atlas can be mined for novel features that can explain a unique function of a 

particular organ. Another key utility is in mapping new datasets onto the reference (Figure 

4). Several approaches exist for this purpose, which are conceptually linked to the process of 

assembling the original reference itself.

Mapping the same data modality to the reference

When the new data are of the same kind as those used to build the original spatial reference 

data, mapping is relatively straightforward (Figure 4A). For example, in the Allen Brain 

Atlas, where gene expression measurements and connectivity data are derived from slices 

that were obtained from a similar process as the tomographic slices used to construct the 

map, measurements can be spatially mapped using analogous methods to the construction of 

the original template (global followed by local image registration). Similarly, in the ICBM, 

new MRI data can be mapped onto the ICBM-152 template in the same way as it was 

originally constructed. Finally, the Mouse Embryo Atlas developed a framework called 

‘constrained distance transformation’ to map new in situ measurements onto existing 

developmental models. This framework computes radial basis functions as described above, 

but on geodesic distances (a method that can also be used for graph-alignment (Hill and 

Baldock, 2015)).

Mapping a different data modality to the reference

When the new data are of a different modality from the original template, mapping requires 

the identification of correspondences between data types (Figure 4B). For example, we 

recently introduced the use of canonical correlation analysis (Butler et al., 2018), or the 

identification of mutual nearest neighbors (Haghverdi et al., 2018), to identify 

correspondences (‘alignments’) between scRNA-seq datasets produced across different 
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technologies. These methods demonstrate how identifying conserved patterns of covariation 

enable new data to be mapped (or ‘aligned’) onto an existing reference. Extensions of this 

approach, such as the use of joint non-negative matrix factorization (Welch et al., 2019), can 

be applied to identify correspondences between scRNA-seq and ‘ in-situ’ transcriptomics 

datasets (Box 1). These have been successfully applied to mapping single cell types and 

interpolating transcriptome-wide expression patterns in the mammalian cortex. While these 

approaches rely on shared variables (here, genes), multi-domain translation methods can 

relate data types even without any shared variables (Yang and Uhler, 2019), based on the 

assumption that data from different domains are generated from a shared latent 

representation (here, the same tissue).

While these approaches do not assume gene expression ‘smoothness’, they are limited by the 

resolution with which a cell’s location is encoded in its gene expression. This limitation 

reveals a key challenge for ongoing human atlas projects. Here, the spatial mapping of 

molecular datasets, including single-cell RNA-seq, is a primary goal. However, in most 

cases, a cell’s precise spatial location may not be uniquely encoded in its molecular make-

up. In this setting, approaches that allow a measure of the confidence of the mapping will be 

extremely important. In particular, even without a precise mapping, information about the 

probable locations to which a cell will map is still extremely useful information.

One potential approach to further improve this mapping is for the tissue collector to note the 

location of the tissue sample with respect to pre-defined landmarks (i.e., defined in 

landmark-based coordinates) when the original tissue section is taken. This will enable the 

dataset to be inherently mapped to a plausible set or range of positions based on the 

metadata itself (i.e., within a statistical context it will act as prior information). While this 

will represent a relatively coarse level of resolution (for example, each sequenced cell within 

a sample will be assigned the same metadata, and therefore the same spatial location), this 

initial mapping can be performed reliably and consistently across samples. In conjunction 

with the molecular data, this has the potential to yield an improved mapping. Moreover, in 

this setting, groups who are focused on mapping can be successful by defining a hierarchical 

series of stereotactic coordinate systems (landmarks, axes, and transformations) in 

collaboration with tissue collectors.

The promise of a CCF: a unified map for querying data and exploring inter-

individual variation

Though previous atlas efforts have not scaled up to an entire organism, they demonstrate 

how a CCF enables consistent organization and referencing of diverse data types. For 

example, the Allen Brain Atlas originally represented a comprehensive spatial map of gene 

expression, but this framework has now been used to reference additional data types 

including neural projections and single-cell RNA-seq profiles alongside online exploratory 

tools for visualization and queries. Similarly, the Mouse Embryology Atlas (Armit et al., 
2015) now represents a broad resource for developmental biology, with associated browsers 

enabling 3D visualization of gene expression, anatomical components, and histological 

features. A human CCF will enable similar resources for diverse data types, ranging across 
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both the molecular and histological scale, thereby playing a similarly impactful role to 

pioneering genomic data browsers.

A CCF can also be used for precise exploration of anatomical variation across individuals. 

The ‘spatial normalization’ that is inherent to CCF registration corrects for technical 

variation in data acquisition, alongside global variation in organ size, representing an 

essential prerequisite to these comparisons. For example, the Cardiac Atlas Project (Fonseca 

et al., 2011) has constructed a set of 4D atlases to track inter-individual variation in cardiac 

morphology over space and time. They apply Principal or Independent Components 

Analysis to identify the primary modes of variation across samples, and intersect these 

findings alongside clinical data. In a series of studies (reviewed in (Young and Frangi, 

2009)), these modes of variation have been associated with the normal fluctuations in the 

shape of the heart wall between the end-diastole and end-systole, but also phenotypic 

metadata, including diastolic dysfunction and abnormal myocardial contraction.

Similar efforts have been applied across abdominal tissues (Reyes et al., 2009), multiple 

brain regions (Mazziotta et al., 2001; Habas et al., 2010; Pauli, Nili and Tyszka, 2018) and 

the lung (Hame et al., 2014; Yang et al., 2017). However, the examination of different 

measures of variability for current human atlas efforts provide an opportunity to relate 

morphological and molecular variation. For example, it has not been previously possible to 

comprehensively associate changes in tissue and organ structure with quantitative changes in 

cell type composition or gene expression. This could be revealed by paired spatial and 

molecular data.

Conclusion

A Common Coordinate Framework is a prerequisite for constructing a detailed molecular 

atlas of the human body. From a practical perspective it will be needed to rigorously 

combine information from multiple samples when constructing the atlas. However, once 

built, it will allow patterns of heterogeneity within organs to be studied at unprecedented 

depth. For example, new gradients of gene expression can be identified within cell types and 

at cell type boundaries as well as similarities in cell type organization across organs. We 

have highlighted key challenges associated with CCF construction, in particular, the 

extensive inter-individual variation inherent to human anatomy, alongside the challenge of 

mapping data at multiple anatomical scales. The latter challenge suggests that a single CCF 

with one strategy and one level of resolution may be insufficient to represent all biomedical 

data. A hierarchical organization of coordinate systems (an ‘atlas of atlases’) represents an 

attractive alternative, with each layer generated using different data types and capable of 

modeling variation at distinct scales; Crucially, a CCF will facilitate mapping between 

layers. Together, the Common Coordinate Framework alongside new experimental and 

computational approaches – including those that learn maps directly from data – have the 

potential to move us from a census of cell types and imaged spatial patterns to a fully-

formed map, with profound implications for our understanding of biology in the context of 

both normal development and in disease.
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Box 1.

Glossary

Common coordinate 
framework

An underlying reference map of organs, tissues, or cells that allows new 
individual samples to be mapped, to determine the relative location of structural 
regions between samples.

Landmark A defined anatomical, histological, or molecular feature that is readily 
identifiable and consistently located across individuals.

Macro-CCF A CCF describing tissues at the gross anatomical level at the organ, multi-organ 
or whole body scale

Meso-scale CCF A CCF at the scale between gross anatomy and detailed histology

Micro-scale CCF A CCF focused on local tissue organization, rather than the shape and structure 
of an entire organ

Anatomical plane 
coordinates

Three-dimensional coordinate systems defined around a given anatomically 
determined origin and axes that represent the physical space of a sample.

Landmark-based axial 
coordinates

The use of consistently located anatomical landmarks, rather than anatomical 
planes, to define a coordinate system based on the relative distance to 
landmarks

Image registration The transformation of spatially resolved data onto a common coordinate system 
in a way that maximally preserves the spatial structure within each individual 
dataset

Global registration The application of linear transformations to spatial coordinates to minimize 
overall positional differences between datasets

Local transformation The application local non-linear transformations to spatial datasets to minimize 
local differences in spatial structure, without affecting the relative position of 
more distant regions of a dataset

Intensity-based image 
registration

The registration of spatial datasets through the minimization of differences in 
intensity values (eg, image intensity or gene expression level) at the same 
coordinate between the two datasets

Landmark-based image 
registration

The registration of spatial datasets through the minimization of the distance 
between equivalent points (landmarks) between datasets

Deformation fields The deformations in shape required for transformation from an initial 
configuration to a deformed configuration

Joint non-negative 
matrix factorization

A matrix factorization method for identifying shared and non-shared factors 
between a pair of datasets

Rood et al. Page 18

Cell. Author manuscript; available in PMC 2020 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Types of coordinate systems
Different tissue or organ structures may require different types of coordinate systems in 

order to adapt to differing levels of inter-individual specimen variability. Highly replicable 

structured tissues, such as embryos, may be able to employ anatomical plane coordinate 

systems in a CCF, whereas increasing specimen variability will require higher degrees of 

flexibility in the coordinate system used. In tissues with greater inter-specimen variability, 

landmark-based coordinate systems or nonlinear approaches, rather than anatomical plane 

coordinates, are more robust to the presence of non-conserved spatial structures in different 

individuals.
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Figure 2. Hierarchical organization of coordinate systems
A common coordinate framework that encompasses the entire human body will require a 

hierarchy of coordinate systems covering different scales. From the whole-organ (macro) 

scale, the CCF will allow a study of the relative differences in size and shape of different 

body organs between individuals. Zooming in further, additional common coordinate 

framework layers at progressively finer scales will allow similar analysis of inter-individual 

anatomical variation at the intra-organ regional (meso), histological (micro) and cllular (fine) 

scales.
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Figure 3. Methods for CCF assembly
(A) Methods for constructing a common coordinate framework often begin with the 

selection of a ‘reference’ template for future downstream alignment. This typically 

represents a single sample that is most similar to the population average, and will serve as 

the starting point for construction of the CCF.

(B) Following template selection, all samples in the population can be mapped to the 

reference template, transforming each individually into the coordinate space of the template. 

Alternatively, an iterative approach can be used where samples are aligned pairwise to the 

template, and the template averaged and updated at each iteration until convergence. An 

iterative approach can be more computationally expensive than pairwise alignment, but 

helps reduce bias toward any single sample in the final CCF.
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(C) Another approach for the construction of a common coordinate framework is to 

reconstruct a tissue from its own features. In this case, the spatial relationships between cells 

are not known a priori, but are instead inferred from features measured in the cells.
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Figure 4. Mapping new datasets to a CCF
(A) Mapping within a modality (e.g. transcriptomic data) involves the registration of query 

datasets to the reference CCF. The transformation used to register the query with the 

reference can then be studied to learn sources of anatomical variation between individuals.

(B) Cross-modality mapping relies on the identification of corresponding features between 

separate query datasets and the reference. These can be features that are independently 

identifiable across the modalities used (e.g. lung branchpoints identified using CT and PET 

data). They can also represent molecular features, i.e. the expression level of genes or 

proteins, that can be measured across different assay types and facilitate integration.
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