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Abstract

It is well recognised that animal and plant pathogens form complex ecological communities

of interacting organisms within their hosts, and there is growing interest in the health implica-

tions of such pathogen interactions. Although community ecology approaches have been

used to identify pathogen interactions at the within-host scale, methodologies enabling

robust identification of interactions from population-scale data such as that available from

health authorities are lacking. To address this gap, we developed a statistical framework

that jointly identifies interactions between multiple viruses from contemporaneous non-sta-

tionary infection time series. Our conceptual approach is derived from a Bayesian multivari-

ate disease mapping framework. Importantly, our approach captures within- and between-

year dependencies in infection risk while controlling for confounding factors such as season-

ality, demographics and infection frequencies, allowing genuine pathogen interactions to be

distinguished from simple correlations. We validated our framework using a broad range of

synthetic data. We then applied it to diagnostic data available for five respiratory viruses co-

circulating in a major urban population between 2005 and 2013: adenovirus, human corona-

virus, human metapneumovirus, influenza B virus and respiratory syncytial virus. We found

positive and negative covariances indicative of epidemiological interactions among specific

virus pairs. This statistical framework enables a community ecology perspective to be

applied to infectious disease epidemiology with important utility for public health planning

and preparedness.
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Author summary

Disease-causing microorganisms, including viruses, bacteria, protozoa and fungi, form

complex communities within animals and plants. These microorganisms can coexist har-

moniously or even beneficially, or they may competitively interact for host resources.

Well-studied examples include interactions between viruses and bacteria in the respira-

tory tract. Whilst ecological studies have revealed that some pathogens do interact within

their hosts, identifying interactions from available population scale data from health

authorities is challenging. This is exacerbated by a lack of large-scale data describing the

infection patterns of multiple pathogens within single populations over long time frames.

Furthermore, methods for evaluating whether infection frequencies of different pathogens

fluctuate together or not over time cannot readily account for alternative explanations.

For example, human pathogens may have related seasonal patterns depending on the age

groups they infect and the weather conditions they survive in, and not because they are

interacting. We developed a robust statistical framework to identify pathogen-pathogen

interactions from population scale diagnostic data. This framework serves as a crucial step

in identifying such important interactions and will guide new studies to elucidate their

underpinning mechanisms. This will have important consequences for public health pre-

paredness and the design of effective disease control interventions.

This is a PLOS Computational Biology Methods paper.

Introduction

Animals and plants are exposed to a wide range of pathogenic organisms that co-circulate in

time and space. When multiple pathogens infect the same tissue, they form diverse communi-

ties, effectively sharing an ecological niche that provides the opportunity for interspecific inter-

actions [1–3]. It is known that pathogen interactions may alter the within-host dynamics of

infection with consequences for the population transmission of some common infections.

Interactions among microorganisms include the promoting or inhibiting effects of gut micro-

biota on invading pathogenic bacteria in the gastrointestinal tract [4]; the enhanced carriage of

pneumococcal bacteria following influenza infection in the respiratory tract [5]; the rise in

human monkeypox after eradication of smallpox [6]; and immune-driven enhancement of

Zika virus infection following Dengue virus exposure [7]. The complex ecology of pathogen

communities therefore has potentially important implications for the epidemiology and con-

trol of infectious diseases.

Pathogens that act non-independently and their health implications is an actively growing

and important area of research [8]. Pathogen interactions can be cooperative or competitive

and can occur within a host or in a population where pathogens co-circulate [9]. While

some evidence of population-level interactions between pathogens exists, statistical support

for the occurrence of pathogen-pathogen interactions from multiple non-stationary time

series independent of prior biological or ecological knowledge is lacking. This is due in part to

a paucity of appropriate long-term time series data that describe infection frequencies for

multiple pathogens simultaneously, allowing such interactions to be identified, but also due

to statistical techniques that are limited in their ability to handle such complex datasets

[10, 11].

Temporal interactions in pathogen dynamics
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Various statistical methods are available to analyse health-related time series data. Statistical

methods for handling non-stationary time series data include multiple regression and general-

ised additive models, which are able to capture non-linear trends and explanatory factors such

as seasonality and climate as well as other confounders and typically model a univariate health

outcome as opposed to a multivariate distribution of several non-independent outcomes [12–

18]. Consequently, they do not necessarily focus on estimating pathogen-pathogen interac-

tions. More specialist techniques that focus on decomposition of the time series include singu-

lar spectrum analysis and wavelet analysis. Singular spectrum analysis has been used to model

interactions between a pathogen and an environmental factor [19], whilst wavelet decomposi-

tion has been used to infer pathogen-pathogen interactions [20] and virus-virus interactions

[21]. These techniques only capture pairwise relationships between time series (for example

pathogen-pathogen or pathogen-environment) although in principal singular spectrum analy-

sis can be extended to multiple time series [22]. Moreover these methods do not account for or

adjust the data for potential confounders. Another recent approach is to use mechanistic sto-

chastic models to estimate time varying parameters (e.g. a transmission rate) and then employ

wavelet analysis to compare with potential weather or climatic drivers [11], but again in a pair-

wise manner.

Alternative approaches that focus specifically on identifying interactions include confirma-

tory analyses that fit observed time series data from two pathogens to models containing

hypothesised interactions [9, 23]. Extending to multiple pathogens increases the complexity of

this approach [9]. Confirmatory analyses rely on prior biological and ecological knowledge in

order to hypothesize an appropriate model with interpretable parameters. Specifically, the

‘true’ interaction needs to be modelled and therefore such analyses cannot capture unexpected

or unknown interactions [10].

In contrast, exploratory approaches such as Granger-Causality and Transfer Entropy

can provide robust statistical evidence for unknown interactions from multiple time series

whilst accounting for confounding variables [24], and have been used to detect virus-virus

interactions [10]. However, they rely on stationarity of the times series, and non-stationarity

can generate spurious results [25]. This limits the applicability of this approach to many epide-

miological time series since seasonality and long term trends (and therefore non-stationarity)

is a long-recognised attribute of many infectious diseases [26].

A framework that can infer unknown interactions from multiple pathogens incorporating

non-stationary time series data whilst adjusting for confounding factors will advance this

important research area [10]. Here, we construct just such a robust framework, which is able

to identify pathogen-pathogen interactions from multiple non-stationary time series at the

population scale independent of prior biological or ecological knowledge.

The conceptual framework for our new approach derives from Bayesian disease mapping

models—a class of regression model that has received much attention in recent years for the

analysis of spatial distributions of incidence data routinely collected by public health bodies

[27, 28]. These models are typically applied to incidence data to estimate spatial patterns of dis-

ease risk over a geographical region—with several models proposed to capture spatial autocor-

relations [19] using conditional autoregressive priors [29, 30]. While some extensions to

disease mapping models have been made to include temporal patterns [29, 31] and space-time

interactions [32, 33], most disease mapping applications focus on spatial structures [34] with

temporal dependencies in disease incidence often being overlooked [35, 36].

Modelling multiple pathogens simultaneously allows assessment of related patterns and

non-independence of infection risk. Multivariate forms of disease mapping models provide a

suitable framework for estimating temporal dependencies between pathogens as they naturally

incorporate a between-disease (or pathogen) covariance matrix [37]. In this paper, we

Temporal interactions in pathogen dynamics
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construct a framework for time series data analysis that allows the estimation of covariances

among temporal disease datasets. Because the approach accounts for confounding variables

and sources of non-stationarity such as seasonally varying infection risk, the resulting statisti-

cal framework now enables the joint estimation of pathogen dependencies on the temporal

dimension whilst, crucially, distinguishing genuine pathogen-pathogen interactions from sim-

ple correlations.

To validate our method we conducted extensive simulation studies using synthetic data.

We then applied the method to diagnostic data on five respiratory viruses (adenovirus [AdV],

coronavirus [Cov], human metapneumovirus [MPV], influenza B virus [IBV] and respiratory

syncytial virus [RSV]) from the patient population of a major urban UK population (Glasgow,

United Kingdom) over a period of nine years. We chose this particular group of pathogens

because i) respiratory viruses are obligate intracellular pathogens that have a strong predilec-

tion for the cells of the respiratory tract (i.e. they share the same ecological niche); ii) contem-

porary diagnostic tests based on multiplex real-time PCR (qPCR) technology allow the

simultaneous detection of multiple respiratory viruses from the same patient; and iii) multiplex

qPCR was routinely used to diagnose respiratory viruses in the patient population of Glasgow

during the 2005-2013 period.

Modelling approach

The framework presented infers unknown pathogen interactions adjusted for confounding

factors such as seasonality, demographics and testing frequencies using time series data from

multiple contemporaneous pathogens (Fig 1).

We used Ymtv to denote the observed count of pathogen v during the mth month of year t
conditional on expected count Emtv and relative risk RRmtv

YmtvjEmtv;RRmtv � PoissonðEmtvRRmtvÞ

log ðRRmtvÞ ¼ av þ �mtv

with αv an intercept term specific to virus v and ϕ.t. = {ϕ.t1, . . ., ϕ.tV} a vector of random effects

modelled conditionally through a MCAR prior

�:t:j�:t� 1: � MVNðsv�:t� 1:; ½O� L�
� 1
Þ:

Estimating expected counts enables us to adjust for potential and established confounding

factors. For instance, the virus diagnostic data allowed us to use age, sex, whether the patient

had attended a general practice or hospital (as a proxy for infection severity), month of year

and testing frequencies. Therefore, expected counts explained a proportion of the variation in

the observed counts and we attributed the remaining unexplained variation to temporal auto-

correlation, virus-virus interactions and residual random variation.

The temporal autocorrelation is handled by adapting the approach from MCAR (Multivari-

ate Conditional Autoregressive) models, designed to model spatially autocorrelated data based

on neighbourhood relationships. Here, the parameterisation of a MCAR model captured both

the seasonal trends of each pathogen via precision matrix O and non-independence between

pathogens via Λ. Temporal effects ϕ.t. captured long term temporal tends with smoothing

parameters s1, . . ., sV. Dependency structures between neighbouring months accounted for

seasonality in pathogen infection frequencies. Two such structures were considered, namely

the neighbourhood structure (Fig 1 green arrows), where all neighbouring months are equally

correlated to the month in question, and the autoregressive structure (Fig 1 maroon arrows),

Temporal interactions in pathogen dynamics
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Fig 1. Model used to estimate pairwise relative risk covariances. The diagram should be read from the bottom (starting with Ymtv)
to the top. All prior choices have been fully specified. Numbers indicate hyperparameter choices, for instance, mean and variance in

the normal distribution, lower and upper bound in the uniform distributions and shape and rate in the gamma distribution.

Numbers in red indicate all relevant subscripts month m = 1, . . ., 12, year t = 1, . . ., 9 and virus v = 1, . . ., 5. Green arrows correspond

to the neighbourhood structure and maroon arrows correspond to the autoregressive structure.

https://doi.org/10.1371/journal.pcbi.1007492.g001

Temporal interactions in pathogen dynamics
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where there is a power law weighting the correlation between related months and the month

in question.

This method focuses primarily on the estimation of pathogen covariance matrix Λ−1. By

formally testing which off-diagonal entries of L̂ � 1 are significantly different from zero, we can

explicitly provide statistical support for pathogen interactions.

Results

Simulation study

In order to validate the proposed method, we performed an extensive simulation study using

synthetic virus diagnostic data with a wide range of time series structures and estimated the

power and type 1 error rate (i.e. rejection of the true null hypothesis) of this method for a

range of correlations between viruses.

Individual level data of age, sex and general practice versus hospital attendance (a proxy for

infection severity) were simulated to reflect the real virus diagnostic data, and the probabilities

of infection for each virus within each month were estimated. For a full data description, we

refer readers to Nickbakhsh et al [38]. Within each year, the number of samples tested for each

virus per month ranged from 20 to 200 to reflect variable testing frequencies. Expected counts

were calculated through standardised infection probabilities and testing frequencies.

Generation of the matrix O depended on the choice of correlation structure (either neigh-

bourhood or autoregressive). Relative risks were calculated from the virus specific intercept

term αv, simulated uniformly, and monthly effect terms ϕ..v. Monthly effect sizes were simu-

lated without constraining the nature of time series data in order to illustrate the flexibility of

this framework (Fig 2).

An example of data simulated under the neighbourhood structure is present in Fig 3. A full

description of the simulation setup and parameter choices is given in the material and

methods.

Since our approach incorporated two structures that captured monthly autocorrelations

(the neighbourhood structure (N) and autoregressive structure (A) either adjusting for multi-

ple comparisons (post-mcc) or not (pre-mcc)), four possible combinations of simulation

(Sim) and estimation (Est) are reported (Table 1). A range of correlations between two viruses

were considered from weakly related viruses (correlation = 0.2) to a moderately strong correla-

tion (correlation = 0.5) based on data simulated from three viruses over five years with two

viruses correlated and the remaining virus independent.

Power and type 1 error control. Without correcting for multiple comparisons (pre-mcc)

the power of detecting a moderately strong correlation of 0.5 was greater than 0.8 under each

of the four scenarios (Fig 4, power pre-mcc). As expected, as the strength of the relationship

between viruses increased, the power also increased. On the other hand, this test was unable to

adequately control the type 1 error rate at a 5% significance level without correcting for multi-

ple comparisons (Fig 4, Type 1 error pre-mcc). Therefore, as the number of related viruses

increased, we were more likely to infer false relationships between viruses.

After correcting for multiple comparisons, the power of the test ranged from around 0.2 in

the case of weakly correlated viruses (Fig 4, power post mcc). As expected, power decreased

after correcting for multiple comparisons. We were able to precisely and accurately estimate,

and generally found better control of, the type 1 error rate after correcting for multiple com-

parisons. However, we found no significant difference in the type 1 error rate pre and post

multiple comparison correction (Fig 4, type 1 error pre and post mcc).

Overall, we found the autoregressive model to be more powerful in inferring correlations

between viruses (Fig 4, power post mcc, purple line) with the least amount of success inferring

Temporal interactions in pathogen dynamics
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correlations with the neighbourhood model (Fig 4, power post mcc black, lines). For instance

the autoregressive model had an estimated power of 0.9 when λ = 0.5 whereas the neighbour-

hood model had an estimated power of 0.68.

Virus diagnostic data

From the 28,647 patient episodes, defined as aggregated samples taken from each patient over

a 30-day window, 4,759 were positive to at least one virus group and detection was most com-

mon in children aged between 1 and 5 years. Detection of any virus in a given episode was

Fig 2. Examples of simulated temporal effects (ϕ..v) for three viruses. Illustrations of seasonal autoregressive integrated moving average time series

data simulated under parameter settings used in simulation study.

https://doi.org/10.1371/journal.pcbi.1007492.g002

Temporal interactions in pathogen dynamics
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most common in December and least common in August. We observed differing patterns

between the five viruses (Fig 5, black lines). IBV, RSV and CoV were more prevalent in winter

months (November, December and January), AdV was generally less common with a slight

increase in prevalence in spring months (April, May and June) and MPV shifts from winter

peaks (January and February) to spring peaks (March, April and May) after 2010. IBV was the

only virus not to display a regular seasonal pattern. This virus peaked in winter during 2005/

Fig 3. Example of simulated observed and expected counts. An example of observed and expected counts simulated

from three viruses using the method described in the simulation study section.

https://doi.org/10.1371/journal.pcbi.1007492.g003

Table 1. Simulation structure.

Simulating model (Sim) Estimation model (Est)

N N

A A

A N

N A

Combinations used to simulate data and estimate model parameters using either the neighbourhood (N) or

autoregressive (A) structures.

https://doi.org/10.1371/journal.pcbi.1007492.t001

Temporal interactions in pathogen dynamics
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2006, 2007/2008, 2008/2009, 2010/2011 and 2012/2013 but failed to peak during the winter

periods 2006/2007, 2009/2010 and 2011/2012.

Estimated infection expected counts. Expected counts were estimated for each virus and

shown in Fig 5 (purple lines). The expected number of infections of AdV infection remained

relatively high between 2005 to 2010 but decreased during the summer and autumn months of

2011, 2012 and 2013. We found an increased expected number of IBV infection during the

autumn and winter periods of 2005/2006, 2010/2011 and 2012/2013. During the second half of

2009, we found a heightened risk of RSV and MPV infections. More generally, the risk of RSV

Fig 4. Power and type 1 error rate. Estimated power (top) and type 1 error (bottom) based on analysis of synthetic

data for three viruses. Data were simulated (Sim) under one of two structures, neighbourhood (N) and autoregressive

(A) and parameters estimated (Est) under one of the two structures. Results shown for no multiple comparison

correction (pre-mcc), left, and with a multiple comparison correction (post-mcc), right.

https://doi.org/10.1371/journal.pcbi.1007492.g004

Temporal interactions in pathogen dynamics
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Fig 5. Observed, expected and fitted counts of AdV, hCov, hMPV, IBV and RSV. Observed (black), expected (purple) and fitted (light blue) counts

of the five groups of respiratory viruses between January 2005 and December 2013. A full description of the estimated expected counts is given in the

expected count section. Fitted values are based on autoregressive model.

https://doi.org/10.1371/journal.pcbi.1007492.g005

Temporal interactions in pathogen dynamics
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infection peaked during late summer through to autumn from 2008 onwards whereas the risk

of MPV infection shifted from winter, between 2005 and 2008, to summer, from 2011

onwards.

Virus-virus interactions

For comparison, we first fitted a null model that assumed all five viruses to be independent by

setting Λ−1 = I5 (the identity matrix of dimension 5 × 5). Under the neighbourhood structure,

we found that allowing dependencies between viruses (Λ−1 6¼ I5) provided a better fit to the

data (DIC = 2795.6 versus DIC = 3583.8 for the null model). However, the autoregressive

structure with Λ−1 6¼ I5 minimised DIC (DIC = 2686.4).

Comparing observed values to fitted values under the autoregressive model fit (Fig 5, black

and light blue lines respectively for each virus) to informally check model fit, we were able to

accurately and precisely estimate observed counts of each virus across the nine year time

period. Correlations between observed and fitted values ranged from 0.96 (p-value < 0.001)

for AdV and 0.9997 (p-value< 0.001) for IBV (S2 Appendix).

More precisely, our model captured winter peaks in CoV, winter and spring peaks in MPV

and irregularities in AdV and IBV validating the model fit to these data.

Under the neighbourhood structure, we found a positive covariance between RSV/MPV

and negative covariances between IBV/MPV, CoV/MPV and AdV/IBV (Table 2, Wneigh).

Under the autoregressive structure, we found a positive covariance between RSV/MPV and a

negative covariance between IBV/AdV (Table 2, Wauto), with adjusted p-values for the covari-

ances between IBV/MPV and CoV/MPV of 0.075 and 0.073 respectively.

Our analysis showed robust statistical evidence of a facilitative form of interaction between

RSV and MPV and a competitive form of interaction between IBV and AdV.

Discussion

Humans, animals and plants are exposed to a plethora of co-circulating pathogens, creating

frequent opportunity for interactions between them. There is a growing interest in the health

implications of interacting pathogens that has led to the development of new research in

healthcare [8]. However, robust statistical methods to identify and quantify interactions

among multiple pathogens have been lacking.

Table 2. Estimated covariances between AdV, Cov, MPV, IBV and RSV.

Wneigh Wauto

Adv CoV (-0.27, 0.45) (-0.31, 0.41)

MPV (-0.35, 0.22) (-0.35, 0.20)

IBV (-0.67, -0.16) (-0.68, -0.15)

RSV (-0.37, 0.29) (-0.32, 0.41)

CoV MPV (-0.66, -0.11) (-0.66, -0.08)

IBV (-0.23, 0.45) (-0.18, 0.43)

RSV (-0.28, 0.32) (-0.32, 0.29)

MPV IBV (-0.66 -0.13) (-0.64, -0.07)

RSV (0.32, 0.71) (0.18, 0.67)

IBV RSV (-0.51, 0.05) (-0.54, 0.04)

Posterior density interval estimates of covariances between AdV, CoV, MPV, IBV and RSV. Covariances different

from zero after multiple comparison correction are highlighted in bold.

https://doi.org/10.1371/journal.pcbi.1007492.t002
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Traditional regression-based approaches can handle confounding variables but do not nec-

essarily infer non-independencies between multiple response variables [12–18]. Time series

specific methods (e.g. wavelets or spectral analysis) are powerful but do not handle confound-

ing variables, are limited to pairwise comparison, and may also make assumptions of non-sta-

tionarity (e.g. Granger-Causality) [19–22, 24, 25]. Fitting epidemiological models which

contain interactions to the data is also possible, but becomes very complex when multiple

pathogens are present.

This paper addresses the need for a more widely applicable statistical framework that can

jointly infer unknown interactions among pathogens for which multiple contemporaneous

time series are available. The framework accounts for non-stationarity, confounding variables

such as seasonality and patient demographics and requires no prior knowledge or specification

of the underlying biological or ecological mechanisms.

We presented a conceptual framework derived from Bayesian multivariate disease mapping

methods that provides a powerful statistical tool for inferring pathogen-pathogen interactions

from diagnostic and/or surveillance time series data. Whilst standard multivariate disease

mapping frameworks investigate the joint spatial distribution of multiple diseases coinfecting

a population simultaneously, our method instead analyses the joint temporal distribution of

multiple infections. Because multivariate disease mapping naturally incorporates a between-

disease covariance matrix, these methods conveniently lend themselves to the inference of

temporal signatures of pathogen-pathogen interactions when adapted to analyse temporal

dependencies. Importantly, because our method accounts for confounding variables as well as

the autocorrelation structure, the method distinguishes genuine pathogen-pathogen interac-

tions from simple correlations.

By applying our framework to extensive diagnostic data accrued over a nine-year period

from a well-defined patient population, our analysis provides evidence of epidemiological

interactions among respiratory viruses. Acute respiratory infections are a significant cause of

illness and mortality and are primarily attributed to a group of viruses that occupy a shared

ecological niche in the respiratory tract. Although observational data [39–42] and univariate

response regression models [41, 43–45] indicate the potential for interactions among these

common pathogens, limited evidence exists of their impact on epidemiological infection

dynamics. Under the autoregressive structure, which provided a better fit to these data, our

analysis provides robust evidence of a positive covariance between RSV and MPV and a nega-

tive covariance between IBV and AdV. This provides a basis for future work to explore the

public health implications of these relationships.

We anticipate that this framework will aid in the epidemiological understanding of linked

pathogen dynamics. The knowledge that specific pathogen-pathogen interactions exist and of

their form (positive or negative) provides an important first step towards improving disease

forecasting models. Such models could be adapted for multi-pathogen systems by incorporat-

ing pathogen-pathogen interactions through reduced or enhanced transmissibility of second-

ary/co-infecting pathogens. Ultimately, improved understanding of the impact of coinfections

on health outcomes will improve the public health utility of such models by enabling estima-

tion of disease burden and pressures on different sections of the healthcare system, for instance

the numbers of hospital beds needed at different times of the year.

In summary, we have developed a new and robust method of inferring interactions from

multiple pathogen time series. Applying this approach to time series data of pathogens that co-

circulate in a given population allows quantification of interactions that will lead to a better

understanding of the joint epidemiological dynamics of diseases. These inferences, in combi-

nation with laboratory experiments to further elucidate the underlying mechanisms, will

enhance the understanding of linked pathogen dynamics, inform the forecasting of disease
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incidence and improve public health preparedness. In addition, they will result in better ways

to evaluate the impact of public health interventions, thus aiding the design of better measures

to control infectious diseases.

Materials and methods

Respiratory virus infection time series data

Our dataset derives from routinely collected clinical samples tested for respiratory viruses by

the West of Scotland Specialist Virology Center (WoSSVC) for Greater Glasgow and Clyde

Health Board between January 2005 and December 2013. Each sample was tested by multiplex

real-time RT-PCR and test results (virus positive or negative) were available for five groups of

respiratory viruses: adenovirus [AdV]; coronavirus [CoV]; human metapneumovirus [MPV];

influenza B virus [IBV]; and respiratory syncytial virus [RSV] [46]. Sampling date, patient age,

patient gender and sample origin (hospital or general practice submission that we used as a

proxy for infection severity) were recorded. Multiple samples from the same patient received

within a 30-day period were aggregated into a single episode of respiratory illness resulting in

28,647 patient episodes. A patient was considered virus-positive during an episode if at least

one clinical sample was positive during the 30-day window. Ethical approval was not required

here since samples were collected as part of routine diagnostic work. Information from NHS

Scotland [47–49] informed participating patients of the use of their data. We refer the reader

to Nickbakhsh et al. [38] for a full description of these data.

Whilst data are available at the individual level, we are predominantly interested in estimat-

ing correlations in temporal patterns between the five viruses at the population level. There-

fore, for each virus, data were aggregated into monthly infection counts across the time frame

of this study.

Relative risks identify time points where observed counts are higher or lower than expected,

with expected counts accounting for expected seasonality and risk factors associated with

respiratory infection [38]. We note that this differs from the conventional measure which com-

pares exposed and unexposed groups. We used the relative risk to measure the excess risk of

viral infection that cannot be explained by seasonality or patient demographics. By inferring

dependencies between viral species in terms of excess risks, we can directly infer viral

interactions.

Multivariate spatio-temporal model

Conditional autoregressive models are extensively used in the analysis of spatial data to model

the relative risk of a virus or more generally a disease [50, 51]. The class of Bayesian model typ-

ically used in this context is given by

YijEi;RRi � PoissonðEiRRiÞ

log ðRRiÞ ¼ aþ �i

where Yi, Ei and RRi are the observed count, expected count, derived from available patient

demographic data (refer to expected counts section), and relative risk for some index i (for

example, location or time interval) [30] and ϕ = {ϕ1, . . ., ϕI} spatial random effects modelled

jointly through a conditional autoregressive (CAR) distribution [52]

� � MVNð0; ðtðD � lWÞÞ� 1
Þ:
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Matrix W is a proximity matrix, λ a smoothing parameter, τ a measure of precision and D a

diagonal matrix such that Di = ∑i0Wii0.

Extending this model to multiple viruses, or more generally multiple pathogens, then

YivjEiv;RRiv � PoissonðEivRRivÞ

log ðRRivÞ ¼ av þ �iv

where Yiv, Eiv and RRiv are the observed count, expected count and relative risk of virus v and

αv a virus specific intercept term. A multivariate CAR (MCAR) distribution can jointly model

ϕ by incorporating a between virus covariance matrix Λ−1 of dimension V × V (where V is the

total number of viruses):

� � MVNð0; ½O� L�� 1
Þ:

In this case, O = D − λW, ϕ = {ϕ.1, . . ., ϕ.V} and ϕ.v = {ϕ1v, . . ., ϕIv} [53, 54].

Temporal autocorrelations may be induced in this model, at time point j, through the con-

ditional expectation of ϕj|ϕj−1

�jj�j� 1 � MVNðs�j� 1; ½O� L�
� 1
Þ:

The parameter s controls the level of temporal autocorrelation such that s = 0 implies no

autocorrelation whereas s = 1 is equivalent to a first order random walk [32]. Typically, where

temporal autocorrelations are modelled through the conditional expectation, spatial autocor-

relations are modelled through the precision matrix [32].

Full model

We model monthly time series count data from multiple viruses simultaneously over a nine

year period. We index over monthly time intervals and so monthly autocorrelations are mod-

elled in terms of the precision matrix and yearly autocorrelations are modelled in terms of the

conditional expectation in a similar fashion to the multivariate spatial-temporal model detailed

above. The observed count of virus v in month m of year t, Ymtv is modelled in terms of the

expected count Emtv and relative risk RRmtv:

YmtvjEmtv;RRmtv � PoissonðEmtvRRmtvÞ

log ðRRmtvÞ ¼ av þ �mtv

with αv an intercept term specific to virus v and ϕ.t. = {ϕ.t1, . . ., ϕ.tV} a vector of random effects

modelled conditionally through a MCAR prior

�:t:j�:t� 1: � MVNðsv�:t� 1:; ½O� L�
� 1
Þ:

This parameterisation of a MCAR model captures both the seasonal trends of each virus via

O and long-term temporal trends via s1, . . ., sV. The conditional expectation of ϕ.t. depends on

the previous year ϕ.t−1., capturing long term temporal trends. By allowing dependencies

between neighbouring months, we account for seasonality in viral infection frequencies.

MCAR prior specification. The covariance structure of the MCAR distribution used to

model random seasonal-temporal effects is the Kronecker product of precision matrices O

and Λ.

The between-virus precision matrix Λ accounts for dependencies between viral relative

risks in terms of monthly trends. Wishart priors can be used for unstructured precision matri-

ces such as Λ [55], however, we employed a modified Cholesky decomposition to estimate
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covariance matrix Λ−1:

L
� 1
¼ SGGTS

where S was a diagonal matrix with elements proportional to viral standard deviations and Γ a

lower triangular matrix relating to viral correlations [56]. This parameterisation ensured the

positive-definiteness of Λ−1, although we note that other parameterisations are available [57].

Matrix O captures seasonal trends in terms of monthly dependencies defined through a

proximity matrix W. We will consider two possible constructions of W: neighbourhood struc-

ture and autoregressive structure.

Neighbourhood structure. Assuming neighbouring months are more similar than distant

months, W can be defined such that wij = 1 if months i and j are neighbouring months and

wij = 0 if months i and j are not neighbouring months. Neighbours were fixed as the previous

and subsequent three months. Taking a neighbourhood approach, we set

Oneigh ¼ D � lWneigh

where λ is a smoothing parameter and D a 12 × 12 diagonal matrix with Di ¼
P

jwneighij
. The

total number of nearest neighbours of month i [53, 58].

Autoregressive structure. Under this construction, W was defined through an autore-

gressive process and the corresponding matrix denoted by Wauto. We set the ijth entry of

Wauto (i 6¼ j) to be rdij with dij the distance between months i and j and ρ a temporal correlation

parameter satisfying ρ< 1. We defined distance as the number of months between i and j.
Taking an autoregressive approach, we set

Oauto ¼ D � lWauto

with D a diagonal matrix with Di ¼
P

jwautoij
:We note that these formulations can easily be

extended to other MCAR structures [53, 59].

Expected counts. We required expected counts of each virus at each time point in this

study. Since individual level data were available, a series of logistic regressions were used to

estimate the probability of testing positive for a virus at a given time point. For month of the

year m, the log odds of virus v, logit(pmv), was estimated through fixed effects of age, sex and

severity (estimated by hospital or general practice submission) and a yearly random effect. The

standardised probability of virus v in month m, psmv, was estimated as

p̂smv ¼
X

a;s;l;t

Nasltp̂mvaslt
Nmv

:

where Naslt was the number of people of age a, sex s and infection severity l in year t; p̂mvaslt the

estimated probability of a person of age a, sex s with infection severity l in year t testing positive

for virus v in month m; and Nmv the number of swabs tested for virus v in month m. The esti-

mated probabilities of each virus in each month are therefore standardised for age, sex and

severity and account for yearly differences in circulation.

The expected count for virus v in month m of year t was then

Emtv ¼ Nmtvp̂smv

with Nmtv the number of of patient episodes of illness tested for virus v in month m in year t.
Estimating model parameters. This model was implemented in jags [60] using the

R2jags package [61] in R [62]. All results are averaged across five independent chains. In each

chain, we took 50,000 thinned draws across 500,000 iterations after a burn-in period of
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300,000 iterations. R code used to fit models is provided (S1 Appendix). We note that the mul-

tivariate intrinsic Gaussian CAR prior distribution is fully specified in GeoBUGS [63]. How-

ever, our approach allows for other parameterisations of the MCAR distribution providing

more flexibility in separating monthly and yearly temporal dependencies.

Multiple comparison correction. For each covariance parameter, higher posterior den-

sity intervals (HPDI) were estimated. Posterior probabilities were then estimated to assess the

probability of zero being included in each interval, synonymous to Bayesian p-values defined

in terms of lower tail posterior probabilities [64, 65]. Covariance parameters with a posterior

probability less than 0.05 were deemed different from zero [64]. In order to control for multi-

ple comparisons, covariance parameters with an adjusted probability, controlling the false dis-

covery rate [64, 66], less than 0.05 were deemed different from zero and used as support for a

significant covariance between the corresponding viruses.

Simulation study

The specific aim of this paper was to estimate the between-virus covariance matrix Λ−1. We

prove the validity of our proposed model (Fig 1) in modelling multivariate time series data

through simulating data from three viral infections ranging from independence to moderately

high correlations. We illustrate that this method had power to detect dependent time series

data whilst controlling the Type 1 error rate.

We began by simulating individual level data reflecting the virological diagnostic data. For

each sample, an age, sex and severity were drawn from the observed virological diagnostic data

distributions [38]. Regression coefficients used to estimate the probability of each virus were

drawn such that βintercept = 0, βage* N(0, 0.1), βgender* N(0, 0.1) and βseverity* N(0, 0.1).

Within each year, we randomly sampled between 20 and 200 samples per month per virus in

order to reflect differing testing frequencies within and between viruses. Standardised proba-

bilities of each virus within each month p̂smv were then estimated using the methods described

in the Expected counts section. Expected counts were taken as the product of the standardised

probabilities and the number of samples taken within that month for the corresponding virus.

Monthly effect sizes were simulated using the sarima package [67] in R [62]. We choose this

package due to its flexibility in simulating seasonal non-stationary time series data. We were

able to combine differencing (or order d) with an autoregression (of order p) and a moving

average model (of order q) to obtain a non-seasonal ARIMA model. In addition seasonal com-

ponents were included through seasonal differencing (D), autoregression (P) and a moving

average model (Q) over period m therefore simulating from a SARIMA(p, d, q)(P, D, Q)12 with

period 12 since we are dealing with monthly data. Within each simulation, we used differenc-

ing d = 1 with a second or first order autoregression and moving average p, q 2 {1, 2}. Likewise,

we used either no or a seasonal differencing D 2 {0, 1} and no or a first order autoregression

and moving average p, q 2 {0, 1}. These parameter settings allowed for a wide range of seasonal

and non-stationary time series data. Fig 2 provides examples of simulated time series data

under these parameter settings.

Random effects ϕ were drawn from multivariate normal distributions with yearly smooth-

ing parameters and monthly smoothing parameter s1, s2, s3 and λ simulated uniformly between

0 and 0.9 and precision matrix equal to the Kronecker product of matrices O and Λ. Matrix O

was dependent on the choice of structure used to simulate data. In this case we simulated from

both the neighbourhood and autoregressive structure (Fig 1). In the case of the autoregressive

structure, we simulated ρ uniformly between 0 and 0.9 (method described in MCAR prior

specification section).
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Matrix Λ was the virus correlation matrix that we aimed to estimate. We simulated data

from three viruses with one virus pair, virus 1 and virus 2, non-independent of each other but

both independent of the remaining virus, virus 3. We explored a variety of correlations

between virus 1 and virus 2 ranging from 0.2 to 0.5. This range was chosen to reflect weakly

related viruses (0.2) to moderate to strongly related viruses (0.5). We anticipated that as the

strength of correlation increased, the power would also increase whilst still controlling the type

1 error rate.

Relative risks were then taken additively as the exponential of virus intercept terms α1, α2,

α2 simulated uniformly and random effects ϕ. Observed counts were the product of expected

counts and relative risks. Fig 3 illustrates observed and expected counts from three viruses.

We fitted both models (Fig 1, neighbourhood and autoregressive structure) to data simu-

lated through both structures with or without a multiple comparison correction creating eight

possible simulation and estimation scenarios (Table 1). In each case we simulated and esti-

mated 100 times. Each model was fitted in jags [60] using the R2jags package [61] in R [62] (S1

Appendix). All results are averaged across two independent chains. In each chain, we took

3000 thinned draws across 300,000 iterations after a burn-in period of 200,000 iterations.

Under each scenario we estimated higher posterior density intervals (HPDI) for covariance

parameters (L̂12,L̂13 and L̂23). Posterior probabilities were then estimated to assess the proba-

bility of zero being included in each interval, synonymous to Bayesian p-values defined in

terms of lower tail posterior probabilities [64, 65]. Covariance parameters with a posterior

probability less than 0.05 were deemed different from zero [64]. In order to control for multi-

ple comparisons, covariance parameters with an adjusted probability, controlling the false dis-

covery rate [64, 66], less than 0.05 were deemed different from zero and used as support for a

significant covariance between the corresponding viruses.

Supporting information

S1 Appendix. R code used to fit neighbourhood and autoregressive models. R code used to

fit models described in Fig 1. Models were written and fitted in jags.

(R)

S2 Appendix. Observed values plotted agained fitted values. Fitted values based on the best

fitting autoregressive model plotted against observed values with the line of equality (y = x).

Correlations and p-values between fitted and observed values are given for each virus.

(PDF)
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20. Cazelles B, Chavez M, Magny G, Guégan J, Hales S. Time-dependent spectral analysis of epidemio-

logical time-series with wavelets. Journal of The Royal Society Interface. 2007; 4(15):625–36. https://

doi.org/10.1098/rsif.2007.0212

21. Bhattacharyya S, Gesteland PH, Korgenski K, Bjornstad ON, Adler FR. Cross-immunity between

strains explains the dynamical pattern of paramyxoviruses. Proceedings of the National Academy of

Sciences of the United States of America. 2015; 112:13396–13400. https://doi.org/10.1073/pnas.

1516698112 PMID: 26460003

22. Groth A, Ghil M. Multivariate singular spectrum analysis and the road to phase synchronization. Physi-

cal review E, Statistical, nonlinear, and soft matter physics. 2011; 84:036206. https://doi.org/10.1103/

PhysRevE.84.036206 PMID: 22060474

23. Shrestha S, Foxman B, Weinberger DM, Steiner C, Viboud C, Rohani P. Identifying the Interaction

Between Influenza and Pneumococcal Pneumonia Using Incidence Data. Science Translational

Medicine. 2013; 5(191):191ra84–191ra84. https://doi.org/10.1126/scitranslmed.3005982 PMID:

23803706

24. Barnett L, Barrett AB, Seth AK. Granger Causality and Transfer Entropy Are Equivalent for Gaussian

Variables. Phys Rev Lett. 2009; 103: 238701. https://doi.org/10.1103/PhysRevLett.103.238701

25. Seth AK. A MATLAB toolbox for Granger causal connectivity analysis. Journal of Neuroscience Meth-

ods. 2010; 186(2):262–273. https://doi.org/10.1016/j.jneumeth.2009.11.020 PMID: 19961876

26. Fisman D. Seasonality of viral infections: mechanisms and unknowns. Clinical Microbiology and Infec-

tion. 2012; 18(10):946–954. https://doi.org/10.1111/j.1469-0691.2012.03968.x PMID: 22817528

27. Lawson A, Lee D, MacNab Y. Editorial. Statistical Methods in Medical Research. 2016; 25(4):1079.

https://doi.org/10.1177/0962280216660410 PMID: 27566766

28. Lawson A, Williams F. An introductory Guide to Disease Mapping. UK: John Wiley & Sons, Ldt; 2001.

29. Knorr-Held L, Besag J. Modelling risk from a disease in time and space. Statistics in Medicine. 1998;

17(18):2045–2060. https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2045::aid-sim943>3.0.

co;2-p PMID: 9789913

30. Lee D. A comparison of conditional autoregressive models used in Bayesian disease mapping. Spatial

and Spatio-temporal Epidemiology. 2011; 2(2):79–89. https://doi.org/10.1016/j.sste.2011.03.001

PMID: 22749587

31. Robertson C, Nelson TA, MacNab YC, Lawson AB. Review of methods for space-time disease surveil-

lance. Spatial and Spatio-temporal Epidemiology. 2010; 1(2):105–116. https://doi.org/10.1016/j.sste.

2009.12.001 PMID: 22749467

32. Rushworth A, Lee D, Mitchell R. A spatio-temporal model for estimating the long-term effects of air pol-

lution on respiratory hospital admissions in Greater London. Spatial and Spatio-temporal Epidemiology.

2014; 10:29–38. https://doi.org/10.1016/j.sste.2014.05.001 PMID: 25113589

33. Knorr-Held L. Bayesian Modelling of Inseparable Space-Time Variation in Disease Risk. Statistics in

Medicine. 2000; 19:2555–2567. https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2555::aid-

sim587>3.0.co;2-# PMID: 10960871

34. Martı́nez-Beneito MA, Lopez-Quilez A, Botella-Rocamora P. An autoregressive approach to spatio-

temporal disease mapping. Statistics in Medicine. 2008; 27(15):2874–2889. https://doi.org/10.1002/

sim.3103

35. Richardson S, Abellan JJ, Best N. Bayesian spatio-temporal analysis of joint patterns of male and

female lung cancer risks in Yorkshire (UK). Statistical Methods in Medical Research. 2006; 15(4):385–

407. https://doi.org/10.1191/0962280206sm458oa PMID: 16886738

36. Held L, Paul M. Modeling seasonality in space-time infectious disease surveillance data. Biometrical

Journal. 2012; 54(6):824–843. https://doi.org/10.1002/bimj.201200037 PMID: 23034894

37. Manda S, Feltbower R, Gilthorpe M. Review and empirical comparison of joint mapping of multiple dis-

eases. Southern African Journal of Epidemiology and Infection. 2012; 27(4):169–182. https://doi.org/

10.1080/10158782.2012.11441505

Temporal interactions in pathogen dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007492 December 13, 2019 19 / 21

https://doi.org/10.1016/j.envint.2019.104987
https://doi.org/10.1016/j.envint.2019.104987
http://www.ncbi.nlm.nih.gov/pubmed/31398655
https://doi.org/10.1126/science.289.5485.1766
http://www.ncbi.nlm.nih.gov/pubmed/10976073
https://doi.org/10.1098/rsif.2007.0212
https://doi.org/10.1098/rsif.2007.0212
https://doi.org/10.1073/pnas.1516698112
https://doi.org/10.1073/pnas.1516698112
http://www.ncbi.nlm.nih.gov/pubmed/26460003
https://doi.org/10.1103/PhysRevE.84.036206
https://doi.org/10.1103/PhysRevE.84.036206
http://www.ncbi.nlm.nih.gov/pubmed/22060474
https://doi.org/10.1126/scitranslmed.3005982
http://www.ncbi.nlm.nih.gov/pubmed/23803706
https://doi.org/10.1103/PhysRevLett.103.238701
https://doi.org/10.1016/j.jneumeth.2009.11.020
http://www.ncbi.nlm.nih.gov/pubmed/19961876
https://doi.org/10.1111/j.1469-0691.2012.03968.x
http://www.ncbi.nlm.nih.gov/pubmed/22817528
https://doi.org/10.1177/0962280216660410
http://www.ncbi.nlm.nih.gov/pubmed/27566766
https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2045::aid-sim943>3.0.co;2-p
https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2045::aid-sim943>3.0.co;2-p
http://www.ncbi.nlm.nih.gov/pubmed/9789913
https://doi.org/10.1016/j.sste.2011.03.001
http://www.ncbi.nlm.nih.gov/pubmed/22749587
https://doi.org/10.1016/j.sste.2009.12.001
https://doi.org/10.1016/j.sste.2009.12.001
http://www.ncbi.nlm.nih.gov/pubmed/22749467
https://doi.org/10.1016/j.sste.2014.05.001
http://www.ncbi.nlm.nih.gov/pubmed/25113589
https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2555::aid-sim587>3.0.co;2-#
https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2555::aid-sim587>3.0.co;2-#
http://www.ncbi.nlm.nih.gov/pubmed/10960871
https://doi.org/10.1002/sim.3103
https://doi.org/10.1002/sim.3103
https://doi.org/10.1191/0962280206sm458oa
http://www.ncbi.nlm.nih.gov/pubmed/16886738
https://doi.org/10.1002/bimj.201200037
http://www.ncbi.nlm.nih.gov/pubmed/23034894
https://doi.org/10.1080/10158782.2012.11441505
https://doi.org/10.1080/10158782.2012.11441505
https://doi.org/10.1371/journal.pcbi.1007492


38. Nickbakhsh S, Thorburn F, Wissmann BV, McMenamin J, Gunson R, Murcia P. Extensive multiplex

PCR diagnostics reveal new insights into the epidemiology of viral respiratory infections. Epidemiol

Infect. 2016; 144:2064–2076. https://doi.org/10.1017/S0950268816000339 PMID: 26931455

39. Anestad G. Interference between outbreaks of respiratory syncytial virus and influenza virus infection.

The Lancet. 1982; p. 502. https://doi.org/10.1016/S0140-6736(82)91466-0

40. Anestad G, Vainio K, Hungnes O. Interference between outbreaks of epidemic viruses. Scandinavian

Journal of Infectious Diseases. 2007; 39:653–654. https://doi.org/10.1080/00365540701253860 PMID:

17577842

41. Casalegno JS, Ottmann M, Duchamp MB, Escuret V, Billaud G, Frober E, et al. Rhinovirus delayed the

circulation of the pandemic influenze A (H1N1) 2009 virus in France. European Journal of Clinical Micro-

biology and Infectious Diseases. 2010; 16:326–329.

42. van Asten L, Bijkerk P, Fanoy E, van Ginkel A, Suijkerbuijk A, van der Hoek W, et al. Early occurrence

of influenza A epidemics coincided with changes in occurrence of other respiratory virus infections.

Influenza and Other Respiratory Viruses. 2016; 10(1):14–26. https://doi.org/10.1111/irv.12348 PMID:

26369646

43. Greer RM, McErlean P, Arden KE, Faux CE, Nitsche A, Lambert SB, et al. Do rhinoviruses reduce the

probability of viral co-detection during acute respiratory tract infections? Journal of Clinical Virology.

2009; 45(1):10–15. https://doi.org/10.1016/j.jcv.2009.03.008 PMID: 19376742

44. Pascalis H, Temmam S, Turpin M. Intense Co-Circulation of Non-Influenza Respiratory Viruses during

the First Wave of Pandemic Influenza pH1N1/2009: A Cohort Study in Reunion Island. PLoS ONE.

2012; 7:e44755. https://doi.org/10.1371/journal.pone.0044755 PMID: 22984554

45. Unkel S, Farrington CP, Garthwaite PH, Robertson C, Andrews N. Statistical methods for the prospec-

tive detection of infectious disease outbreaks: a review. Journal of the Royal Statistical Society: Series

A (Statistics in Society). 2012; 175(1):49–82. https://doi.org/10.1111/j.1467-985X.2011.00714.x

46. Gunson RN, Collins TC, Carman WF. Real-time RT-PCR detection of 12 respiratory viral infections in

four triplex reactions. Journal of Clinical Virology. 2005; 33:341–344. https://doi.org/10.1016/j.jcv.2004.

11.025 PMID: 15927526

47. NHS Scotland. Confidentiality Factsheet; 2019. Available from: https://www.nhsinform.scot/

publications/confidentiality-factsheet.

48. ISD Scotland. Confidentiality and Data Protection; 2019. Available from: https://www.isdscotland.org/

About-ISD/Confidentiality/index.asp?Co=Y.

49. NHS National Services Scotland. Data Protection; 2019. Available from: http://www.nhsnss.org/pages/

corporate/data_protection.php.

50. Lawson A. Bayesian Disease Mapping Hierarchical Modeling in Spatial Epidemiology. Boca Raton:

Chapman & Hall/CRC; 2009.

51. Oliveira VD. Bayesian analysis of conditional autoregressive models. Ann Inst Stat Math. 2012;

64:107–133. https://doi.org/10.1007/s10463-010-0298-1

52. Martinez-Beneito MA. A general modelling framework for multivariate disease mapping. Biometrika.

2013; 100(3):539. https://doi.org/10.1093/biomet/ast023

53. Jin X, Carlin B, Banerjee S. Generalized Hierarchical Multivariate CAR Models for Areal Data. Bio-

metrics. 2005; 61:950–961. https://doi.org/10.1111/j.1541-0420.2005.00359.x PMID: 16401268

54. MacNab YC. On Bayesian shared component disease mapping and ecological regression with errors in

covariates. Statistics in Medicine. 2010; 29(11):1239–1249. https://doi.org/10.1002/sim.3875 PMID:

20205271

55. MacNab YC. Mapping disability-adjusted life years: a Bayesian hierarchical model framework for bur-

den of disease and injury assessment. Statistics in Medicine. 2007; 26(26):4746–4769. https://doi.org/

10.1002/sim.2890 PMID: 17427183

56. Chen Z, Dunson D. Random Effects Selection in Linear Mixed Models. Biometrics. 2003; 59:762–769.

https://doi.org/10.1111/j.0006-341x.2003.00089.x PMID: 14969453

57. Pourahmadi M. Covariance Estimation: The GLM and Regularization Perspectives. Stat Sci. 2011;

26:369–387. https://doi.org/10.1214/11-STS358

58. Wall MM. A close look at the spatial structure implied by the CAR and SAR models. Journal of Statistical

Planning and Inference. 2004; 121(2):311–324. https://doi.org/10.1016/S0378-3758(03)00111-3

59. MacNab Y. On identification in Bayesian disease mapping and ecological-spatial regression models.

Stat Methods Med Res. 2014; 23:134–155. https://doi.org/10.1177/0962280212447152 PMID:

22573502

60. Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling; 2003.

61. Su Y, Yajima M. R2jags: A Package for Running ‘JAGS’ from R; 2015.

Temporal interactions in pathogen dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007492 December 13, 2019 20 / 21

https://doi.org/10.1017/S0950268816000339
http://www.ncbi.nlm.nih.gov/pubmed/26931455
https://doi.org/10.1016/S0140-6736(82)91466-0
https://doi.org/10.1080/00365540701253860
http://www.ncbi.nlm.nih.gov/pubmed/17577842
https://doi.org/10.1111/irv.12348
http://www.ncbi.nlm.nih.gov/pubmed/26369646
https://doi.org/10.1016/j.jcv.2009.03.008
http://www.ncbi.nlm.nih.gov/pubmed/19376742
https://doi.org/10.1371/journal.pone.0044755
http://www.ncbi.nlm.nih.gov/pubmed/22984554
https://doi.org/10.1111/j.1467-985X.2011.00714.x
https://doi.org/10.1016/j.jcv.2004.11.025
https://doi.org/10.1016/j.jcv.2004.11.025
http://www.ncbi.nlm.nih.gov/pubmed/15927526
https://www.nhsinform.scot/publications/confidentiality-factsheet
https://www.nhsinform.scot/publications/confidentiality-factsheet
https://www.isdscotland.org/About-ISD/Confidentiality/index.asp?Co=Y
https://www.isdscotland.org/About-ISD/Confidentiality/index.asp?Co=Y
http://www.nhsnss.org/pages/corporate/data_protection.php
http://www.nhsnss.org/pages/corporate/data_protection.php
https://doi.org/10.1007/s10463-010-0298-1
https://doi.org/10.1093/biomet/ast023
https://doi.org/10.1111/j.1541-0420.2005.00359.x
http://www.ncbi.nlm.nih.gov/pubmed/16401268
https://doi.org/10.1002/sim.3875
http://www.ncbi.nlm.nih.gov/pubmed/20205271
https://doi.org/10.1002/sim.2890
https://doi.org/10.1002/sim.2890
http://www.ncbi.nlm.nih.gov/pubmed/17427183
https://doi.org/10.1111/j.0006-341x.2003.00089.x
http://www.ncbi.nlm.nih.gov/pubmed/14969453
https://doi.org/10.1214/11-STS358
https://doi.org/10.1016/S0378-3758(03)00111-3
https://doi.org/10.1177/0962280212447152
http://www.ncbi.nlm.nih.gov/pubmed/22573502
https://doi.org/10.1371/journal.pcbi.1007492


62. R Core Team. R: A Language and Environment for Statistical Computing; 2015. Available from: http://

www.R-project.org/.

63. Thomas A, Best N, Lunn D, Arnold R, Spiegelhalter D. GeoBUGS User Manual; 2004.

64. Matz MV, Wright RM, Scott JG. No Control Genes Required: Bayesian Analysis of qRT-PCR Data.

PLOS ONE. 2013; 8(8):1–12. https://doi.org/10.1371/journal.pone.0071448

65. Lin Y, Lipsitz S, Sinha D, Gawande AA, Regenbogen SE, Greenberg CC. Using Bayesian p-values in a

2 × 2 table of matched pairs with incompletely classified data. Journal of the Royal Statistical Society:

Series C (Applied Statistics). 2009; 58(2):237–246. https://doi.org/10.1111/j.1467-9876.2008.00645.x

66. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to mul-

tiple testing. J R Stat Soc Series B Stat Methodol. 1995; 57:289–300.

67. Boshnakov GN, Halliday J. sarima: Simulation and Prediction with Seasonal ARIMA Models; 2019.

Available from: https://CRAN.R-project.org/package=sarima.

Temporal interactions in pathogen dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007492 December 13, 2019 21 / 21

http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1371/journal.pone.0071448
https://doi.org/10.1111/j.1467-9876.2008.00645.x
https://CRAN.R-project.org/package=sarima
https://doi.org/10.1371/journal.pcbi.1007492

