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Abstract

Embryo assessment and selection is a critical step in an In-vitro fertilization (IVF) procedure. 

Current embryo assessment approaches such as manual microscopic analysis done by 

embryologists or semi-automated time-lapse imaging systems are highly subjective, time-

consuming, or expensive. Availability of cost-effective and easy-to-use hardware and software for 

embryo image data acquisition and analysis can significantly empower embryologists towards 

more efficient clinical decisions both in resource-limited and resource-rich settings. Here, we 

report the development of two inexpensive (<$100 and <$5) and automated imaging platforms that 

utilize advances in artificial intelligence (AI) for rapid, reliable, and accurate evaluations of 

embryo morphological qualities. Using a layered learning approach, we have shown that network 

models pre-trained with high quality embryo image data can be re-trained using data recorded on 

such low-cost, portable optical systems for embryo assessment and classification when relatively 

low-resolution image data is used. Using two test sets of 272 and 319 embryo images recorded on 

the reported stand-alone and smartphone optical systems, we were able to classify embryos based 

on their cell morphology with >90% accuracy.
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Introduction

Over 48 million couples are affected by infertility globally, making it one of the most 

underestimated problems in world 1, 2. Globally, in-vitro fertilization (IVF) has provided an 

expensive solution, costing tens of thousands of dollars, for a significant number of infertile 

couples 3–5. IVF involves cycles of culturing patient embryos, in-vitro, for a few days and 

transferring the best quality embryos back to the patient. The inefficient process has an 

average success rate of 30% and patients usually require multiple cycles for a positive 

outcome 5. Embryo selection based on quality is a critical factor that influences the eventual 

clinical outcome.

Traditionally, embryos are manually assessed by embryologists visually, which is a highly 

subjective procedure 6, 7. Time-lapse imaging (TLI) systems have enabled automated and 

uninterrupted continuous imaging of embryos over the 3 to 6 days of embryo development, 

however, studies have suggested that TLI systems may also be subjective and time-

consuming due to input requirements from embryologists 8, 9. Furthermore, these systems 

are bulky and prohibitively expensive which limit the accessibility even to fertility centers in 

the developed nations 10. Numerous alternative methods of embryo analysis that involve 

phenotypical and genotypical analyses have also been available to embryologists, but owing 

to factors such as their lack of cost-effectiveness and clinical validation, traditional methods 

of visual assessments at specific time-points are still preferred by most clinical practices 
11, 12. Therefore, manual morphological assessments using static images, regardless of the 

subjectivity, is the most widely used method of embryo analysis due to simplicity and cost-

effectiveness 13.

Embryos are usually transferred to a patient’s uterus during either the cleavage or the 

blastocyst stage of development. Embryos reach the blastocyst stage 5–6 days after 

fertilization. Blastocysts have fluid filled cavities and two distinguishable cell types, the 

trophectoderm (TE) and the inner cell mass (ICM). Blastocysts are generally selected for 

transfer based on the expansion of the blastocoel cavity and the quality of the TE and ICM 
14.

Most of the previously developed systems make use of traditional rule-based computer 

vision algorithms and are limited strictly by controlled imaging systems. These algorithms 

are also computationally intensive requiring additional expensive computing hardware and 

space. Deep neural networks on the other hand provide a suitable alternative to traditional 

computer vision-based approaches and have shown great potential in biomedical and 

diagnostic applications 15–17. Recently, deep learning-based approaches have been 

extensively explored in evaluating embryos using data acquired from time-lapse systems and 

have shown promise in automating embryo analysis 18–28. Unlike all prior computer-aided 

algorithms used for embryo assessment, the deep convolutional neural networks (CNN) 

allow for automated embryo feature selection and analysis at the pixel level without any 

interference by an embryologist. However, these networks are still limited to the data 

acquired using bulky and expensive (>$100,000 USD in most cases) imaging systems, which 

is not available to the majority of fertility clinics, even in resource-rich settings, where over 

80% of clinics do not have access to such systems 12.
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The high cost of such systems is one of the main reasons for its low penetration in fertility 

centres. Deep learning approaches, in general, are specific to the data domain that they are 

trained on and do not perform well on shifted domains, let alone on data with loss in quality 
29. Therefore, deep learning networks developed using high-quality data cannot be directly 

adapted to inexpensive, portable optical systems. CNNs, generally require large annotated 

datasets of a target domain for effective learning. However, generation of such datasets is 

inherently difficult, let alone for medical devices and newer inexpensive, portable optical 

hardware with relatively low-resultion image data 30, 31. The development of an automated, 

low-cost system for embryo assessments is, thus, an unmet challenge.

Here, we report the development and validation of two portable, low-cost optical systems for 

human embryo assessment using a neural network developed through layered transfer 

learning technique (Fig.1A and B). We employed a layered learning scheme to achieve the 

best performance with our inexpensive lossy imaging system using a relatively small dataset 

(Fig S1). We first trained the algorithm, pre-trained on ImageNet weights, using a dataset of 

over 2,450 embryos imaged using a commercially available time-lapse imaging system. We 

then retrained the algorithm using embryo images recorded with our portable optical 

devices. The performance of the developed system systems in embryo classifications was 

similar to the performance of highly trained embryologists as well as CNNs trained and 

tested using high-quality clinical time lapse embryo image data.

Materials and Methods

Stand-alone optical system

The optical housing of the stand-alone system was designed using SolidWorks (Dassault 

Systèmes) and 3D-printed using an Ultimaker 2 Extended (Ultimaker) with polylactic acid 

(PLA). The overall dimensions of the system were 62 × 92 × 175 mm. The core system itself 

contained an electronic circuit with a white light-emitting diode (LED) (Chanzon 

HNPC-59042), a 3 V battery (Panasonic CR1620), and a single pole double-throw switch 

(Teenitor SS-12D00G3). The embryo sample was transilluminated as seen in Figure 1. The 

stand-alone optical system used a 10× Plan-Achromatic objective (Amscope PA10XK-

V300) for image magnification and a complementary metal–oxide–semiconductor (CMOS) 

image sensor (Sony IMX219) for embryo image data acquisition. The CMOS sensor was 

connected to an inexpensive single-board computer (SBC; Raspberry Pi 3), which processed 

the captured images through a custom script (Fig. S2). In addition, the system was connected 

to a smartphone device via WIFI for system operation and data visualization (Fig. 1, S3). 

The captured images were stored on cloud for post verification and analysis. The total cost 

of the system was ~$85, which includes $5 for PLA, ~$30 for the objective, $0.4 for the 

battery, $0.1 for the LED, $19 for the CMOS, and ~$30 for the SBC and the switches and 

wires (Table S1). The application connected to the SBC in the stand-alone system wirelessly 

when recording images (Fig. S2). Furthermore, we developed a smartphone application 

which was running on Android, to connect and interface with the optical system.
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Smartphone-based optical system

A low-cost, portable smartphone-based optical system was also developed for embryo 

assessment. The smartphone attachment was designed using Solidworks and printed using 

an Ultimaker 2 Extended 3D printer with PLA (Fig 1). The dimensions of the device were 

82 × 34 × 48 mm. The acrylic lens used in this system was extracted from a DVD drive. The 

total material cost of the system was ~$3, which includes an estimated $1 for PLA, ~$1 for 

lens, $0.4 for the battery, and $0.1 for the LED and the switches and wires (Table S1). For 

this study, a Moto X Pure (XT1575) was used along with the attachment to collect embryo 

images.

Data collection and structure

Embryo images were collected for research after institutional review board approval by the 

Massachusetts General Hospital Institutional Review Board (IRB#2017P001339 and 

IRB#2019P002392). All of the experiments were performed in compliance with the relevant 

laws and institutional guidelines of Massachusetts General Hospital, Brigham and Women’s 

Hospital, and Partners Healthcare. Embryos donated at the Massachusetts General Hospital’s 

Fertility Center for research were imaged using the smartphone and stand-alone imaging 

systems. Only cells designated for discard or for research purposes were used in this study 

such as unfertilized oocytes (those that were designated to be discarded due to being 

unfertilized by 16–18 hours post insemination), abnormally fertilized oocytes (those that do 

not have 2 pronuclei by 16–18 hours post insemination), and embryos that arrest during pre-

implantation development and those that are not selected for embryo transfer or 

cryopreservation. We have also included oocytes and embryos that have been frozen and 

consented to be discarded specifically for research purposes. A total of 157 and 385 embryo 

images were collected using the stand-alone and smartphone-based optical systems, 

respectively. The embryos were visually viewed under a standard desktop microscope by an 

embryologist for quality assessment and annotation. Embryos with normal fertilization were 

evaluated based on their morphology at the blastocyst stage. At the blastocyst stage, 

embryos are conventionally graded through 83 classes of blastocysts based on the 

combinations of (i) the degree of blastocoel expansion (grades 1–6), (ii) inner cell mass 

quality (grades 1–4), and (iii) trophectoderm quality (grades 1–4) along with 3 classes of 

non-blastocysts (Table S2). For the CNN classification algorithm, the grading system was 

simplified to encompass all 86 classes within a 2-level hierarchy of training and inference 

classes (Fig S4, Table S2). The non-blastocysts category included the training classes 1 and 

2, and blastocysts category included the training classes 3, 4, and 5. The embryos were 

annotated under the 5-class categorization system and trained for the 5 classes. However, the 

inference was at a 2-class level (blastocyst and non-blastocysts) that is more universal, since 

these clinical blastocyst grading systems are center-specific and do apply to all clinics.

We used 1,968 embryo images including augmented data (flips and rotations), collected on 

the stand-alone optical device, along with 2,450 Embryoscope images in training the 

network developed for the stand-alone device (Fig S1 and S4). We also used 1,056 embryo 

images including augmented data (flips and rotations), collected on the smartphone optical 

device, along with 2,450 Embryoscope images in training the network developed for the 

smartphone device (Fig S1 and S4). We performed flips and 90° rotations to the images prior 
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to training and testing, and the data-generator dynamically performed random rotations at 

every batch during data balancing procedures. Augmentation through brightness shifts was 

not used since our portable imaging systems collect data in controlled lighting conditions. 

Other morphological augmentations such as zoom and stretching were not used because 

changes to the morphology of the embryo may affect the overall assessment of embryos. The 

networks were evaluated using independent tests of containing 272 and 319 embryo images 

collected using the stand-alone and smartphone imaging systems, respectively (Fig S1).

Layered network training

We used Xception as the base network architecture to evaluate embryo images 32. For the 

networks designed to evaluate embryo images collected on the portable systems, we added a 

Dense classification layer (5×1) followed by Softmax activation layer (5×1) to Xception’s 

bottleneck section, which results in an addition of 10,245 trainable parameters to the 

network. The model was pre-trained with ImageNet followed by Embryoscope data using 

embryo images recorded 113 hours post-insemination (hpi) 18. Transfer learning is a process 

of transferring knowledge from a trained model to another in order to perform a similar task. 

A model trained on ImageNet has learned features associated over 1,000 categories of non-

medical images. We optimized this model to work with high quality embryo images for the 

task of embryo classification. We further optimized the network to domain-shifted data using 

images from the portable systems. The advantages of using transfer learning from ImageNet 

and higher-quality clinical embryo images include, lower training time and possibly lower 

data requirements during the subsequent optimization procedures. Both networks trained for 

this study were trained using stochastic gradient descent optimization with a decay of 0.9. 

The network training was performed within the Keras framework on Tensorflow on a NVidia 

1080Ti GPU. The network was trained with a batch size set at 64. For each batch the 

network maintained an overall equal distribution of images across all classes. The network’s 

learning rate was updated with a time-based decay at the end of each epoch. The models for 

the stand-alone and smartphone datasets trained with an initial learning rate of 0.00075 and 

0.005, respectively. Training performance was evaluated by monitoring the cross-entropy 

loss. An early stoppage scheme was employed to avoid overfitting, where only the model 

that achieves the lowest validation cross-entropy loss was saved. The total number of epochs 

for training was set at 150.

For Embryoscope training and evaluations, Xception pre-trained on ImageNet, was trained 

and optimized similar to previous reports 18, 20–26. The 2,450 embryo images were split into 

1,708 for training and 742 for testing (Fig S1). The best performing model, identified 

through the lowest validation loss, was tested with the 742 test set which resulted in 2-class 

accuracy of 90.97%. We used this as the clinical performance baseline to compare the two 

networks developed for the portable systems.

Data visualization techniques

Saliency maps and t-distribution stochastic neighbor embedding (t-SNE) were utilized in 

visualizing our data. We have also utilized a dot map to visualize true and false predictions 

more easily. The activations from the activation layer following the final fully connected 

convolution layer were used in combination with Smoothgrad to generate our saliency maps. 
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Both the network trained with smartphone images and with stand-alone images were used to 

generate the respective saliency maps. Similarly, t-SNE plots were generated to visualize 

separability in a 2D space after learning for both datasets. For the sake of computational 

speed, 2,048 dimensions were reduced to 50 using a principal component analysis (PCA), 

following which t-SNE reduced the 50 dimensions to 2 for visualized plots 33.

Results

Hardware characterization

The smartphone and the stand-alone optical systems were designed to be simple and easy-to-

use requiring minimal number of parts for operation (Fig. 1). Furthermore, these systems 

were designed as inexpensive alternatives (over x1000 cheaper). It was important to confirm 

the suitability of image quality prior to testing the portable systems with human embryos. 

The smartphone optical setup contained a plano-convex lens of 9 mm diameter with a focal 

length of 13.5 mm for magnification. We used a 10x standard objective in the stand-alone 

optical system. Resolution of the images was calculated by imaging an USAF 1951 

resolution target and effective digital margination was measured using 1 mm stage 

micrometer. Each micron was represented by approximately 25 pixels in the images 

collected by the stand-alone device with a resolvable limit of 0.78 microns (Fig. S5). 

Similarly, the smartphone system was able to acquire images where each micron was 

represented by 2 pixels with a resolvable limit of 1.74 microns (Fig. S5). Images of embryos 

collected using these systems, therefore, possessed a significant shift in quality relative to 

the clinical Embryoscope systems (Fig S4).

Network training results

Depending on the complexity of the problem of interest, CNNs generally require large 

amounts of image data to accurately learn features and differentiate between the categories 

of classification. However, high-quality medical datasets are scarce and thus, we have 

transfer learned our networks over ImageNet weights followed by training with 2,450 

embryo images recorded with an Embryoscope. Xception trained with high quality embryo 

image data was then re-trained using an augmented dataset of 1,968 and 1,056 embryo 

images acquired at 113 hpi collected using the stand-alone and smartphone imaging systems, 

respectively. The algorithm was then validated using 30% of the images from each dataset in 

order to optimize the system’s hyper-parameters. We implemented early stoppage rules 

during training that terminated training at the lowest validation loss to minimize overfitting. 

After fine-tuning hyperparameters based on performance with our validation data and 

training over 150 epochs, the models that achieved the lowest validation loss were saved. 

The validation accuracies for 5-class categorizations were 80%, and 100% for the 

smartphone-based and stand-alone imaging systems, respectively (Fig.2B i, 2C i ). The loss 

achieved by the best models were 0.5148 and 0.0259 at 96 epochs (Fig. 2B ii, 2C ii ), for the 

smartphone-based and stand-alone imaging systems, respectively.
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Performance of the deep learning model in assessing embryos using the stand-alone 
imaging system

Our network performed well with unknown data collected from the inexpensive optical 

systems. We trained the CNN with embryo images collected using the stand-alone optical 

system and tested it with 272 embryo images. We evaluated the ability of the network in 

separating the two categories of images (blastocysts and non-blastocysts). The area under 

curve (AUC) as revealed by a receiver operator characteristic (ROC) of the system post-

training was 0.98 (CI: 0.95 to 0.99). The accuracy of the neural network in classifying 

between blastocysts and non-blastocysts imaged using the stand-alone system was 96.69% 

(CI: 93.81 to 98.48%) (Fig. 3). Furthermore, the sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV) for the stand-alone system were 95.31% 

(CI: 91.29 to 97.83%), 100% (CI: 95.49 to 100%), 100%, and 89.89% (CI: 82.45 to 

94.39%), respectively (Fig. 3). Saliency maps confirmed that the systems did use relevant 

morphological features of the embryos in these images for the classifications (Fig. 3).

We also compared the performance of the developed model in evaluating embryos imaged 

using the stand-alone optical system with the performance of the model trained with 

Embryoscope data in evaluating embryos imaged with an Embryoscope. A chi-squared test 

revealed that the stand-alone optical system performed with an efficiency that was not 

inferior to an Embryoscope, with a difference of 5.72% (CI: 2.24 to 8.63%; P<0.05).

Performance of the deep learning model in assessing embryos using the smartphone 
optical system

Similarly, we tested our network with data collected from the smartphone system. We re-

trained the CNN with embryo images collected using the smartphone optical system and 

tested it with 319 embryo images. We evaluated the ability of the network in separating the 

two categories of images (blastocysts and non-blastocysts). The AUC as revealed by a ROC 

analysis of the system post-training was 0.94 (CI: 0.90 to 0.96). The accuracy of the neural 

network in classifying between blastocysts and non-blastocysts imaged using the 

smartphone was 92.16% (CI: 88.65 to 94.86%) (Fig. 3). The sensitivity, specificity, PPV, and 

NPV of the smartphone-based optical system were 98.54% (CI: 95.78 to 99.70%), 80.70% 

(CI: 72.25 to 87.49%), 90.18% (CI: 86.31% to 93.04%), and 96.84% (CI: 90.86% to 

98.95%), respectively (Fig. 3). Also, the saliency maps confirmed that the system did use 

relevant morphological features of the embryos in these images for the classifications (Fig. 

3). An evaluation with the neural network trained on Embryoscope data through a chi-

squared test for comparison revealed that the difference in performance between the two 

systems were non-differentiable (P=0.61; P>0.05), with a difference of 1.19% (CI: −2.8 to 

4.7%; P>0.05).

Discussion

Embryo morphology is clinically analyzed at various stages of its development to identify 

and sort embryos based on their quality. Usually, embryos are assessed to check for 

fertilization during the first day of development, at the cleavage stage (2–3 days), and at the 

blastocyst (5–6 days) stage to evaluate the best embryo(s) for transfer. The most important 
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timepoint for evaluation, arguably, remains to be at the 5th/6th day of development owing to 

the growing popularity of blastocyst transfers. Although, the devices presented in this work 

evaluate embryos at the 5th day of embryo development with >90% accuracies, they can be 

adapted to any of the embryo development stages for assessment. The primary goal of the 

study was to evaluate whether portable, low-cost optical systems, such as the ones presented 

here, can provide images of suitable quality to enable AI-mediated automated embryo 

assessments equivalent to approaches that are currently being researched with state-of-the-

art imaging systems. Our results with the inexpensive stand-alone (<$100) and smartphone-

based (<$5) imaging systems indicate that such platforms can indeed evaluate embryos with 

high accuracy and potentially act as support systems at a clinical level in both resource-

limited and resource-rich settings.

One of primary limitations in access to care is high costs associated with IVF. In the recent 

years, technologies such as intracytoplasmic sperm injection (ICSI), time-lapse imaging, and 

pre-implantation genetic screening have been introduced in fertility centers that have helped 

in improving clinical outcomes. However, it is important to note that with the introduction of 

new technologies, costs associated with IVF have also dramatically increased. Furthermore, 

costs associated with setting up IVF labs can range upwards of $3 million dollars and with 

every additional procedure that is introduced new equipment and consumables are also 

added to the costs for the proper functioning of the lab. Therefore, newly developed 

technologies that demand expensive equipment are not available to most clinics. 

Unsurprisingly, the adoption of time-lapse imaging systems is limited to <17% of 

embryology labs even in a resource-rich setting such as the United States 12. Currently, IVF 

exists as a solution only to the economically well-off. Our deep learning-based approach on 

the other hand, does not rely on expensive hardware for both computation and data 

acquisition. We envision that these systems may improve the access to IVF procedures to 

many patients in need. Our presented systems here do not offer some of the features that 

time-lapse imaging systems possess such as a built-in incubator. However, the portability 

and low-cost of these systems can outweigh such features by allowing for availability of 

multiple imaging stations located at various key locations within an embryology lab, which 

does not hinder embryologists workflow within the lab while providing a rapid verification 

and assessment aid. Such systems can potentially improve the objectivity of assessment and 

reduce time spent per embryo. However, the evaluation of embryo morphologies at the 

blastocyst stage is just one of factors that dictate the clinical outcome in patients and other 

factors such as the male factor, medication, and patient prognosis and history also need to be 

taken into consideration by the deep learning model to potentially improve clinical outcomes 

directly. Future work involving the use the additional parameters is warranted.

Our reported data using a layered training approach showed that such systems may help 

reducing the required data for training. We pre-trained our models using clinical embryo 

images recorded with an Embryoscope. Clinical datasets used in this study was collected 

using time-lapse imaging systems that costs >$100k. While current applications of AI have 

focused on evaluating the state-of-the-art imaging systems, we have shown that these 

systems can also be adapted to low-cost optical devices. The layered training approach 

reported in this study can also be used in other non-fertility-related medical applications 

where image processing of low-quality image data is required.
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Such low-cost, portable systems empowered with AI can shift the paradigm in fertility 

management in both resource-limited and resource-rich settings by providing an assistive 

tool to embryologists for consistent and reliable embryo assessment. Our work presents the 

first implementation of such a cost-effective alternative approach that is intended to assist 

embryologists and improve the quality of care provided to patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The AI-empowered portable imaging systems for embryo assessment.
(A) Stand-alone optical system for embryo assessment. (i) Schematic of exploded image of 

the stand-alone optical system and its various components. The system is wirelessly 

controlled using a smartphone to image embryos on a standard embryo culture dish. (ii) The 

actual image of the fabricated stand-alone optical system. (B) The optical accessory for 

embryo imaging and analysis on-phone. (i) Schematics of exploded image of the 

smartphone-based imaging system and its various components. (ii) The actual image of the 

fabricated smartphone-based optical system for embryo assessment. Both systems can 

acquire embryo images using standard embryo culture dishes.
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Figure 2. Graphical depiction of data flow with training and validation curves for accuracy and 
cross-entropy.
(A) The computational flow chart of the data through the Xception architecture. (B) The 

measured (i) accuracy and (i) cross-entropy loss during the training and validation phase of 

the network development for the smartphone imaging system. (C) The measured (i) accuracy 

and (ii) cross-entropy loss during the training and validation phases of the network 

development for the stand-alone imaging system. The bold lines indicate smoothed curves 

for easier visualization while the semi-transparent lines indicate their respective non-

smoothened curves.
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Figure 3. System performance with images collected from the stand-alone and smartphone 
imaging systems along with TSNE and saliency visualizations.
(A) The dot plot illustrates the system’s performance in evaluating embryos imaged with the 

stand-alone system (n=272). (B) The dot plot illustrates the system’s performance in 

evaluating embryos imaged with the smartphone system (n=319). The squares represent true 

labels and the circles within them represent the system’s classification. Blue represents non-

blastocysts and red represents blastocysts. t-SNE generated scatter plots are also presented to 

help visualize the separation of blastocyst and non-blastocyst embryo images obtained 

through (A) the stand-alone system and (B) the smartphone system. Each point represents an 

embryo image acquired through the respective imaging system. Saliency maps provided here 

were extracted from the networks to highlight the highest weighted features of the embryo 

images.
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