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Cholinergic Modulation Promotes 
Attentional Modulation in Primary 
Visual Cortex- A Modeling Study
Atena Sajedin1, Mohammad Bagher Menhaj1*, Abdol-Hossein Vahabie2, Stefano Panzeri   3 & 
Hossein Esteky4*

Attention greatly influences sensory neural processing by enhancing firing rates of neurons that 
represent the attended stimuli and by modulating their tuning properties. The cholinergic system is 
believed to partly mediate the attention contingent improvement of cortical processing by influencing 
neuronal excitability, synaptic transmission and neural network characteristics. Here, we used a 
biophysically based model to investigate the mechanisms by which cholinergic system influences 
sensory information processing in the primary visual cortex (V1) layer 4C. The physiological properties 
and architectures of our model were inspired by experimental data and include feed-forward input 
from dorsal lateral geniculate nucleus that sets up orientation preference in V1 neural responses. 
When including a cholinergic drive, we found significant sharpening in orientation selectivity, 
desynchronization of LFP gamma power and spike-field coherence, decreased response variability 
and correlation reduction mostly by influencing intracortical interactions and by increasing inhibitory 
drive. Our results indicated that these effects emerged due to changes specific to the behavior of the 
inhibitory neurons. The behavior of our model closely resembles the effects of attention on neural 
activities in monkey V1. Our model suggests precise mechanisms through which cholinergic modulation 
may mediate the effects of attention in the visual cortex.

Attention organizes our overwhelming sensory world and improves our ability to detect and discriminate behav-
iorally relevant sensory information1–5. Attentional modulation can enhance firing rates of cortical neurons6–8, 
influence their tuning properties1,9 and change receptive field boundary and size8. There is extensive experimental 
evidence for the involvement of acetylcholine (ACh) in attentional modulation10–14. Fronto-parietal axis plays a 
major role in attentional modulation of cortical sensory areas15,16 through direct cortico–cortical feedback con-
nections and activation of cholinergic neurons in the basal forebrain corticocepetal system12,17. This forebrain 
nucleus represents the most rostral of the neuromodulatory cortical input systems and projects to sensory cortical 
areas. ACh, as a central nervous system neuromodulator, plays an essential role in many aspects of cognitive func-
tions such as attention, arousal, vigilance, memory and learning10,18,19. At the cellular level, ACh can enhance the 
synaptic efficacy of thalamo-cortical connections through nicotinic receptors20 and suppress the synaptic efficacy 
of intra-cortical connections via muscarinic receptors20. Activation of muscarinic receptors results in improved 
neuronal excitability and increased inhibitory drive and aids attentional processing10.

ACh significantly enhances attentional modulation in the primary visual (V1) cortex neurons10. Depletion of 
ACh by disrupting cholinergic fibers results in diminished impact of attentional input12. In area V1 of anesthe-
tized cats, ACh application increases firing rates and neuronal orientation tuning21,22. It also improves neuronal 
tuning and coding in area V1 of anesthetized monkeys23. In addition, ACh application imitates attentional effects 
on spatial integration and surround mechanisms in area V41,8 and V19. However, it should be noted that some 
studies have failed to replicate the effect of ACh on tuning curve sharpening and have reported diverse, and in 
some cases, contradictory results in V1 of anesthetized animals24,25.

It has been suggested that cortical orientation tuning profile of V1 neurons are mediated by activation of 
thalamocortical connections and by the contribution of inhibitory intracortical connections26,27. Cholinergic 
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modulation controls synaptic efficacy of the thalamocortical and intracortical connections20,28. It increases inhib-
itory drive which can cause changes in the neural response selectivity similar to the effects of attention13,29,30. 
In addition, attention leads to a marked reduction in neuronal response variability of V131 and V432. Similar 
effects have been observed in rat V1 after basal forebrain stimulation17,33. Furthermore, attention decreases noise 
correlations of neurons in macaque area V131 and V432,34,35 and improve signal-to-noise ratio32,35. Similar effects 
are observed by increasing cholinergic drive in rat visual cortex in which ACh reduces noise correlation and 
enhances neural coding efficiency33. At network level, ACh has a significant control over the emergence of rhyth-
mic activity in the cortical circuits13 and for synchronizing neuronal activity28,36. Importantly, attention enhances 
the synchrony of neuronal populations in V437 and decreases the degree of neuronal gamma (30–50 Hz) syn-
chrony in V138–40.

While it is well established that ACh enhances visual sensory encoding, the precise mechanisms by which 
these effects are implemented at the cellular and circuit levels remain poorly understood. To study the mechanism 
through which ACh exerts its effect on sensory processing, we used a biophysically based recurrent V1 cortical 
network model to study the impact of cholinergic modulation on V1 neurons’ orientation tuning, spontaneous 
activity, noise correlation, neural response variability and gamma synchronization. The proposed model is a spik-
ing neuronal network with a ring model structure41,42. We used the ring model structure as it replicates macaque 
V1 circuitries. We found that cholinergic modulation increased neural firing rates and sharpened the orientation 
tuning curves in network model layer 4C. Larger changes of the width of orientation tuning curve was observed 
when cholinergic input was introduced at high baseline activity conditions. In addition, ACh reduced noise corre-
lations and neural response variability. These changes improved neural population coding accuracy. Importantly, 
ACh application resulted in a significant reduction in the magnitude of local field potential (LFP) oscillations and 
the spike-field coherence (SFC) in the gamma frequency range (30–50 Hz). Furthermore, ACh induced a highly 
desynchronized neural network state as indicated by the field potential activity of the neuronal populations while 
increasing the neural firing rates.

Results
Here we studied how cholinergic modulation affects the response properties of a biologically inspired primary 
visual cortex (V1) network model. We used a V1 recurrent spiking ring network model with 1000 excitatory and 
250 inhibitory neurons. The excitatory neurons were pooled into two groups (S1 and S2) each representing a sep-
arate location in space and only one of them, (S1), received the stimulus related external inputs (see Methods for 
details). Neurons were characterized by their spiking activities and received feed-forward input from the lateral 
geniculate nucleus (LGN) and lateral corticocortical inputs via excitatory to excitatory weights with cosine profile 
as indicated by experimental studies of the cholinergic effects in V143. We configure a special structure into our 
model through coupling the preferred orientation of each neuron to its location in the network layer. Also, to 
sharpen the orientation selectivity of the units, recurrent cortical connections were set up in the network. We 
modeled two levels of ACh (see Methods, Data Analysis) to replicate the ACh concentration dependent effects of 
attention reported by experimental studies44,45.

Effects of acetylcholine on orientation-tuning curves.  First, we investigated how different concen-
trations of ACh affected V1 single neurons’ orientation tuning curves. In homogeneous ring neural networks, 
a neuron’s response before applying acetylcholine is a function of a single variable: the difference between the 
stimulus orientation θ_stimulus and the neuron’s preferred orientation θ. Cholinergic modulation rendered the 
network model inhomogeneous: the neural responses were characterized by two orientations, which are the ori-
entation of the test stimulus and the preferred orientation of each neuron. Note that, each neuron’s preferred 
orientation refers to its preferred orientation before applying ACh. While our simulation indicated no difference 
in the preferred orientation before and after ACh administration the orientation tuning was significantly changed 
by cholinergic activation (Fig. 1). The amplitude of the fitted function for both concentrations of ACh was greater 
compared to the baseline in the tuning curves of the illustrated sample neuron. Smaller orientation tuning width, 
quantified as the half-width at half-height of the Gaussian functions, were observed for both concentrations of 
ACh. Specifically, in the presence of ACh, the orientation tuning widths were sharpened by 19.9% for high ACh 
level condition and 12.7% for low ACh level (Fig. 1; No ACh: 29.48 ± 0.11 deg, Low ACh: 26.14 ± 0.07 deg, and 
High ACh: 24.57 ± 0.07 deg). Sharpening of orientation tuning compared to the baseline was significant in the 
both ACh conditions (Wilcoxon signed rank test; P < 0.01).

Effects of acetylcholine on LFPs and spike-triggered average (STA).  The regularity and amplitude 
of the local field potentials (LFP) fluctuations is a measure of synchronization of neural activity. Consequently, 
changes in the neural population’s synchrony are highly reflected between spikes and the LFP response correla-
tion functions. We used Spike-Triggered Average (STA) of LFPs to measure the correlation. This measure is highly 
sensitive in detecting local neuronal synchronization (see Methods for details). Figure 2A presents the STA LFP 
of the proposed network model when different concentrations of ACh were applied to the network model. The 
STA LFPs oscillate together while there is no change in the oscillation phase across different trials. The STA LFP 
in the network model without ACh was more strongly modulated in the gamma frequency range (30–50 Hz) 
than when ACh was applied (Fig. 2B). Consequently, the power spectrum showed a larger peak in the gamma 
frequency range (30–50 Hz) for the NO-ACh condition (P < 0.05, Wilcoxon sign rank test). Our data indicates 
that ACh has a significant modulatory control over the emergence of the gamma rhythmic activity. We observed 
the highest power at low frequencies with a peak at around gamma frequency range (30–50 Hz). The power of 
gamma and low-frequency oscillations were larger for the network without any ACh, compared with applying low 
and high concentrations of ACh. These differences were significant (P < 0.05 two-factor repeated measurement 
[RM] ANOVA, ACh vs. no application).
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Effects of acetylcholine on spike-field coherence (SFC).  We used spike-field coherence (SFC) to 
measure phase synchronization between spikes and LFP oscillations as a function of frequency. SFC was nor-
malized for spike rate and LFP power spectra to take ranges from zero (for complete lack of synchronization) to 
1 (for perfect phase synchronization). Our SFC analysis showed a peak in the gamma range (30–50 Hz) that was 
significantly larger for the NO-ACh condition (Fig. 2C; P < 0.01, Wilcoxon signed rank test). SFC was reduced 
with applying ACh in both concentrations (Fig. 2D–F). The gamma frequency SFC significantly decreased by %19 
and %31% with low and high ACh applications, respectively (P < 0.001, two-factor RM ANOVA). The same was 
true for low-frequency SFC as it was reduced by %11 and %6 with low and high ACh applications, respectively 
(P < 0.001, two-factor RM ANOVA). Thus, applying ACh with both concentrations affected the power spectrum 
of the STA LFP in the similar way as the SFC.

Effects of acetylcholine on noise correlations.  Noise correlation quantifies correlation of trial to trial 
response fluctuations to each stimulus. In our simulations, we modeled trial to trial activities as independent 
multiplicative noise to the firing rates of each neuron. This way we could model the Poisson-like variability that 
is reported in experimental studies46,47. We found that acetylcholine significantly enhanced the trial-to-trial 
response reliability of neurons (Fig. 3A–C; Wilcoxon signed rank test; P < 0.07).

Figure 3A–C depicts the noise correlation for 180 neurons each with a preferred orientation from −90 to+90 
degrees responding to the stimulus orientation of zero degree. Only neurons with preferred orientations between 
around −45 and +45 degrees were activated by zero degree stimulus (the square section in the center of the 
matrix). These neurons indicate various degrees of correlation: the activity of neurons with similar preferred ori-
entations, were highly correlated. But neurons with orientation tunings farther away from zero degree responded 
weakly to the stimulus and showed relatively negative correlations. This effect might be due to the fact that the 
noise changes the position of the activity bump in the network model but its shape is relatively kept constant. This 
stimulus falls at the edge of the RF of adjacent neurons. In these neurons the fluctuations in the position of the 
activity bump resulted in large and common rate fluctuations and consequently high correlations. Contrarily, the 
neurons at the center of the network population were poorly correlated since the exact position of the activity 
bump did not influence their firing rates.

Effects of acetylcholine on rate variance.  We characterized neuronal response reliability in the pres-
ence of acetylcholine by computing the Fano factor which is defined as the ratio of spike count variance to mean 
spike count (see Methods). We found that cholinergic activation in both concentrations caused significant 
decrease in the trial-to-trial response variability, as quantified by smaller Fano factor values during control and 
Acetylcholine-treated trials. We used two-factor ANOVA to calculate whether ACh significantly changed Fano 
factor values at population level (P < 0.001; Fig. 3D–F).

Effects of acetylcholine concentration through different receptors on orientation tuning 
curves.  Little is known about synchronization and orientation selectivity of V1 neural network as a function 
of the degree of cholinergic activation. In our network, we modeled cholinergic effects by changing the con-
ductance gKS of slow potassium current that decreased as levels of acetylcholine increased, and Idrive an external 
current with Gaussian distribution across neurons by a variance set to result in one Hertz spread in the intrinsic 
neuronal frequencies for both low and high ACh concentrations. Figure 4A describes the dependence of sharp-
ening of tuning curves upon gKS in which gKS is set to zero and 1.5 ms/cm2 to simulate high and low ACh concen-
trations. Sharpening of tuning curves significantly decreased with the increase of the potassium conductance 

Figure 1.  Model Behavior: Cholinergic Modulation Cause a Sharpening of Neural Tuning Curves. The network 
architecture consists of a recurrent network in which neurons receive feedforward input from the LGN and 
lateral input with excitation and inhibition (Mexican hat profile). Periodic boundary conditions (not shown) 
ensured a ring topology of the network. Tuning curve properties for the different concentration of ACh: 
Individual neuron tuning curves before and after applying ACh. The tuning curves are shown for neurons with a 
preferred orientation of zero after applying ACh.
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(Wilcoxon signed rank test; P < 0.01). The STA LFP power in the gamma-frequency band increased significantly 
as the potassium conductance increased (Fig. S1; Wilcoxon signed rank test; P < 0.01). Varying the slow potas-
sium conductance gKS and Idrive on sharpening of the tuning curves showed that the sharpening of tuning curve 
strongly depended on the ACh activation (Fig. 4B). We also investigated nicotinic effects through perturbation 
thalamocortical input current IffLGN arriving from LGN to the network as shown experimentally20,48,49. Following 
muscarinic cholinergic modulations there was an increase in the neuronal firing rates and desynchronization of 
LFP gamma power and spike-field coherence (Fig. 4A,B and S1; Wilcoxon signed rank test; P < 0.01). But, we did 
not observe any systematic effects in orientation selectivity due to increased thalamocortical current (Fig. 4C; 
Wilcoxon signed rank test; P > 0.05).

Effects of exclusive cholinergic activation of excitatory neurons.  When only excitatory neurons of 
our network were activated by ACh application, we observed a significant enhancement in the tuning amplitude 
by 26.1% (Fig. 5A; Wilcoxon signed rank test; P < 0.05). But there was no narrowing in the orientation tuning 
widths (Fig. 5A; P = 0.53). To further justify the cholinergic modulation effects in our model, we applied the 
cholinergic input to only one of the excitatory selective pools, and compared the effect of cholinergic modulation 
in two excitatory pools. The pool with ACh input showed increased firing rates and simultaneous STA and LFP 
power gamma rhythm reduction (Fig. 5B). The gamma modulation in the pool without ACh was up to 50% 
stronger than the pool with high level of ACh (S1). One possible reason could be that ACh reduces inhibitory 
surround mechanisms in the primary visual cortex similar to the effects of attention39. As a consequence, firing 
rates are enhanced, gamma oscillations are diminished simultaneously, and finally information processing are 
enhanced in the network model through activation of ACh receptors28,33,36.

Effects of the size of inhibitory neural population that is activated by cholinergic activation 
on orientation-tuning curves.  To test the degree of inhibitory neurons involvement in the observed 
findings we applied the cholinergic input to a smaller proportion of inhibitory neurons (%15 instead of %20). 
Interestingly, even in the low inhibitory condition there was a strong dependence of orientation selectivity and 
tuning width on the cholinergic modulation. However, the orientation tuning width depended strongly on the 
inhibitory drive. Tuning width, quantified as the half-width at half-height of the Gaussian function, for both levels 
of ACh narrowed. Specifically, applying ACh to 15% of the inhibitory interneurons in the population sharpened 
the orientation tuning width by 15.3% for high ACh level condition and 8% for low ACh level (Fig. 5C; No 

Figure 2.  Cholinergic Modulation Reduces Spike-Triggered Average LFP Response and Spike-Field Gamma 
Coherence. To measure the synchronization between spikes and the local field potential (LFP), the spike-
triggered average (STA) and its power spectrum are used: (A) ACh reduced the STA LFP response (compare 
green line versus yellow and dashed purple lines). (B) Power spectrum calculated from the STA LFP response in 
top. ACh strongly reduced the STA LFP power across most frequencies shown; this was most pronounced in the 
gamma frequency band. (C) ACh resulted in lower SFC (green and yellow lines) compared with that resulting 
from No-ACh condition (dashed purple line) at 0 degree orientation preference. Shaded areas, SEM. (D) ACh 
strongly decreased SFC in the gamma range. Applying low level of ACh (E) and applying high level of ACh (F) 
resulted in lower SFC compared with that resulting from control condition (D). Color bar indicates coherence 
values.
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ACh: 29.48 ± 0.11 deg, Low ACh: 27.29 ± 0.12 deg, and High ACh: 25.55 ± 0.22 deg). Sharpening of orientation 
tuning compared to the baseline was significant in both ACh conditions (Wilcoxon signed rank test; P < 0.01). 
The higher the level of ACh the smaller the width and the sharper orientation selectivity. Thus, ACh modulation 
appears to scale the orientation tuning function. Noteworthy, we clearly show that the width of the orienta-
tion tuning curve decreases with increasing inhibition, and the inhibition may provide a significant threshold to 
sharpen the tuning width.

Figure 3.  Cholinergic Modulation Induces Conspicuous Decorrelation and Enhances Response Reliability. 
ACh significantly decreased noise correlations. Spike count noise correlation is plotted for the pair of 
neurons and compared to the NO-ACh condition. (A) both concentrations (low & high) of applying ACh are 
significantly reduced noise correlations (B & C) respectively. The principal diagonal was omitted for clarity. 
(D) Fano factor (FF) distribution for administration of ACh and No-ACh condition. Measured at a bin size of 
100 ms counting intervals spaced over the duration of the trial (filled circles). (E) As in (D) but distribution for 
administration of high level versus low level of ACh. (F) Bar graphs show mean of the respective distributions 
and SEM. The variability was significantly reduced when ACh was applied in different concentration compared 
to the control condition; p values indicate whether ACh application significantly affected FFs (two-factor 
ANOVA, ACh applied vs. not applied).

Figure 4.  Interaction of Varying the Slow Potassium Conductance on Sharpening of the Tuning Curves and 
STA LFP Gamma Power. (A) Effects of varying the slow potassium conductance on sharpening of the tuning 
curves (half-width at half-height of the Gaussian functions). The error bars indicate the 95% confidence 
intervals. (B) Effects of varying the slow potassium conductance and Idrive on sharpening of the tuning curves. 
(C) Effects of varying the slow potassium conductance and ILGN on sharpening of the tuning curves. Averaged 
over 10 trials.
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Effects of cholinergic modulation and baseline activity alteration on the orientation-tuning 
curves.  Here, we examined how cholinergic-dependent sharpening of orientation selectivity is affected by 
baseline activity changes in V1 model network. We modified the baseline activity in the network by increasing or 
decreasing the background external input by %20 percent.

In the high baseline activity condition cholinergic activation sharpened the orientation tuning width by 
17.2% for high ACh level condition and 9.7% for low ACh level (Fig. 5D; No ACh: 27.98 ± 0.11 deg, Low ACh: 
25.5 ± 0.1 deg, and High ACh: 23.87 ± 0.21 deg, Wilcoxon signed rank test; P < 0.01). Cholinergic activation at 
low baseline condition sharpened the orientation tuning width by 13.26% for high ACh level condition and 6% 
for low ACh level (Fig. 5E; No ACh: 31 ± 0.19 deg, Low ACh: 29.25 ± 0.15 deg, and High ACh: 27.37 ± 0.11 deg, 
Wilcoxon signed rank test; P < 0.01). Across the stimulations in network with high baseline, there was a 7% 
increase of orientation selectivity for high ACh (Fig. S2A), 7.1% for low ACh (Fig. S2B) and 5.3% for control 
condition (Fig. S2C) (Wilcoxon signed rank test; P < 0.005). On the contrary, in the low baseline activity of the 
network, there was a reduction of orientation selectivity by 7.12% (P < 0.005) for high ACh, 7.19% (P < 0.005) for 
low ACh, and 5.1% (P < 0.007) for control conditions (Fig. S2A–C). In high/low baseline activity in the presence 
of ACh yielded high/low orientation selective activity, respectively.

Our previous experimental studies in monkeys have shown that baseline activity affects encoding properties 
of visual neurons50–52. Here, to study the interaction between the impact of cholinergic input and baseline activity 
we applied ACh at low and high baseline activity conditions. Our results revealed that ACh application at high 
baseline condition results in larger improvement of the orientation selectivity compared with the low baseline 
condition.

Effect of cholinergic modulation onset and duration on response synchronization.  Timing of 
cholinergic activation plays a crucial role in its effect on sensory coding17. But, to the best of our knowledge, there 
has been no modeling studies of the temporal dynamics of cholinergic impact on sensory coding. In this exper-
iment, we investigated the effects of cholinergic modulation onset and duration on the networks’ response syn-
chronization. Our result reveals that applications of acetylcholine in various onset times relative to the stimulus 
onset and various durations significantly affects the gamma rhythmic activity. In this experiment, time frequency 
power spectra showed the highest values at low frequency (4–12 Hz) and another peak in the gamma frequency 

Figure 5.  Acetylcholine Causes a Scaling of Neuronal Tuning Curves through administration to excitatory 
neurons And Comparison of Cholinergic Modulation between Two Excitatory pools S1 and S2 on the STA 
LFP Power Spectra. (A) Effects of applying ACh on the tuning curves of the individual neurons through 
administration to excitatory neurons, leads to significant sharpening without narrowing orientation tuning 
width. Tuning curve properties for the different concentration of ACh: Individual neuron tuning curves before 
and after applying ACh. The tuning curves are shown for neurons with a preferred orientation of zero after 
applying ACh. (B) The gamma modulation in without-ACh pool is much stronger than in with-ACh pool. 
ACh clearly desynchronize in the gamma-frequency band. Shaded areas s.e.m. (C) Applying ACh to 15% of the 
inhibitory interneurons, through muscarinic receptors, leads to significant sharpening (Wilcoxon signed rank 
test; P < 0.01). Effect of applying ACh on the tuning curves of the individual neurons, with different levels of 
baseline activity of the network. (D) Applying ACh with high baseline activity and (E) low baseline activity of 
the network, strongly alters orientation selectivity of V1 neurons.
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range (30–50 Hz) before the beginning of acetylcholine administration. The power of gamma and low frequency 
oscillations was significantly reduced by 31% and 6%, respectively (Fig. 6A; time windows 100 ms; Wilcoxon 
signed rank test; P < 0.05). Comparison of time frequency power spectra STA LFP when ACh was applied in the 
absence of visual stimuli revealed that ACh application alone substantially reduced gamma and low frequency 
oscillations by 23% and 4.3%, respectively (Fig. 6B; time windows 100 ms, Wilcoxon signed rank test; P < 0.001). 
During ACh application the oscillatory activities changed dynamically. LFP responses exhibited occasionally 
transient increase of power in the gamma-frequency range which was followed by a decrease. This was significant 
for both responses obtained in the presence (Fig. 6A; P < 0.007) and absence (Fig. 6B; P < 0.007) of visual stimuli 
during ACh application. We found a significant reduction of gamma activity after combined visual stimulation 
and cholinergic modulation. There was a significant difference between time frequency power spectra STA LFP 
when ACh was applied in the presence and absence of visual stimuli (Fig. 6C; P < 0.007). Consequently, we 
found a similar phenomenon with or without pairing of cholinergic modulation with the visual stimulation. We 
observed lasting activation of different frequencies after termination of the cholinergic input. The continuation of 
frequency modulation could be due to synaptic delays (>100 ms) used in our network model.

In addition, we examined the effects of cholinergic activation onset time and duration on the sharpening of 
tuning curve and the power of gamma frequency range (Fig. 6D,E). It has been shown that the phasic changes in 
the cholinergic activation requires modulatory effects sufficiently rapid to increase and decrease within the time 
course of 100–300 ms53. Therefore, we aimed to provide phasic changes in the cholinergic modulatory effects 
within our network model. These data suggest that application of acetylcholine in various onset time and different 
durations influenced the sharpening of tuning curve and LFP gamma oscillation. These changes were significant 
compare to the baseline values (Fig. 6D,E; Wilcoxon signed rank test; P < 0.05). Cholinergic modulation with 
longer duration of administration lead to increased sharpening of orientation tuning curves and decreased LFP 
gamma power. On the other hand, delayed ACh onset time caused sharper tuning curves and lower LFP gamma 
power.

Discussion
In this study, we have proposed a physiologically plausible network model to investigate the mechanisms underly-
ing the influence of acetylcholine (ACh) on the primary visual cortex (V1) neural activity. The principal features 
of our model are as follows; (i) it is designed based on macaque monkey V1 layer 4C anatomy and physiology 
data; (ii) It took advantage of V1 cortical connectivity and structure and ring models coordinates54, in which 
coordinate labels were the preferred orientation; (iii) It used spiking neural network and recruited membrane 
potential synaptic conductance rather than firing rates to drive local field potentials (LFPs); (iv) as a large-scale 
network model it was constructed of point neurons rather than compartmental models.

Figure 6.  Interaction of Acetylcholine Application Relative to Visual Stimulation and with Different Onset 
Times and Duration of Administration on STA LFP Frequency Spectra. (A) Before cholinergic modulation 
power at high frequencies is clearly modulated by spiking activity whereas pairing of cholinergic modulation 
with visual stimulation, caused a significant decrease in gamma frequency power. Visual stimulation lasted 
800 ms, shown on the abscissa. (B) as (A), ACh was applied in the absence of visual stimuli which leads to 
gamma oscillations reduction. (C) The difference between time frequency power spectra STA LFP, when ACh 
was applied in the presence and absence of visual stimuli. (D) Effects of ACh with different onset application 
times with respect to different duration of administration on the percent of tuning curve sharpening compared 
to the baseline and (E) the gamma frequency power.
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In the presence of cholinergic modulation our neuronal network model clearly showed: (i) sharpening of ori-
entation selectivity; (ii) decreased gamma synchrony and spike field coherence; (iii) reduced noise correlation and 
neural response variability; (iv) predicted a sharpening near the orientation preference; (v) correlation between 
cholinergic activation onset and duration with network response synchronization and neurons orientation selec-
tivity; (vi) since we used m-current to model cholinergic activation the correlation between the degree of orien-
tation selectivity and the cholinergic activation was mediated by muscarinic receptors; (vii) enhanced inhibitory 
release in the network that suggests the augmentation of inhibitory tone during ACh release; (viii) role of baseline 
activity on cholinergic-contingent changes of orientation tuning. Some of these predictions have not been tested 
experimentally before (see below). Thus, our model provides a computational framework for future experiments.

Modeling studies have been used to replicate the experimental findings and to predict aspects of cholinergic 
influence that are not presently clear by experimental research. For example, to our knowledge, in the only other 
modeling study that has examined the role of cholinergic activation on V1 sensory processing Deco and Thiele 
2011 investigated the contribution of acetylcholine in feedback-mediated attentional modulation in a network 
model49. In our model, we used a different pattern of cortico-cortical connectivity and architectures to replicate 
natural V1 anatomy. Specifically, consistent with Deco and Thiele 2011 report, we have found that cholinergic 
system influences intracortical interactions probably by increasing inhibitory drive. But, in addition, we have 
examined several important aspects of cholinergic effects in V1 that are novel and have not been examined before. 
Namely, we have shown significant sharpening in V1 neurons’ orientation selectivity, desynchronization of LFP 
gamma power and spike-field coherence, decreased response variability, the impact of the onset time and dura-
tion of cholinergic activation on its sensory coding effects and the role of baseline modulation on the effects 
of these cholinergic mediated changes. These new findings shed light on how cholinergic activation improves 
sensory encoding and discrimination at both the single unit and the neural population levels. Moreover, there 
is an important difference between the pattern of cortico-cortical connectivity and the network model architec-
ture in our model and Deco and Thiele 2011 model. They used a recurrent network model, whereas we used a 
biologically plausible ring model that is orientation specific. Our model structure is highly consistent with the 
anatomy of V1 and their role in the emergence of orientation selectivity. In particular, in our model, the angular 
modulation of the intracortical interactions (Eq. 12) is consistent with the dendritic and axonal branching and 
arborization and spatial distributions in macaque primary V155.

Attentional modulation is accompanied by an increase in cortical ACh release suggesting that the augmen-
tation of attentional demand is associated with increase in cortical ACh release44,45. The enhancement of cortical 
ACh release observed in attentional tasks indicates a key role of cholinergic modulation for attentional func-
tions56–59 and presents a direct relationship between attentional modulation and cortical ACh release60. ACh, as 
a powerful cholinergic neuromodulator, effects behavior and influences the neural systems at cellular and circuit 
levels61. Particularly, cholinergic activation via muscarinic receptors improves neuronal excitability and enhances 
stimulus stability and abstract representations62. In rodents, the cholinergic system is believed to be part of the 
central mechanism that mediates attention63. Moreover, depletion of ACh in cortical areas by disrupting choliner-
gic fibers results in diminished attentional impact12. The attentional deficit seen in Alzheimer’s disease arises from 
cholinergic dysfunction64. Herrero et al. demonstrated that ACh application enhances attentional modulation in 
V110.

Similar to all of the other modeling studies of the role of cholinergic system in attention the link between our 
model and biological attentional processes is made by showing similarity of attention contingent neurophysiolog-
ical events with the performance and outcome of the model. Specifically, our findings provide new modeling evi-
dence that cholinergic system may be used by attentional mechanisms to substantially scale and sharpen stimulus 
selectivity, induce high desynchronize gamma power and spike field coherence and transiently change correlation 
structure of the neural network to improve sensory discrimination. In addition, similar to the empirical evidence 
that show attention can exert its effect by modulating baseline activity65–68 our model, for the first time, provides 
a modeling framework that explains how attention use baseline activity modulation to enhance the effects of 
cholinergic activation on sensory encoding.

Similar to the effects of attention, cortical iontophoresis of ACh alters neural orientation tuning and direction 
selectivity. Although the reported effects are variable between neurons and across studies21,24,25. Consistently, ACh 
application and nucleus basalis stimulation increase orientation selectivity in cat visual cortex21,22. ACh enhances 
the amplitude of evoked sensory responses and performs a filtering role through enhancing relevant inputs while 
suppressing weak sensory inputs causing a sharpening of the neurons tuning curves in sensory cortex30,69. While 
our modeling results are consistent with these experimental studies, it should be noted that some studies have 
failed to replicate the effect of ACh on tuning curve sharpening24.

There are many similarities between the effects of ACh observed in our model and the experimental studies in 
which animals are engaged in attention-demanding tasks63,70. For example, some studies in cat V1 have demon-
strated that application of ACh leads to a sharpening of tuning curves21,22 which imitates attentional effects1,8,9,71,72. 
But it should be noted that some other studies have failed to replicate this effect24,25. The reason for these conflict-
ing results is not clear. Our data is consistent with the studies that have shown attention-dependent scaling and 
sharpening of neuronal tuning in the ventral visual pathway including V17,71,72. Consistently, other experiments 
that have found similar attention-dependent sharpening in the orientation tuning properties of monkey V1 neu-
rons73. Attention enhances the firing rates when stimuli are presented primarily at or near the peak of the orienta-
tion tuning of V1 neurons71. But, it should be noted that contradictory to these results other studies investigating 
the effects of attention on stimulus orientation tuning curve of monkey V1 have found that attention scales the 
neural orientation tuning without systematically changing its width74.

Several experimental studies have shown that enhancement of baseline activity influences neuronal excita-
bility, sensory information coding and behavioral performances51,67,68,75–77. Changes in the baseline activity may 
reflect top-down bias signals and can provide advantage for processing the attended stimuli over unattended 
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stimuli67. Attentional task-dependent elevation of the baseline neural firing rates has been revealed in many fMRI 
and electrophysiology studies65–68. Our current modeling study show that the effects of cholinergic activation is 
enhanced in high baseline activity condition. These results suggest that top-down anticipatory signal that modu-
late baseline activity can facilitate the influence of cholinergic input in the visual cortex and improve its effect on 
the sensory coding properties of visual neurons.

It has been suggested that cortical orientation tuning profile of V1 neurons are mediated by thalamocor-
tical connections and by the contribution of inhibitory intracortical connections26,27. Cholinergic modulation 
controls synaptic efficacy of the thalamocortical and intracortical connections20,28. We found that cholinergic 
modulation, similar to attention mechanism, increased inhibitory drive which can lead to neural response selec-
tivity13,29,30. Interestingly, we also found a significant tuning-curve amplitude and gain enhancement, without 
narrowing of tuning width, when ACh was applied only to the excitatory neurons. Our data indicates that, apply-
ing ACh to inhibitory neurons led to sharpening and selectivity of tuning curves, as measured by the width of its 
orientation-tuning curve, while applying ACh to excitatory neurons only caused gain and amplitude enhance-
ment. These findings are consistent with the experimental evidence for gain modulation by nicotine in macaque 
V148. Our data are also consistent with the experimental research indicating the importance of intracortical inhi-
bition in shaping orientation selectivity in V128,29. According to these studies, inhibitory neurons are responsible 
for enhanced orientation selectivity as tuning width is mainly determined by the strength of the inhibition and 
the tuning of the LGN input. Our model suggests a way to reconcile different proposals about whether cholin-
ergic modulation sharpens tuning curves or scales firing rates. Particularly, in the presence of ACh, our model 
can represent different effects of attentional modulation, like sharpening of orientation tuning1,3 or response gain 
modulation that increase firing rates74,78. Our data suggests that cholinergic modulation regulates and controls 
neural response gain, scales orientation tuning-curve and mediate an important role in response modulation of 
macaque V1 4C neurons.

It is still unclear how cholinergic modulation coordinates neuronal network information processing. Thus, 
we specifically examined coordinated spiking across the neural population. Many researchers have demonstrated 
that attention reduces neuronal synchrony of gamma oscillation in area V131,39. But attention contingent increase 
of gamma power is also reported for different parts of the visual cortex37,51. Cholinergic activation mimics the 
attention related gamma modulation in V1. For example, Kalmbach et al. have demonstrated that ACh reduces 
gamma synchronization through optogenetical stimulation which leads to cortical neural desynchronization61. 
Also, electrical stimulation of the basal forebrain nucleus desynchronizes cortical activity28. On the other hand, 
ACh has shown to enhance gamma synchronization in anaesthetized cat visual cortex while the application of the 
muscarinic antagonist scopolamine leads to the reductions of gamma oscillations power79. In our model, in the 
presence of ACh, we found that gamma power decreased in spike triggered averaging (STA), LFP and spike-field 
coherence (SFC). These findings are reminiscent of decreased gamma power of STA LFP seen in macaque V1 
when attention is directed to the receptive field of the neurons being studied39. Attention mediated decrease in 
gamma power could be due to the enhancement of the inhibitory drive through muscarinic activation in V1. 
Simultaneous decrease in gamma power and increase in firing rates has been shown in V140. Our modeling 
finding points to the possibility that ACh reduces gamma power causing enhancement of evoked firing rates by 
weakening the surround inhibition.

The noise correlation was reduced following ACh application in our network model resulting in improved 
coding accuracy. This suggests reduced trial-to-trial correlation variability in the presence of ACh and thus more 
reliable sensory representation. These findings are in line with cognitive functions attributed to the cholinergic 
modulation12,33,80. Neural activity decorrelation has been observed to improve population coding accuracy81. 
Consequently, it leads to enhanced information processing through direct involvement of cholinergic mecha-
nisms which is linked to membrane potential fluctuations in cortical neurons and modulation of inhibition in the 
cortical networks. We also found that ACh significantly enhanced trial-to-trial response reliability as indicated by 
our Fano Factor calculations. Our findings are consistent with the studies that found basal forebrain cholinergic 
activation improves neural coding through enhancing the response reliability of individual neurons and decreas-
ing the correlation between neurons17,33. Our findings show that enhanced reliability improved the amount of 
information that each neuron convey; whereas neuronal correlation reduction reduced the redundancy of infor-
mation in the pool of neurons. Both of these changes highly improved efficiency of sensory information pro-
cessing. These findings suggest that cholinergic modulation can dynamically regulate cortical coding of sensory 
inputs which is compatible with the effects of attention on visual neurons31,32. Particularly, it has been shown that 
modulation of network correlation had a significant influence on the attentional function improvement32,82. These 
findings are consistent with the predictions of the normalization model of attention that characterizes how visual 
attention scales neural responses in the visual cortex8,82–84.

Different levels of attention-contingent cholinergic activation have been reported: 120–140%85, 150–200%86, 
140%87,88, 210%89 and 250–275%90. Microdialysis studies found that such enhancement of cortical ACh release is 
associated with attentional performance augmentation suggesting that cholinergic modulation is a core compo-
nent of the circuitry that mediates attentional function86,91. Consistent with the findings that point to a relation 
between the level of ACh release and its impact on sensory information processing, a relationship between the 
degree of damage in the basal forebrain with decreased cortical ACh release and impaired attentional function has 
been reported92–97. Based on these evidences, we used two levels of cholinergic activation using different levels of 
slow voltage-dependent potassium currents and thalamo-cortical input current. We found that higher concen-
trations of acetylcholine resulted in narrower and sharper orientation tuning functions, more desynchronization 
state of LFP gamma power, more decorrelation and higher reliability of neural sensory encoding. These effects 
are presumably implemented by influencing intracortical interactions and by increasing inhibitory drive within 
the network17,33,36,61,98.
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It is possible that the impact of cholinergic modulation depends on the onset timing and duration of ACh 
application. We tested this possibility by applying the cholinergic input across different onset times and dura-
tions. Application of ACh in various onset times relative to the stimulus onset and various durations significantly 
affected the gamma rhythmic activity and neural orientation selectivity. Cholinergic modulation with longer 
duration of administration lead to enhance orientation selectivity and reduced LFP gamma power. Also, delayed 
application of ACh compared to the stimulus onset time, resulted in sharper tuning curves and lower LFP gamma 
power.

Our network model was constructed from point neurons model with leaky integrate and fire dynamics99,100. 
This is the most popular neuronal model that captures important neuronal properties and widely used for simu-
lating realistic neuronal circuits. We also used m1-type muscarinic receptor through inhibitory neurons49,101–103 
and nicotinic receptors that are well expressed in the thalamocortical-recipient layer 4C of macaque V148,104. We 
acknowledge that taking into account the diversity of cell-types in any modeling studies of complex cortical net-
work interactions is vitally important. But, because of the complex nature of the cell and receptor subtypes and 
due to the lack of sufficient empirical information about their organization and function very few studies have 
comprehensively included all of the network components in their modeling experiments. Our model has indeed 
provided new information about the cholinergic system effects on sensory coding and thus has provided a better 
ground work for future studies that take into account the diversity of the cell and receptor subtypes.

In summary, we propose a computational approach to understand the functional role of cholinergic modu-
lation in the primary visual cortical network and how they might induce specific behaviorally relevant changes. 
We show increased visually driven cortical firing rates, sharpened stimulus orientation tuning curves, desynchro-
nized LFPs, decreased noise correlation and improved neuronal response reliability. These changes have been 
reported in primates during selective visual attention. Our proposed model improves our understanding of the 
cholinergic role in the neural origin in the ring model structure. At the circuit level, cholinergic modulation con-
trols the frequency content and neural cortical oscillations and has network effects relevant to sensory processing 
associated with attentional processing. Overall, our model presents effects similar to those of attention, and sug-
gests that cholinergic modulations may mediate attentional modulation in V1 layer 4C.

Methods
Network structure.  We constructed a computational recurrent network model, a spike-based version of the 
ring model of layer 4C of the primary visual cortex (V1)27,54 which is shown schematically in Fig. 7. The model 
includes two groups of excitatory and one group of inhibitory neurons. The neurons in each group are specified 
by the input they receive and high mutual connection strength. Each excitatory group (S1 and S2) represented a 
separate location in cortical space encoding two non-overlapping receptive fields (RF). Each individual excitatory 
pool was driven by various kinds of input. The neurons in the first excitatory pool (S1) received external inputs 
encoding stimulus-specific information but no such input was introduced to the inhibitory neural pool. This is 
similar to the conditions in which stimulus activates the RF of a specific orientation column in V1 but could have 
suppressive effects through inhibitory interneurons over neural pools that do not receive direct excitatory input 
from incoming afferent activity. In addition, our model has the advantage to provide access to the spikes and LFPs 
of each selective excitatory pool which can provide the opportunity to investigate the direct as well as indirect 
population responses. The excitatory groups were connected to a group of inhibitory neurons that mediated inhi-
bition in the network. There was a competition between the two excitatory groups using a shared feedback inhibi-
tion from the inhibitory neurons. Our model included the essential cortical mechanisms and our analyses enable 
comparison between the related neurophysiological data and the behavior of our model. Our model consists of 
1000 orientation-selective pyramidal neurons and 250 orientation-selective interneurons V1 layer 4C, respecting 
the 4:1 proportion observed in the cortex105.

Neuron dynamics.  We implemented pyramidal (NE) and inhibitory (NI) units as leaky integrate-and-fire 
neurons (LIF) that were characterized by their membrane capacitance Cm, leak conductance gL, conductance 
of the slow potassium current gKS, fixed voltage threshold Vth for spike inception. Then a spike a refractory time 
period rref and a reset membrane potential of Vreset are considered. All of the parameter values used in our simu-
lation are listed in Table 1. Behavior of our modeled neurons were evaluated by voltage-gated conductance equa-
tions with angular dependence that evolved in time as depicted in the following formula:

θ θ θ θ= − − + − −C dV t
dt

g V t V g V t V I t( , ) ( ( , ) ) ( ( , ) ) ( , ), (1)m L L KS L syn

The orientation preference θ of each neuron was uniformly distributed between −90 and 90 degrees. The 
distribution’s orientation at angle θ determines the orientation preference in the visual field and are schematically 
shown by purple arrows in Fig. 7.

Neurons were connected using connections with Mexican hat function through recurrent connections driven 
by the excitatory and inhibitory inputs (Fig. 7; not all connections shown). In line with the electrophysiological 
studies, both excitatory and inhibitory connections were strongest for neurons with similar preferred orientation. 
These values decreased as the difference between the preferred orientations of the neurons increased. The inhib-
itory connectivity was wider than the excitatory ones and the sum of interaction among neurons had a profile 
similar to Mexican hat. This pattern of interaction can increase the small orientation bias which is conveyed by 
the feed-forward input that contribute to the V1 orientation tuning curves (Table 1). We exposed the excitatory 
and inhibitory neurons to an external input (vext = 2.4 kHz). They were modeled as a Poisson spike train fired at 
3 Hz. These properties are consistent with neural spontaneous activity of the cerebral cortical neurons93.
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Synapses.  We used different excitatory and inhibitory receptors to induce synaptic currents ISyn in the neu-
rons. The recurrent excitatory postsynaptic EPSPs had two components and was mediated by AMPA and NMDA 
receptors that were activated by glutamate. External synaptic inputs conveyed the information to the network 
about stimuli, mediated external top–down interaction and background noise coming from the spontaneous 
activity outside the neural network. In our simulations, external EPSCs were induced particularly by AMPA 
receptors on pyramidal and interneurons. We also assumed that recurrent excitation is largely induced by the 
NMDA receptors. Inhibitory GABAergic GABAA receptors on interneurons and pyramidal neurons yield the 
IPSPs. We considered that the NMDA currents have a voltage dependence that is controlled by the extracellular 
magnesium concentration [Mg2+] = 1 mM. AMPA and NMDA receptors have different time constants: AMPA 
decayed fast whereas NMDA decayed slowly106. The decay constant for GABA was defined between those two 
values107. These decay constants specify the oscillation frequency of the network (see below).

The synaptic current was given by the sum of glutamergic AMPA, IAMPA,rec and NMDA, INMDA,rec which medi-
ated recurrent excitatory currents, inhibitory GABAergic current IGABA,rec and IAMPA,exc which mediated external 
excitatory current and IffLGN feed-forward excitatory input from LGN current. The total synaptic current was 
given by the sum:

θ θ θ θ θ θ

θ θ

= + + +

+ +

I t I t I t I I t
I t I t

( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) (2)

syn AMPA ext AMPA rec ffLGN stim NMDA rec

GABA rec drive

, , ,

,

The currents were defined by:

I t g V t V s t( , ) ( ( , ) ) ( , )
(3)
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j

N

j
AMPA ext

, ,
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(4)

AMPA rec AMPA rec E
j

N
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1
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=

Figure 7.  Model Architecture and Representation. The network module consists of excitatory and inhibitory 
neurons. Each circle is a population of Neurons. The excitatory neurons are organized in two groups of 
selective (S1 and S2) and a group of inhibitory neurons. All the neurons get an input (νext) which simulates 
the spontaneous activity in the surrounding cerebral cortex. The neurons in the first excitatory group receive 
the input encoding the stimulus (νin). ILGN represented feed-forward excitatory input from LGN to the 
network. The orientation preference θ of each neuron was uniformly distributed between −90 and 90 degrees. 
The distribution’s orientation at angle θ in the visual field sets the orientation preference that indicated via 
purple arrows schematically. The color curves in each circle represents the Gaussian connections. Neurons are 
connected through recurrent connections mediated the excitatory and inhibitory inputs to neurons through 
connections with a Mexican hat profile (not all connections shown). Between-pool connections (weights from 
the inhibitory to the excitatory pools) and recurrent connections present with black arrows. See Methods for 
details. NetworkX Simulator123 was used to generate the figure.
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The weights wj present the structured excitatory recurrent connections, the sum over j presents an aggregation 
over the synapses constituted by presynaptic neuron j. The recurrent excitation was mediated by the NMDA 
receptors and the network was dominated by recurrent inhibition. The gating variables of open channels S are 
characterized as follow equation as well as the channels equations which are represented in the following. Note 
that, sum over k presents a sum over spikes δ(t) of the presynaptic neuron j at time of tj

k.
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All neurons

Symbol Description Value

θ Neuron’s Preferred Orientation (−90,90)degree

θ_stimulus Test Orientation (−90,90)degree

VL Leak Reversal Potential −70.0 mV

Vth Threshold Potential −50.0 mV

Vreset Reset Potential −55.0 mV

Excitatory Neurons

NE Number of Pyramidal Neurons 1000

Cm Membrane Capacitance 0.5 nF

gLE Total Leak Conductance 25.0 nS

τrE Refractory Time 2.0 mS

Inhibitory Neurons

NI Number of Interneurons 250

Cm Membrane Capacitance 0.2nF

gLI Leak Reversal Potential 20.0 nS

τrI Refractory Time 1.0 ms

VI Potential 0.0 mV

AMPA Receptor

τAMPA Exponential Decay Time Constant of AMPA currents 2.0 mS

EAMPA Synaptic Reversal Potential 0.0 mV

gext−E Conductance from External to Pyramidal Neurons 2.1 nS

gext−I Conductance from External to Interneuron Neurons 1.62 nS

gAMPA−E Conductance from Pyramidal to Interneuron Neurons 0.04 nS

gAMPA−E Conductance from Pyramidal to Pyramidal Neurons 0.05 nS

GABA Receptor

τGABA Exponential Decay Time Constant of GABA Currents 5.0 ms

EGABA Synaptic Reversal Potential −70.0 mV

gGABA–I Conductance to Interneuron Neurons 1.3 nS

gGABA–E Conductance to Pyramidal Neurons 1.0 nS

NMDA Receptor

τNMDA Decay Time of NMDA Currents of NMDA Currents 100.0 ms

ENMDA Synaptic Reversal Potential 0.0 mV

gNMDA–E Conductance to Pyramidal Neurons 0.165 nS

gNMDA–I Conductance to Interneuron Neurons 0.13 nS

τX Controls The Rise Time of NMDAR Channels 2.0

α Controls The Saturation Properties of NMDA Channels 0.5 kHz

a Control The Voltage Dependence of NMDA Channel 0.062 mV

b Control The Voltage Dependence of NMDA Channel ([Mg2+] = 1 mM 1/3.57

Table 1.  Parameter Values for the Network Model of Ring Spiking Neurons.
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Note that the parameters, including synaptic conductances, used in our model were selected for two main 
reasons. First, we used conductance values based on the experimentally measured parameters108. Also, the values 
for voltage potentials, membrane capacitances, time constants and all other parameters were selected according 
to the values previously used in modeling studies109 which are used based on experimentally measured values108. 
Second, we used the properties of the receptor activations that is captured by plausible kinetics scheme and 
experimentally measured procedures which provide a good description of ionic currents108–110. The parameters 
were based on the measurements of miniature synaptic currents in the neocortex111 and the analysis112 that lead to 
estimation of AMPA conductance around 0.35 to 1nS, and the conductance of NMDA-mediated currents which 
is a fraction of AMPA channels: between 3 to 62%113 leading to NMDA conductance estimates around 0.01 to 
0.6nS. These parameters have been previously tested and optimized109.

Network connections.  The input IffLGN presented feed-forward excitatory input from lateral ganglion 
nucleus (LGN) to network which was considered as a Gaussian profile with periodic boundary conditions114:

θ θ θ θ σ= − −I J C Exp( , ) [ ( ) /2 ] (11)ffLGN stim LGN stim LGN
2 2

Where σLGN presents the Gaussian width of stimulus profile and JLGN its amplitude. Each individual neuron receives 
inputs from all other neurons through structured synaptic weights. Recurrent connections mediated the excitatory 
and inhibitory inputs to the neurons according to the equations where θi and θj represented the presynaptic and 
postsynaptic neurons, respectively115. We used the following periodic function for the connection probabilities:

θ θ= +K C COS( ) [ (2 ) 1] (12)

The function K(θ) was normalized to the constant C. Therefore, the sum of connections from any neuron to 
the rest of the population equals to: 1/C = ∑i|K(θi)|. The connections were strongest among the neurons with the 
same preferred orientation and decreased with increasing the difference between the preferred orientations of the 
neurons. Excitatory and inhibitory connections and interaction lead to a center-surround or Mexican-hat profile.

We considered a correlated construction in the LGN input to V1 layer 4C and designed a ring model structure. 
Receiving feedforward LGN input IffLGN set up an orientation preference at the center of the pattern. The differ-
ences between neuron’s selectivity emerged through their connection and non-selective inhibition like a function 
of orientation116. We have mapped the neurons’ orientation preferences using radial spoke as illustrated in Fig. 7. 
The connection weights were described as adjustable parameters in the model. Using this selection of synaptic 
strengths and configuration structure made the network stable with highly orientation tuned neurons54,114,117,118. 
It also led to high membrane conductance during stimulation.

Simulation of the presence of cholinergic neuromodulation.  Acetylcholine (ACh) is a cortical neu-
romodulator involved in cognitive control10,12,49,119. In-vitro and in vivo studies suggest that ACh influence the 
flow of information in the cortical areas. This function is mediated by reducing the efficacy of cortical synapses 
through activation of muscarinic receptors13 and enhancing the efficacy of feed-forward, thalamocortical input20 
by influencing nicotinic receptors. Experimental studies suggest that cholinergic afferents target GABAergic 
interneurons; consequently, activation of these inhibitory neurons suppress cholinergic release29,48,120. These find-
ings are supported by other reports showing that inhibitory interneurons in macaque V1 strongly express mus-
carinic receptors120,121. Although, other studies show that some subtypes of muscarinic receptors are expressed in 
both excitatory and inhibitory neurons121. Both ACh receptors are expressed at significant levels within layer 4C 
which is the principal thalamocortical recipient part of macaque V148.

Therefore, in this study, cholinergic modulation is modeled with inhibitory interneurons and synaptic transmis-
sion of inhibitory connections by reducing lateral interactions of muscarinic presynaptic receptors and by enhanc-
ing the inhibitory drive. In addition, Krnjevik et al. (1971) attributed the effects of cholinergic modulation to the 
blocking of K + conductance through the activation of muscarinic receptors using intracellular recordings from 
cortical neurons122. Also, voltage clamp recording by Brown and Adams (1980) of muscarinic depolarizations in 
frog sympathetic neurons illustrated that the effects are mediated largely by a decrease in a voltage and time depend-
ent potassium K + currents103. In our network, the presence of m1-type muscarinic ACh and its effects were mod-
eled by modulating the maximum conductance of the muscarinic potassium M-current gKS of a slow, low threshold 
K + set to zero to simulate high ACh concentration and set to1.5 μS/cm2 to simulate low ACh concentration43,101,103.

We defined Idrive as an external current with Gaussian distribution across neurons in our network through a vari-
ance that caused a spread of 1 Hz in the intrinsic neuronal frequencies for both high and low concentrations of ACh. 
Therefore, we the mean distribution of Idrive values were 0.08 μA/cm2 for high ACh and 1.30 μA/cm2 for low ACh. Also, 
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we considered cholinergic modulation mediated by nicotinic receptors through feed-forward excitatory input current 
(thalamic afferent fibers) arriving from LGN to the network20,48,49. We investigated nicotinic effects through pertur-
bation thalamocortical current IffLGN, by changing cholinergic activity and measured its impact on the behavior of our 
model. We considered two levels of ACh with the aim of investigating the consequence of cholinergic modulation of 
various potassium and leak currents on the model behavior43. Note that utilizing different levels of ACh was essen-
tial to consider different firing thresholds and frequency-current. To achieve stable baseline condition in every trial 
we simulated the network without any input till the neural activity stabilized. Then a stimulus with orientation θstim 
was presented for 500 ms duration. The response to stimulus was tested using the network activity equilibration. The 
activity at the end of this time was related to a single trial during 100 ms time windows. For the numerical integration 
of all neural dynamics equations with an integration time step dt = 0.02 ms the simulations were run in Brian version 
1, under Python 2.7 and were tested in Matlab software 2010b. NetworkX Simulator123 was used to generate Fig. 7.

Data analysis.  Local field potential (LFP).  In this paper, we simulated LFPs to further reveal network level 
neural computations in cortical circuits124,125. LFP reflects important synaptic processes which cannot be meas-
ured by looking at the spiking activity of individual neurons. In our simulations, we used spikes of all of the neu-
rons in different groups and calculated the LFPs as average activity of all the neurons. We used several previously 
proposed approaches for calculating the LFPs including: averaging the spike rates of neural population; averaging 
the membrane potentials of all neurons; averaging the incoming synaptic currents to a neuron across the neural 
population; and finally aggregating the absolute values of synaptic currents. In this paper, all of the computations 
led to highly similar results thus we only report simulated LFPs obtained by averaging incoming synaptic currents 
to a neuron across the neural population in our model network.

Spike-triggered average (STA).  To measure the neuronal synchronization between spikes and LFPs we used the 
spike-triggered average (STA)37. LFP fluctuations increase during the spike-triggered averaging process when 
spike times have a reliable temporal relation to the LFP. But if spike times are not temporally locked to the activity 
of neighboring neurons LFP averages out during STA compilation and yields a flat STA. For the simulation of the 
STA we first obtained short time windows of ±100 ms around each spike time and then cut out the related LFPs 
segments. STA is the average over all these windows so components of the LFP that are not temporally related to 
the spikes will be averaged out and are thus not visible in STA results.

We normalized STA values for the spike numbers as it was calculated by summing all LFP segments and then 
was divided by the number of spikes. To characterize the STA we calculated its power spectrum using Fast Fourier 
Transformation (FFT) and then the results were normalized by dividing it by the total power in the spectrum37,49.

Spike-field coherence (SFC).  The spike-field coherence (SFC) calculates phase synchronization between spike 
times and the LFPs across a range of oscillation frequencies37. To quantify the phase synchronization between 
spikes and the LFP the power spectrum of the STA should be normalize. To do so, we averaged all power spectra 
of all of the LFP segments. This normalization yields the SFC values. Note that SFC is not contingent on the spike 
firing rates and the LFP power spectrum. For any frequency, SFC value of one indicates that time of all of the 
spikes are locked to the phase of the given frequency. On the other hand, SFC values of zero indicates that the time 
of spikes do not have any relation with the phase of the given LFP frequency.

Noise correlation.  To characterize noise correlation rsc, we computed the Pearson correlation coefficient of 
the neurons’ responses between each pair and then averaged the correlation coefficients for all potential pairs of 
neurons32. The Pearson correlation coefficient of the spike counts of a pair of neurons to the presentation of the 
stimulus was calculated as follows:

r
E N N EN EN[ ]

,
(13)

sc
i j i j

N Ni j
σ σ

=
−

where E is the expected value, σN is the standard deviation of the neuron responses, and Ni, Nj are the spike counts 
of neuron i and j, respectively. Additionally, for the statistical significance of the experiments, repeated measure 
two-factor ANOVAs (factor 1: ACh applied/not applied; factor 2: stimulus orientation, bin size 10°) were utilized 
to analyze the effects of ACh on the network model. Statistical significance was measured using ANOVA and 
p ≤ 0.05 was set as the significancy level.

Fano factor.  Trial-to-trial variability was calculated by the Fano factor (FF) which was defined as the ratio of 
the variance of the number of spikes across trials (spike counts) divided by the mean of the spike counts126. In the 
Fano factor analysis we used 100 ms time windows and calculated the spike counts within these windows in order 
to determine whether acetylcholine had an effect on the variability of the spiking rate. Statistical significance was 
evaluated by permutation tests between the ACh applied in high and low concentration and control condition. 
The FF was calculated using the following formula:

FF variance (spike count)
mean (spike count)

,
(14)

=
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