
1Scientific Reports |         (2019) 9:20072  | https://doi.org/10.1038/s41598-019-54431-4

www.nature.com/scientificreports

Embryonic stem cell-derived 
extracellular vesicle-mimetic 
nanovesicles rescue erectile 
function by enhancing penile 
neurovascular regeneration in the 
streptozotocin-induced diabetic 
mouse
Mi-Hye Kwon1,5, Kang-Moon Song   1,5, Anita Limanjaya1, Min-Ji Choi1, Kalyan Ghatak1, 
Nhat Minh Nguyen   1, Jiyeon Ock1, Guo Nan Yin1, Ju-Hee Kang2, Man Ryul Lee3, 
Yong Song Gho   4, Ji-Kan Ryu1* & Jun-Kyu Suh1*

Extracellular vesicles (EVs) have attracted particular interest in various fields of biology and medicine. 
However, one of the major hurdles in the clinical application of EV-based therapy is their low production 
yield. We recently developed cell-derived EV-mimetic nanovesicles (NVs) by extruding cells serially 
through filters with diminishing pore sizes (10, 5, and 1 μm). Here, we demonstrate in diabetic mice 
that embryonic stem cell (ESC)-derived EV-mimetic NVs (ESC-NVs) completely restore erectile function 
(~96% of control values) through enhanced penile angiogenesis and neural regeneration in vivo, 
whereas ESC partially restores erectile function (~77% of control values). ESC-NVs promoted tube 
formation in primary cultured mouse cavernous endothelial cells and pericytes under high-glucose 
condition in vitro; and accelerated microvascular and neurite sprouting from aortic ring and major 
pelvic ganglion under high-glucose condition ex vivo, respectively. ESC-NVs enhanced the expression 
of angiogenic and neurotrophic factors (hepatocyte growth factor, angiopoietin-1, nerve growth factor, 
and neurotrophin-3), and activated cell survival and proliferative factors (Akt and ERK). Therefore, it 
will be a better strategy to use ESC-NVs than ESCs in patients with erectile dysfunction refractory to 
pharmacotherapy, although it remains to be solved for future clinical application of ESC.

Penile erection is an integrated neurovascular event between endothelial cells, mural cells (vascular smooth 
muscle cells and pericytes), and neuronal cells1–3. Erectile dysfunction (ED) is a highly prevalent among males 
with diabetes, affecting more than half of the men with this condition4. A variety of pathological conditions, 
including microvascular dysfunction, peripheral neuropathy, and hormonal disturbances, are responsible for 
diabetic ED2. Because the pharmacological efficacy of phosphodiesterase type 5 (PDE5) inhibitors depends on 
endogenous nitric oxide (NO) production, a lack of bioavailable NO in diabetic men as the results of severe penile 

1National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, 
Incheon, 22332, Korea. 2Department of Pharmacology and Medicinal Toxicology Research Center, Inha University 
School of Medicine, Incheon, 22212, Korea. 3Soonchunhyang Institute of Medi-bio Science (SIMS) and Institute of 
Tissue Regeneration, College of Medicine, Soon Chun Hyang University, Cheonan-si, Chungcheongnam-do, 31151, 
Korea. 4Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyeongsangbuk-do, 
37673, Korea. 5These authors contributed equally: Mi-Hye Kwon and Kang-Moon Song. *email: rjk0929@inha.ac.kr; 
jksuh@inha.ac.kr

OPEN

https://doi.org/10.1038/s41598-019-54431-4
http://orcid.org/0000-0001-8900-3301
http://orcid.org/0000-0002-4471-2056
http://orcid.org/0000-0003-3366-2345
mailto:rjk0929@inha.ac.kr
mailto:jksuh@inha.ac.kr


2Scientific Reports |         (2019) 9:20072  | https://doi.org/10.1038/s41598-019-54431-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

neurovascular dysfunction is the most important reason for poor responsiveness to these drugs5–7. Therefore, the 
development of a new therapeutic strategy that regenerates damaged penile neurovascular structure is needed.

Extracellular vesicles (EVs), which include apoptotic bodies, micro vesicles (also called microparticles), and 
exosomes, have been known to play a crucial role in cell-cell communication in a variety of conditions8,9. EVs 
are nano-sized spherical bilayered proteolipids encasing various components10. EVs carry genetic components 
(mRNAs and miRNAs), lipids, and numerous proteins, which are fundamental to their biogenesis and cell type- 
or context-specific actions11.

It was demonstrated that EVs derived from a variety of cells, such as endothelial cells, endothelial 
colony-forming cells, and mesenchymal stem cells, can modulate angiogenesis12. EVs have also been suggested to 
play an important role in neuronal development and neuroprotection13,14. Schwann cell-derived EVs have an abil-
ity to enhance neurite outgrowth15. The use of EVs has advantages over their cells or stem cell of origin, avoiding 
malignant transformation, immune rejection, and difficulties in cell manufacturing16.

Recent study has demonstrated in diabetic rats that intracavernous injection of adipose-derived EVs isolated 
by ultracentrifugation of culture supernatant restored erectile function by increasing cavernous endothelial con-
tent and by decreasing cavernous fibrosis. However, the recovery of erectile function induced by adipose-derived 
EVs was partial and did not reach the level found in normal age-matched controls17. Moreover, one of the major 
hurdles in the clinical application of EV-based therapy is the low production yield of EVs and the difficulty of 
purification10. To overcome these limitations, our colleagues recently developed cell-derived EV-mimetic nan-
ovesicles (NVs) by extruding cells serially through filters with diminishing pore sizes (10, 5, and 1 μm). These 
cell-derived EV-mimetic NVs have similar characteristics with the natural EVs, but have 100-fold higher pro-
duction yield18,19.

In the present study, therefore, we firstly determined the optimal dosage of embryonic stem cell (ESC)-derived 
EV-mimetic NVs (ESC-NVs) to induce maximal erectile function recovery in a mouse model of diabetic ED. We 
also directly compared the efficacy of ESC-NVs with ESC in terms of erectile function recovery. And then, we 
examined the proangiogenic or neurotrophic effects of ESC-NVs in primary cultured mouse cavernous endothe-
lial cells (MCEC) and pericytes (MCP) in vitro; in cultured aortic ring and major pelvic ganglion (MPG) ex vivo; 
and in diabetic mice in vivo.

Results
Preparation and characterization of ESC-NVs.  EV-mimetic NVs were prepared from ESC according to 
the procedure described in Fig. 1a. Cryo-transmission electron microscopy of ESC-NVs showed closed vesicles 
devoid of the parent cells, cellular debris, and protein aggregates (Fig. 1b). A dynamic light scattering analysis 
demonstrated that the average diameter of the purified ESC-NVs was 74.7 ± 5.2 nm (Fig. 1c). This finding is 
similar to the results obtained by transmission electron micrograph images. The average number of ESC-NVs 
measured by nanoparticle tracking analysis was 13.9 × 108 particles per 1 μg of total protein. Western blot analysis 
revealed that ESC-NVs expressed positive markers for exosomes, such as CD63, CD81, and TSG101. GM130, a 
peripheral membrane protein that is bound to the Golgi complex, was not detected in ESC-NVs, although donor 
ESC expressed GM130 (Fig. 1d).

Metabolic variables.  Body weight was significantly lower in the diabetic mice than that of control mice. 
In addition, diabetic group exhibited significantly increased fasting and postprandial blood glucose concentra-
tions compared with the controls. No significant differences in body weight and blood glucose levels were found 
between the diabetic groups, regardless of the treatment given (Tables 1 and 2).

ESC-NVs fully, and ESCs partially restore erectile function in the diabetic mice.  To determine 
the physiological relevance of intracavernous injection of ESC or ESC-NVs, we performed nerve-induced erec-
tile function study. Erectile function parameters, such as the ratios of maximal intracavernous pressure (ICP) 
and total ICP to mean systolic blood pressure (MSBP), were profoundly decreased in phosphate-buffered saline 
(PBS)- or HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-buffered saline (HBS)-treated diabetic 
mice compared with age-matched controls (Figs. 2 and 3). Dose-dependent experiments revealed that ESC at 
a concentration of 3 × 105 cells/20 µL partially restored erectile function, which reached up to 78% (maximal 
ICP) or 76% (total ICP) of control values (Fig. 2). In contrast, intracavernous injection of ESC-NVs restored 
erectile function in a dose dependent manner in diabetic mice, showing almost complete recovery of erection 
parameters at a concentration of 1.0 µg/20 µL, which reached up to 95% (maximal ICP) or 97% (total ICP) of nor-
mal value (Fig. 3). ESC-NVs (1.0 µg/20 µL) demonstrated superior erectile function recovery than ESC (3 × 105 
cells/20 µL) (see Supplemental Fig. 1). No detectable differences in MSBP were found among the experimental 
groups (Tables 1 and 2).

ESC-NVs promote angiogenesis under diabetic conditions.  We performed immunofluorescent 
staining with antibodies against smooth muscle α-actin, platelet/endothelial adhesion molecule 1 (PECAM-1), 
and neuron-glial antigen 2 (NG2) in the cavernous tissue of control and diabetic mice 2 weeks after treatment of 
ESC-NVs (1.0 µg/20 µL). The cavernous expression of smooth muscle cell, endothelial cell, and pericyte contents 
was significantly lower in the HBS-treated diabetic mice than in the control mice. Intracavernous injection of 
ESC-NVs induced complete restoration of smooth muscle cell and endothelial cell contents, and partial restora-
tion of pericyte content in the diabetic mice (Fig. 4).

An in vitro matrigel assay revealed impairments in tube formation in MCEC or MCP exposed to high-glucose 
condition, and these impairments were partially restored by treatment with ESC-NVs (Fig. 5a–c). An ex vivo 
aortic ring assay revealed significantly decreases in the average length and branch number of outgrowing 
microvessels in aortic segments exposed to high-glucose condition compared with that in the segments exposed 
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to normal-glucose condition. ESC-NVs significantly enhanced the outgrowth of microvessels from aortic rings 
under high-glucose condition (Fig. 5d,e).

ESC-NVs induce neural regeneration under diabetic conditions.  The expression of βIII tubulin in 
corpus cavernosum was significantly lower in the HBS-treated diabetic mice than in the control mice, whereas the 
neuronal cell content was completely restored by treatment with ESC-NVs (Fig. 6a,c). ESC-NVs also profoundly 
enhanced neurite sprouting in an ex vivo cultured MPG tissue exposed to high-glucose condition (Fig. 6b,d).

ESC-NVs increase the expression of angiogenic and neurotrophic factors, and enhance cell 
proliferative and survival pathway.  Western blot analysis showed that the cavernous expression of 
hepatocyte growth factor (HGF) and angiopoietin-1 (Ang1) protein was significantly lower and angiopoietin-2 

Figure 1.  Preparation and characterization of embryonic stem cell (ESC)-derived extracellular vesicle-mimetic 
nanovesicles (ESC-NVs). (a) Schematic diagram of the experimental procedure for preparation of ESC-NVs. 
(b) Representative transmission electron micrograph images of ESC and ESC-NVs. Scale bars = 1000 nm (ESC) 
or 25 nm (ESC-NVs). (c) Size distribution of ESC-NVs measured by dynamic light scattering analysis. (d) 
Representative Western blot for a negative marker for NVs (GM130) or positive markers for NVs (CD63, CD81, 
and TSG101). HBS, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-buffered saline.
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(Ang2) protein expression was significantly higher in the HBS-treated diabetic mice than in the age-matched con-
trols. The expressions of these angiogenic factors were returned to control values after treatment with ESC-NVs 
(Fig. 7a,d–f).

Control

STZ-induced diabetic mice

PBS ESC (3 × 105 cell/20 µL)

Body weight (g) 28.9 ± 0.8 22.3 ± 1.2* 23.3 ± 0.5*

Fasting glucose (mg/dL) 89.8 ± 4.0 247.6 ± 40.9* 224.8 ± 17.4*

Postprandial glucose (mg/dL) 161.2 ± 6.9 464.8 ± 20.2* 470.0 ± 20.3*

MSBP (mm Hg) 103.4 ± 1.6 110.7 ± 1.8 105.9 ± 2.2

Table 1.  Metabolic and physiologic parameters 2 weeks after treatment with embryonic stem cells (ESC). 
Values are the mean ± SE from N = 5 animals per group. *P < 0.01 vs. control group. STZ, streptozotocin; 
MSBP, mean systolic blood pressure.

Control

STZ-induced diabetic mice

HBS ESC-NVs (1 µg/20 µL)

Body weight (g) 30.2 ± 0.3 24.5 ± 0.4* 24.3 ± 0.4*

Fasting glucose (mg/dL) 104.8 ± 6.9 232.0 ± 19.6* 247.0 ± 23.6*

Postprandial glucose (mg/dL) 159.4 ± 5.3 535.8 ± 25.7* 544.6 ± 22.0*

MSBP (mm Hg) 95.1 ± 0.6 103.1 ± 1.6 99.1 ± 2.2

Table 2.  Metabolic and physiologic parameters 2 weeks after treatment with embryonic stem cell (ESC)- 
derived extracellular vesicle-mimetic nanovesicles (ESC-NVs). Values are the mean ± SE from N = 5 animals 
per group. *P < 0.01 vs. control group. STZ, streptozotocin; MSBP, mean systolic blood pressure.

Figure 2.  Embryonic stem cells (ESC) partially restore erectile function in the diabetic mice. (a) Representative 
intracavernous pressure (ICP) responses for the age-matched control (C) and diabetic mice stimulated at 2 
weeks after intracavernous injections of PBS (days −3 and 0; 20 μL) or ESC (days -3 and 0; 1 × 104, 1 × 105, 
3 × 105, or 1 × 106 cells/20 µL). The stimulus interval is indicated by a solid bar. (b,c) Ratios of mean maximal 
ICP and total ICP (area under the curve) to mean systolic blood pressure (MSBP) were calculated for each 
group. Each bar depicts the mean (±SE) values from N = 5 animals per group. *P < 0.01 vs. control group; 
#P < 0.05 vs. PBS-treated diabetic group. DM, diabetes mellitus; PBS, phosphate-buffered saline; STZ, 
streptozotocin.
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To test whether the effects of ESC-NVs was mediated by the production of neurotrophic factors, we performed 
Western blot analysis for nerve growth factor (NGF) and neurotrophin-3 (NT-3). The cavernous expression of 
NGF and NT-3 was significantly lower in the HBS-treated diabetic mice than in the control mice. ESC-NVs 
restored the cavernous expression of NGF and NT-3 in the diabetic mice (Fig. 7b,g,h).

Moreover, ESC-NVs also induced phosphorylation of ERK, Akt, and endothelial nitric oxide synthase (eNOS) 
in the corpus cavernosum of diabetic mice (Fig. 7c,i–k).

Discussion
Here, we examined the efficacy of ESC-NVs in a mouse model of diabetic ED. Intracavernous administration of 
ESC-NVs induced almost complete recovery of erectile function in the diabetic mice, whereas intracavernous 
injection of ESC partially restored erectile function. The beneficial effects of ESC-NVs were accomplished by 
restoring cavernous contents of endothelial cells, smooth muscle cells, pericytes, and neuronal cells in the diabetic 
mice in vivo; by promoting tube formation in primary cultured MCEC and MCP under high-glucose condition in 
vitro; and by accelerating microvascular and neurite sprouting from MPG under high-glucose condition ex vivo, 
respectively. ESC-NVs induced the expression of angiogenic and neurotrophic factors, and activated cell survival 
and proliferative factors in the diabetic mice in vivo.

Although the EVs do not have a potential of malignant transformation, their proangiogenic and prolifera-
tive effects may accelerate cancer progression. Moreover, previous study reported that low dose of endothelial 
cell-derived EVs increased tube formation, whereas a high concentration had an inhibitory effect20. Therefore, it 
is particularly important to determine optimal dose of EVs to minimize side effects, while enhancing their thera-
peutic efficacy. In the present study, we determined optimal dosage of ESC-NVs (0.1 μg, 0.5 μg, 1 μg, 2 μg, or 5 μg 
in 20 μL of HBS, respectively) and obtained a maximal erectile function recovery at a concentration of 1 μg/20 μL.

It was demonstrated that EVs released by endothelial cells contain β1 integrin and matrix metalloproteinase-2 
and −9, and promoted endothelial cell invasion and capillary-like tube formation21. In the present study, 
ESC-NVs increased the cavernous expression of Ang1 and HGF, and decreased the expression of Ang2 in dia-
betic mice. Ang1 is a secreted protein ligand for tyrosine kinase with immunoglobulin and epidermal growth 
factor homology domain-2 (Tie2, also called Tek). Ang1 has a major role in blood vessel remodeling, maturation, 
and stabilization22,23. Ang2 is an endogenous antagonist of Ang124. We recently reported in mouse models of 
type I and type II diabetic ED that intracavernous administration of synthetic Ang1 restores erectile function by 
enhancing endothelial cell regeneration25,26. HGF is also known as a potent angiogenic factor that induces migra-
tion of endothelial cells and pericytes27. We found that recombinant human-HGF protein completely restored 
cavernous endothelial cell and pericyte contents, and decreased oxidized LDL leakage in the diabetic mice3,27. 
Therefore, the regulation of these angiogenic factors may be an important mechanism by which ESC-NVs 
enhance angiogenesis under diabetic conditions.

Figure 3.  Embryonic stem cell (ESC)-derived extracellular vesicle-mimetic nanovesicles (ESC-NVs) 
completely restore erectile function in the diabetic mice. (a) Representative intracavernous pressure (ICP) 
responses for the age-matched control (C) and diabetic mice stimulated at 2 weeks after intracavernous 
injections of HBS (days -3 and 0; 20 μL) or ESC-NVs (days -3 and 0; 0.1 µg, 0.5 g, 1 µg, 2 µg, or 5 µg/20 µL). The 
stimulus interval is indicated by a solid bar. (b,c) Ratios of mean maximal ICP and total ICP (area under the 
curve) to mean systolic blood pressure (MSBP) were calculated for each group. Each bar depicts the mean 
(±SE) values from N = 5 animals per group. *P < 0.05 vs. control group; #P < 0.05 vs. HBS-treated diabetic 
group. DM, diabetes mellitus; HBS, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-buffered 
saline; STZ, streptozotocin.
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After peripheral nerve injury, Schwann cells are known to release cytokines and secrete neurotrophic factors 
that guide neural regeneration28,29. It was reported that Schwann cell NVs, but not fibroblast NVs, specifically 
enhanced neurite growth in vitro15. In this regard, the induction of neurotrophic factors (NGF and NT-3) and 
subsequent neurite sprouting from ex vivo cultured MPG under high-glucose condition as well as axonal regen-
eration in the diabetic mice in vivo by ESC-NVs are noteworthy. However, it remains to clarify the sources of 
growth factors whether these neurotrophic factors as well as angiogenic factors are directly derived from ESC-NV 
cargo, or endogenously synthesized secondarily from penile neurovascular regeneration.

Figure 4.  Embryonic stem cell (ESC)-derived extracellular vesicle-mimetic nanovesicles (ESC-NVs) restore 
cavernous endothelial cell, smooth muscle cell, and pericyte content in the diabetic mice. (a) α-acin (green) and 
PECAM-1 (red) or NG2 (green) and PECAM-1 (red) staining in cavernous tissue from age-matched control (C) 
and diabetic mice stimulated at 2 weeks after intracavernous injections of HBS (days −3 and 0; 20 μL) or ESC-
NVs (days −3 and 0; 1 µg/20 µL). Scale bar = 100 μm. (b–d) Quantitative analysis of cavernous endothelial cell, 
smooth muscle cell, and pericyte content was performed by an image analyzer. Each bar depicts the mean (±SE) 
values from N = 6 animals per group. (b) *P < 0.01 vs. control group; #P < 0.01 vs. HBS-treated diabetic group. 
(c) *P < 0.05 vs. control group; #P < 0.05 vs. HBS-treated diabetic group. (d) *P < 0.01, **P < 0.05, vs. control 
group; #P < 0.01 vs. HBS-treated diabetic group. DM, diabetes mellitus; HBS, HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid)-buffered saline.
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Akt is a serine/threonine kinase and downstream signaling mediator of phosphatidylinositol 3-kinase (PI3K), 
and the activation of PI3K/Akt pathway is known to enhance survival of the various cell types30. Activation of 
ERK pathway is reported to enhance cell proliferation31,32. EVs generated in response to interleukin-3 stimulation 
are known to increase ERK activation and cyclin D1 transcription, and to promote angiogenesis33. Moreover, 
endothelial colony-forming cell-derived EVs enhanced neovascularization and promoted cutaneous wound heal-
ing in diabetic rats by activating ERK signaling in endothelial cells and by stimulating the expression of angio-
genic molecules34,35. EVs isolated from Akt-overexpressing mesenchymal stem cells are also known to stimulate 
endothelial cell migration, proliferation, and tube-like formation in vitro36, and to increase the formation of blood 
vessel in vivo. In the present study, ESC-NVs enhanced phosphorylation in endothelial cell survival through the 
PI3K/Akt pathway23 and to induce endothelial cell proliferation by activation of the ERK pathway23,31,32. From 
these findings, we believe that ESC-NV-mediated increase in angiogenic factors in the corpus cavernosum of 
diabetic mice may play a key role in activating signaling pathway involved in cell survival and proliferation.

We used the most potent stem cell source, ESC, to isolate EV-mimetic NVs and to confirm the efficacy of 
ESC-NVs in diabetic ED, although ethical concerns might be raised when those are applicable in clinical sit-
uation. The cellular or organ source of EVs is also reported to be of great importance, as shown by the in vivo 
tracking study which demonstrated that intravenously administered EVs derived from kidney embryonic cells are 
taken up mainly by the kidney37. Thus, it will be intriguing to compare the results of this study with those of future 
studies using EVs or EV-mimetic NVs derived from a variety of cells, such as endothelial cells, smooth muscle 
cells, or pericytes isolated from orthotopic organ, i.e., erectile tissue.

The functionality of EVs is strongly influenced by the microenvironment38 or cytokine stimulation33,39. 
For example, hypoxia stimulation and preconditioning of stem cells with platelet-derived growth factor or an 
endothelial differentiation medium favored the release of EVs with vasculogenic potential and enhanced their 
proangiogenic activity33,38,39. Therefore, it will be valuable to evaluate whether the several stimuli or modification 
of culture conditions would result in better outcomes.

Our study has some limitations. We did not screen for the development of ED before treatment of ESC-NVs 
because of invasive nature of the nerve-induced erectile function study. We demonstrated a short-term efficacy of 
ESC-NVs in a mouse model of diabetic ED. Further studies are needed to test whether ESC-NVs would induce 
durable erectile function recovery in a variety of animal models for ED.

Figure 5.  Embryonic stem cell (ESC)-derived extracellular vesicle-mimetic nanovesicles (ESC-NVs) enhance 
tube formation and microvascular sprouting under diabetic conditions. (a) Tube formation assay in mouse 
cavernous endothelial cell (MCEC) or mouse cavernous pericyte (MCP) exposed to normal-glucose (NG) or 
high-glucose (HG) conditions for 48 hours and treated with HBS or ESC-NVs (1 µg/mL). 100× magnification. 
(b) Ex vivo aortic ring assay. 40× magnification. (c,d) Number of tubes per high-power field (N = 4). (c) 
*P < 0.01 vs. NG group; #P < 0.05 vs. HG + HBS group. (d) *P < 0.01 vs. NG group; #P < 0.01 vs. HG + HBS 
group. (e) Area of outgrowing microvessels from aortic ring (N = 4). *P < 0.01 vs. NG group; #P < 0.01 vs. 
HG + HBS group. HBS, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-buffered saline.
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Figure 6.  Embryonic stem cell (ESC)-derived extracellular vesicle-mimetic nanovesicles (ESC-NVs) induce 
neural regeneration under diabetic conditions. (a) βIII tubulin (red) and PECAM-1 (blue) staining in 
cavernous tissue from age-matched control (C) and diabetic mice stimulated at 2 weeks after intracavernous 
injections of HBS (days -3 and 0; 20 μL) or ESC-NVs (days −3 and 0; 1 µg/20 µL). Scale bar = 100 μm. (b) βIII 
tubulin (red) staining in mouse major pelvic ganglion (MPG) tissue exposed to normal-glucose (NG) or high-
glucose (HG) conditions for 72 hours and treated with HBS or ESC-NVs (1 µg/mL). Scale bar = 100 μm. (c) 
Quantitative analysis of βIII tubulin immunopositive areas in cavernous tissue content was performed by an 
image analyzer. Each bar depicts the mean (±SE) values from N = 6 animals per group. *P < 0.05 vs. control 
group; #P < 0.05 vs. HBS-treated diabetic group. (d) Quantification of neurite length was performed by an image 
analyzer (N = 4). *P < 0.05 vs. NG group; #P < 0.01 vs. HG + HBS group. DM, diabetes mellitus; HBS, HEPES 
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-buffered saline.
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Conclusions
Our study demonstrates a unique function of ESC-NVs in the diabetic ED. ESC-NVs ameliorates erectile func-
tion in diabetic mice by enhancing penile neurovascular regeneration and demonstrates superior effects than 
ESC. Local treatment with EV-mimetic NVs may represent a promising therapeutic strategy for the treatment of 
ED caused by vascular and neural diseases.

Materials and Methods
Preparation and characterization of exosome.  ESC culture.  Mouse ESC were maintained on irradi-
ated mouse embryonic fibroblasts in Dulbecco modified Eagle medium (DMEM) (Gibco, Carlsbad, CA, USA) 
with 15% fetal bovine serum (Gibco), 1000 U/mL LIF (Chemicon International, Temecula, CA, USA), 100 U/mL 
penicillin/streptomycin (Invitrogen, Corp., Carlsbad, CA, USA), L-Glutamine 200 mM (100×) (Gibco), 0.1 mM 

Figure 7.  Embryonic stem cell (ESC)-derived extracellular vesicle-mimetic nanovesicles (ESC-NVs) 
increase the expression of angiogenenic and neurotrophic factors, and induces cell proliferative and survival 
signaling pathway. (a) Representative Western blot for angiogenic factors (hepatocyte growth factor [HGF], 
angiopoietin-1 [Ang1], and angiopoietin-2 [Ang2]) in penis tissue from age-matched control (C) and diabetic 
mice stimulated at 2 weeks after intracavernous injections of HBS (days −3 and 0; 20 μL) or ESC-NVs (days −3 
and 0; 1 µg/20 µL). (b) Representative Western blot for neurotrophic factors (nerve growth factor [NGF] and 
neurotrophin-3 [NT3]). (c) Representative Western blot for cell proliferative and survival factors (phospho-
ERK [P-ERK]/ERK, phospho-Akt [P-Akt]/Akt, and phospho-eNOS [P-eNOS]/eNOS). (d–k) Normalized band 
intensity values. Each bar depicts the mean (±SE) values from N = 4 animals per group. The relative ratio in the 
control group was arbitrarily set to 1. (d–f,h,k) *P < 0.05 vs. control group; #P < 0.05 vs. HBS-treated diabetic 
group. (g,i,j) *P < 0.05 vs. control group; #P < 0.05 vs. HBS-treated diabetic group. DM, diabetes mellitus; HBS, 
HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-buffered saline.
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nonessential amino acids (Gibco), and 0.1 mM β-mercaptoethanol (Gibco) at 37 °C/5% CO2. Media was changed 
daily, and cells were passaged every 2 to 3 days.

Preparation of ESC-NVs.  ESC-NVs were prepared as described previously19. Briefly, mouse ESC were rinsed 
with PBS. Adherent cells were detached using 0.25% Trypsin-EDTA (Invitrogen) and re-suspended in HEPES 
buffer solution (Gibco). ESC-NVs were produced using a mini extruder system (Avanti Polar Lipids, Birmingham, 
AL, USA). Cell suspension was sequentially extruded using 10, 5, and 1 μm pore-sized polycarbonate membrane 
(Nuclepore, Whatman Inc., Clifton, NJ, USA) ten times across each filters. To form a step gradient, 50% iodixanol 
(1 mL; Axis-Shield PoC AS, Oslo, Norway) was placed at the bottom of an ultracentrifuge tube, overlaid with 10% 
iodixanol (2 mL) and the extruded samples (7 mL), and then ultracentrifuged at 100,000 g for 2 hours at 4 °C. The 
interface layers between the 10% and 50% iodixanol were further pelleted at 100,000 g for 2 hours at 4 °C. NVs 
were filtered with 0.45 μm filter and stored at −80 °C until use (Fig. 1a).

Transmission electron microscopy.  The purified ESC-NVs were applied to glow-discharged carbon-coated cop-
per grids (Electron Microscopy Sciences, Fort Washington, PA, USA). After ESC-NVs had been allowed to be 
absorbed onto the grid for 1 hour, the grids were fixed with 4% paraformaldehyde for 10 minutes and rinsed with 
droplets of deionized water and then, negatively stained with 2% uranyl acetate (Ted Pella, Redding, CA, USA). 
Electron micrographs were recorded with a JEM 1011 microscope (JEOL, Tokyo, Japan) at an acceleration voltage 
of 100 kV as described previously19.

Dynamic light scattering.  The size distribution of ESC-NVs was measured with Zetasizer Nano ZS (Malvern 
Instrument Ltd., Malvern, U.K.). The size distribution based on relative abundance was determined by an infra-
red light (wavelength = 633 nm) passing through the sample at the scattered intensity of 10× for 30 seconds as 
described previously19.

Western blot analysis.  ESC-NVs and whole cell lysates were separated by SDS-PAGE (10% resolving gel), and 
then transferred to a polyvinylidene difluoride membrane. Each blot was blocked, and probed with antibodies 
to GM130 (BD Biosciences, San Jose, CA, USA; 1:1000), CD63 (Novus Biologicals, Liggleton, CO, USA; 1:1000), 
CD81 (Novus Biologicals; 1:1000), or TSG101 (Novus Biologicals; 1:500).

Animals and treatments.  Eight-week-old male C57BL/6 mice were used in this study. The experiments 
were approved by the Institutional Animal Care and Use Committee of Inha University (Assurance Number: 
INHA 171129-527) and performed in accordance with relevant guidelines and regulations. Diabetes was induced 
by intraperitoneal injection of multiple low doses of streptozotocin (STZ, 50 mg/kg body weight in 0.1 M citrate 
buffer, pH 4.5) for 5 consecutive days as described previously40. Animals were considered diabetic if their non-
fasting glucose levels were greater than 300 mg/dL. Eight weeks after diabetes was induced, the mice were anes-
thetized with intramuscular injections of ketamine (100 mg/kg) and xylazine (5 mg/kg) and placed supine on a 
thermoregulated surgical table.

To test the efficacy of ESC, the mice were distributed into six groups (N = 5 per group): age-matched controls 
and STZ-induced diabetic mice receiving repeated intracavernous injections of PBS (days −3 and 0; 20 μL) or 
ESC (days −3 and 0; 1 × 104 cells, 1 × 105 cells, 3 × 104 cells, or 1 × 106 cells in 20 μL of PBS, respectively).

To test the efficacy of ESC-NVs, the mice were distributed into seven groups (N = 5 per group): age-matched 
controls and STZ-induced diabetic mice receiving repeated intracavernous injections of HBS (days −3 and 0; 
20 μL) or ESC-NVs (days −3 and 0; 0.1 μg, 0.5 μg, 1 μg, 2 μg, or 5 μg in 20 μL of PBS, respectively). ESC-NVs 
were given twice, because our pilot experiments demonstrated that a single intracavernous injection of ESC-NVs 
resulted in a partial recovery of erectile function (data not shown). To minimize leakage of the ESC or ESC-NVs 
into systemic circulation, blood drainage via the dorsal veins was halted by circumferential compression of the 
penis at the base with an elastic band immediately before injection, and the compression was released at 30 min-
utes after the injection41. We evaluated erectile function by cavernous nerve electrical stimulation 2 weeks after 
treatment. A separate group of animals was used for histologic examination and biochemical study.

Measurement of erectile function.  The mice from each group were anesthetized with ketamine (100 mg/
kg) and xylazine (5 mg/kg) intramuscularly. Erectile function was measured as described previously40. Briefly, the 
bladder and prostate were exposed through a midline abdominal incision. The MPG and cavernous nerve were 
identified posterolaterally to the prostate on one side, and bipolar platinum wire electrodes were placed around 
the cavernous nerve for electrical stimulation. The penis was denuded of skin, and a 26-gauge needle filled with 
250 U/mL of heparin was inserted into one side of the corpus cavernosum for monitoring ICP with a Statham P23 
pressure transducer connected to a computerized system for data acquisition (Biopac Systems, Goleta, CA, USA), 
which was interfaced to a personal computer for recording and data analysis. Stimulation parameters were 5 V 
at a frequency of 12 Hz, a pulse width of 1 ms, and a duration of 1 minute. During tumescence, the maximal ICP 
was recorded. The total ICP was determined by the area under the curve from the beginning of cavernous nerve 
stimulation to a point 20 seconds after stimulus termination. Systemic blood pressure was measured by using a 
noninvasive tail-cuff system (Visitech systems, Apex, NC, USA). The ratios of maximal ICP and total ICP (area 
under the curve) to MSBP were calculated to adjust for variations in systemic blood pressure.

Tube formation assay.  The MCEC and MCP were prepared and maintained as described previously3. The 
tube formation assay was performed to assess the angiogenic capacity of ESC-NVs in MCEC or MCP. About 
100 µL of growth factor-reduced matrigel was dispensed into 96-well tissue culture plates at 4 °C. After gelling at 
37 °C for at least 30 minutes, the MCEC or MCP were seeded onto the gel at 4 × 104 cells/well in 200 µL of M199 or 
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DMEM medium. The assay was performed in a CO2 incubator and the plates were incubated at 37 °C for 24 hours. 
Images were obtained with a phase-contrast microscope and the numbers of tubes in each well of the plate were 
counted at a screen magnification of ×40 (N = 4 per group). Only integrated tubes were counted.

Aortic ring assay.  Aortic ring assay were performed as described previously42. Aortas were harvested from 
8-week-old C57BL/6 mice (N = 4 per group). The aortic rings were placed in the 8-well Nunc Lab-Tek Chamber 
Slide System (Sigma-Aldrich, Saint Louis, MO, USA) and sealed in place with an overlay of 50 μL matrigel. The 
aortic rings were cultured in medium 199 with 20 ng/mL of basic fibroblast growth factor and 1% penicillin/
streptomycin for 5 days. The aortic segments and sprouting cells were fixed in 4% paraformaldehyde for at least 
30 minutes and used for immunofluorescent staining.

Ex Vivo neurite sprouting assay.  The mouse major pelvic ganglion tissues were prepared and main-
tained as described previously43 with minor modifications. The MPG tissues were isolated from male mice using 
a microscope, transferred into sterile vials containing Hank’s balanced salt solution (Gibco), and then rinsed 
and washed twice in PBS. The MPG tissues were cut into small pieces and the samples plated on poly-D-lysine 
hydrobromide-coated (Sigma-Aldrich) 12-well plate. The whole MPG tissue was covered with matrigel and the 
culture plate placed on ice for 5 minutes prior to incubation at 37 °C for 10–15 minutes in a 5% CO2 atmosphere. 
We added 1 mL of complete Neurobasal medium (Gibco) supplemented with 2% serum-free B-27 (Gibco) and 
0.5 nM GlutaMAX™-I (Gibco). The dishes were then incubated at 37 °C in a 5% CO2 atmosphere. Three days after 
incubation, we evaluated neurite outgrowth.

Establishment of In Vitro or Ex Vivo experimental systems that mimic diabetic ED.  To mimic 
an in vivo or ex vivo condition for diabetes-induced angiopathy and neuropathy, primary cultured cells or tis-
sues were serum-starved for 24 hours and then exposed to normal-glucose (5 mmol) or high-glucose (30 mmol; 
Sigma-Aldrich) conditions for 2 days (MCEC and MCP), 3 days (MPG tissue), or 5 days (aortic ring) as described 
previously42.

Histological examinations.  The penis tissue (N = 6 per group) and cultured MPG (N = 4 per group) were 
fixed in 4% paraformaldehyde for 24 hours at 4 °C as described previously42. Frozen tissue sections (12-μm or 
60-μm thick) were incubated with antibodies to smooth muscle α-actin (Sigma-Aldrich; 1:50), NG2 (Millipore, 
Temecula, CA, USA; 1:50), PECAM-1 (Millipore; 1:50), or βIII tubulin (Abcam, Cambridge, UK; 1:50) at 4 °C 
overnight. After several washes with PBS, the tissues were incubated with tetramethyl rhodamine isothiocyanate- 
or fluorescein isothiocyanate-conjugated secondary antibodies (Zymed Laboratories, South San Francisco, CA, 
USA) for 2 hours at room temperature. Samples were mounted. Signals were visualized and digital images were 
obtained with a confocal microscope (FV1000, Olympus, Tokyo, Japan). Quantitative analysis of histologic exam-
inations was done with an image analyzer system (National Institutes of Health [NIH] Image J 1.34, http://rsbweb.
nih.gov/ij/) and we analyzed the histologic data in a blinded manner.

Western blot analysis.  Equal amounts of protein (40 µg per lane) were electrophoresed on sodium 
dodecylsulfate-polyacrylamide gels (8% to 15%), transferred to polyvinylidene difluoride membrane, and probed 
with antibodies to HGF (Santa Cruz Biotechnology, Delaware CA, USA; 1:1000), Ang1 (Novus Biologicals), Ang2 
(Novus Biologicals; 1:1000), phospho-eNOS (Signaling, Beverly, MA, USA; 1:250), eNOS (Cell Signaling; 1:500), 
phospho-Akt (Cell Signaling; 1:1000), Akt (Cell Signaling; 1:1000), phospho-ERK (Cell Signaling; 1:1000), ERK 
(Cell Signaling; 1:1000), NGF (Santa Cruz Biotechnology; 1:1000), NT-3 (Santa Cruz Biotechnology; 1:1000), 
GAPDH (ABclonal, Woburn, MA, USA; 1:5000), or β-actin (Abcam; 1:6000). The results were quantified by 
densitometry (N = 4 per group).

Statistical analysis.  The results are expressed as mean ± SE. For parametric data, intergroup comparisons 
were made by one-way ANOVA followed by Newman-Keuls posthoc tests. We used the Kruskal-Wallis test to 
compare nonparametric data. Probability values less than 5% were considered significant. We used SigmaStat 3.11 
software (Systat Software) for statistical analyses. We also performed a power analysis to determine the minimum 
number of animals that need to be included in the present study (https://clincalc.com/stats/samplesize.aspx).
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