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Spin polarization in the phase 
diagram of a Li–Fe–S system
Tsuyoshi Takami1*, Tomonari Takeuchi2 & Toshiharu Fukunaga1

Divalent and trivalent states of Fe ions are known to be stable in inorganic compounds. We focus a novel 
LixFeS5 cathode, in which the Li content (x) changes from 2 to 10 by an electrochemical technique. As 
x increases from 2, a Pauli paramagnetic conductive Li2FeS5 phase changes into a superparamagnetic 
insulating Li10FeS5 phase. Density functional theory calculations suggest that Fe+ ions in a high-x phase 
are responsible for ferromagnetic spin polarization. Reaching the monovalent Fe ion is significant for 
understanding microscopic chemistry behind operation as Li-ion batteries and the original physical 
properties resulting from the unique local structure.

Since iron is one of the most ubiquitous and stable elements on our planet, various Fe compounds are used for 
many fields such as a metal, alloys and organic/inorganic compounds. Fe ions are in variety valence states from 0 
to +6 in organic compounds1–4. However, the valence state of Fe ions is generally divalent or trivalent in inorganic 
compounds. As unconventional high-valence examples, SrFe4+O3 and CaFe4+O3 were synthesized under high 
pressures5,6. Furthermore, in complex oxides, charge transfer leads to Fe3.75+ in LaCu3Fe4O12 7. On the contrary, 
an unusual low-valence state beyond the constraint is expected to be formed by cation injection in an inorganic 
host lattice, as in the case for anion injection.

The recent discovery of the Li8FeS5 system with an exceptionally high capacity of 800 mAh/g8, which is a fin-
gerprint for up to eight transferrable Li ions (Fig. 1a), gives opportunities to achieve an unusual valence state of 
the Fe ions owing to a wide range of Li contents (x = 2 –10 in LixFeS5). For example, this means that the valence 
state of the Fe ions naturally decreases with increasing x in order to keep charge neutrality. The number of trans-
ferrable Li ions per unit cell is 6.4, which is the largest value to the best of our knowledge. Also, unique amorphous 
(x = 2)/low-crystalline (x = 10) transformations are induced by the transferrable Li ions8. The precise structure 
of the amorphous phase has remained unknown, and X-ray diffraction (XRD), extended X-ray absorption fine 
structure (EXAFS) and X-ray absorption near-edge structure (XANES) measurements indicated the formation 
of Fe–S bond and the presence of discrete sulfer ions8. Besides such x variation and structural change in LixFeS5, 
the local structure, the magnetic properties and the electronic properties are expected to be drastically altered by 
x, while there are no available data on them.

We therefore select the system as an underexplored but intriguing target, and report the magnetic and elec-
tronic properties of the products after Li ion propagation out of (delithiation) and into (lithiation) the pristine 
material by bulk magnetization, scanning spreading resistance microscopy (SSRM), ultraviolet photoemission 
spectroscopy (UPS) and magnetic force microscopy (MFM) measurements. We prepared, in a first step, several 
materials by fixing x in LixFeS5 using an electrochemical technique and investigated their magnetic properties to 
obtain an overview of the phase diagram. Perturbations by Li ions that have no net magnetization of their own 
transformed the pristine phase into a Pauli paramagnetic (PM) phase and a superparamagnetic (SPM) phase 
(Fig. 1b). In a second step, the two end members (x = 2 and 10) were studied in detail to understand their elec-
tronic properties, electronic states and local structures. As a result, the LixFeS5 system was found to exhibit elec-
tronic phase switching between a low-x conductive state and a high-x insulating state. Counter to our common 
belief, density functional theory (DFT) calculations suggest the monovalent Fe ion for x = 9.1 plays key roles in 
spin polarization.
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Results and Discussion
Magnetic properties.  The magnetization data were collected at five stages in the voltage profile (Fig. 1a). 
The χ(T) curve of pristine Li8FeS5 followed the Curie – Weiss law and yielded an effective magnetic moment (μeff) 
of 3.7 μB, where μB is the Bohr magneton. Both XRD analyses and high-energy X-ray total scattering measure-
ments indicated that the pristine material was Fe-substituted (Li, Fe)2S9. The estimated μeff was consistent with μeff 
= 3.9 μB of Li8FeS5 (=(Li0.8Fe0.1)2S) with Li off-stoichiometry, in which the Fe2+ ions in the FeS4 tetrahedra are in 
a mixed state between an intermediate-spin state and a high-spin state.

Upon delithiation process, the Li ions were extracted from the Li8FeS5 host lattice (inset of Fig. 1a). The χ(T) 
curve for Li2FeS5 showed a Pauli-like lack of temperature dependence down to 100 K. The density of states at 
the Fermi level, N(EF), was estimated as 6.8 × 1023 eV−1 cm−3 using the relation χ0 = μB

2N(EF), where χ0 is the 
temperature independent χ. On the contrary, the χ for x ≥ 9 in LixFeS5 increased during lithiation (Fig. 2a) and 
there was a branch between the zero-field cooling (ZFC) and field cooling (FC) data at low temperature (Tirr). A 
cusp at a lower temperature in the ZFC curve appeared after the second plateau at approximately 1.4 V during 
the lithiation process (Fig. 1a). The peak temperature (Tp) for Li10FeS5 was 10 K at 100 Oe and shifted to lower 
temperatures with increasing magnetic field, maintaining the relationship Tp < Tirr. Such field variation of Tp is 
described by the power law, Tp ∝ [1 − (H/H0)]210 characteristic of superparamagnetism rather than antiferromag-
netism (inset of Fig. 2a). Here, superparamagnetism appears in ferromagnetic (FM) or ferrimagnetic nanoscale 
particles. Magnetization analyses above 250 K where the Curie-like contribution with a Curie temperature of 90 K 
is dominant indicate the formation of magnetic polarons with an unusually high spin quantum number (S = 16), 
assuming that the g factor is 2 (Fig. S1). The concave, rather than convex, shape of the χ(T) curve also supports 
this scenario11.

The magnetization at 2 K after the second plateau approached saturation at higher magnetic fields did not 
completely saturate even at 70 kOe (Fig. 2b). A magnetic hysteresis with a residual magnetization was observed 
and disappeared at 150 K (Fig. S2). As the particle size decreases to the nanoscale, the FM domain wall can no 
longer be defined. Thus, once an external field is removed above Tp, the thermal fluctuation cancels the residual 
magnetization. Based on the χ(T) and M(H) curves, Tp was assigned as the blocking temperature characteristic of 
SPM behavior, where the thermal energy becomes comparable with the energy required for spins to freeze. Here, 
binding and conductive additives are extrinsic since they are nonmagnetic.

Figure 1.  (a) Delithiation (solid) and lithiation (dashed) profiles for the Li8FeS5/C electrode at 298 K. The 
lithiation plateaus at approximately 2.0 V and 1.4 V correspond to the reduction of sulfur and Fe–S components, 
respectively. Inset: Schematic illustration of the Li8FeS5/Li cell. Li, Fe and S atoms are represented as red, 
blue and green spheres, respectively. (b) Schematic phase diagram of the Li–Fe–S system. The color symbols 
correspond to those in (a).
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MFM measurements.  We obtained the FM spin polarization signal in the nanoparticles (NPs) after lithia-
tion from the bulk magnetization measurements, but there was no evidence that the magnetic signal was intrinsic 
as this macroscopic technique once in a while captures signals originating from trivial sources. MFM is probably 
the most suitable method for investigating the SPM state as with the presence of NPs though we have used muons 
and neutrons to detect short/long-range FM order12,13. Dark and bright contrasts associated with the positive 
and negative phase shifts, respectively, were observed together with a high population of NPs (Fig. 2c,d). This 
indicates that the in-plane dipole moments arose from the NPs in the in-plane magnetic field. When the direction 
of the magnetic field is reversed, the contrast in the same region is reversed for the ideally isolated SPM NPs due 
to the flexible rotation of spins. In fact, the dark contrast turned the bright one with a magnetic field reversal and 
vice versa (green circles in Fig. 2c,d). The reason why the partial rotation is observed elsewhere is unclear, but 
the magnetic polarons quench the flexible rotation of spins. In particular, when one localized impurity spin and 
the carrier spins around the impurity form the magnetic polaron, the antiferromagnetic interaction between the 
localized impurities and the FM interaction between the magnetic polarons result in the small phase-shift change 
of the dark region, while remaining as the bright contrast (blue circles in Fig. 2c,d). There was also an area where 
the MFM image did not show a phase shift corresponding to the nonmagnetic acetylene black and binder. Since 

Figure 2.  (a) Temperature dependence of magnetic susceptibility measured in the ZFC mode (solid) and the 
FC mode (dotted) in a field of 1 kOe. The color corresponds to that in Fig. 1a. Inset: Magnetic field dependence 
of Tp for x = 10. The solid line is the result of fitting Tp ∝ [1 – (H/H0)]210 to the data. Above 4 kOe, Tp was not 
observed down to 2 K. The temperature range below 2 K is described by gray. (b) Plot of 2 K magnetization 
versus magnetic field. (c,d) Two 200 nm × 200 nm MFM images taken of the same area at 150 K (>Tp) after 
lithiation (x = 10). A magnetic field of 5 kOe is applied (c) along the arrow and (d) in the reversed direction. 
Scale bar: 50 nm; MFM z-range: 3.6°. The frizzy or fuzzy appearance induced by the scanning process is visible, 
but we cannot exclude that part. The squares show the MFM images over a 100 nm × 100 nm area.
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MFM measurements monitor a superposition of the magnetic and electrostatic signals, the displayed MFM data 
call into question the magnetic mechanism to some extent, but provide a plausible explanation reflecting most of 
the features of the FM spin-polarized NPs.

Resistance measurements.  After lithiation, the local electronic resistance was position-dependent and its 
span varied by six orders of magnitude even in the area with no height corrugations (Fig. 3a color bar). There were 
some regions with high (blue), medium (yellow) and low (orange) resistance originating from the binder, acet-
ylene black and the active material (Li10FeS5), respectively. The light-blue region may also correspond to a phase 
produced by the decomposition of electrolyte solution. The local resistance of the active material was generally 
in the range of semiconductors, which rules out the possibility of metallic Fe being included. The height profiles 
showed a periodic array of NPs 5–10 nm in height (Fig. 3b). The electronic resistance exhibited a cusp at these 
interfaces (Fig. 3b). These results are consistent with the properties of NPs. Attempts to measure the Hall effect for 
the compressed pellet have failed because of a high resistivity.

In contrast, after delithiation, also shown in Fig. 3c are some regions with high (blue), medium (yellow) and 
low (red) resistance, which correspond to the binder, acetylene black and the active material (Li2FeS5), respec-
tively. The region with lower resistances corresponded well with the distribution of Fe and S atoms (Fig. S3). The 
resistance of the active material after delithiation was almost one-fiftieth of that after lithiation. Most interestingly, 
the electrons were predominately delocalized.

UPS measurements.  Next, we performed UPS to investigate the electronic states around the EF (Fig. 4). No 
states near the EF were observed for the lithiated sample (Li10FeS5); in contrast, finite states at the EF were visible 
for the delithiated sample (Li2FeS5). The drastic change in the electronic states suggests switching between the 
insulating state and the conductive state by Li ions.

Local structural models.  Finally, the local structural models that we consider by DFT calculations are 
shown in Fig. 5a,b. Pristine Li8FeS5 crystallizes in the Fm3m space group, in which the Fe ions partially occupy the 
Li sites in Li2S9. LiS4 and FeS4 tetrahedra are included in the lattice and they are edge-shared. Delithiation (lithia-
tion) induces the following two unique local structural changes: (i) formation of FeS5 trigonal bipyramids (FeS4 
tetrahedra) and (ii) formation (dissociation) of S–S bonds. When Li is extracted from the pristine material, partial 
Li–S bond breaking is facilitated and the discrete S–S bonds are formed. In addition, FeS5 trigonal bipyramids and 
FeS4 tetrahedra coexist in the lattice. Since Fe ions are generally coordinated either teterahedrally or ocahedrally, 
the local coordination geometry in Li2.2Fe0.94S5 is counterintuitive. The existence of FeS5 trigonal bipyramids is 
hard to envisage experimentally. Specially, to the best of our knowledge, this coordination in inorganic com-
pounds is the rare example. The displacement of the central Fe in FeS4 tetrahedra is a key to explain the formation 
of FeS5 trigonal bipyramids because the 4S tetra-framework remains. In overall, the lack of long-range periodicity 
(amorphous structure) in the predicted structure (Fig. 5a) is consistent with the previous experimental report8. 

Figure 3.  SSRM images of the samples after (a) lithiation and (c) delithiation. (b) Height and resistance profiles 
along the marked path. Scale bar: 500 nm.
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On the contrary, for Li9.1Fe0.94S5, each element is arranged more periodically than in Li2.2Fe0.94S5. As shown in 
Fig. 5b, the framework of Li2S is predicted to be stable in the lattice, although Li is partially replaced by Fe, result-
ing in the formation of FeS4 tetrahedra and the dissociation of isolated S–S bonds.

DFT calculations also predict that the spin-up and -down Fe states are almost symmetrical for Li2.2Fe0.94S5, 
indicating a non-magnetic nature (Fig. 5c). However, for Li9.1Fe0.94S5, there is a band gap and the overall DOS fea-
ture becomes partially asymmetrical (Fig. 5d). Such imbalance in the up and down spins gives rise to ferromagne-
tism. The valence band near the EF is dominated by the Fe component. Spin polarization analyses suggest that the 

Figure 4.  UPS spectra of the samples after delithiation (solid, x = 2) and lithiation (dashed, x = 10) at room 
temperature. The vertical line shows the Fermi level.

Figure 5.  Models of local structures for (a) Li2.2Fe0.94S5 and (b) Li9.1Fe0.94S5. Fe–S clusters are shown by FeS5 
trigonal bipyramids (purple) and FeS4 tetrahedra (brown). Lithium, iron and sulfur atoms are represented 
by red, blue and green spheres, respectively. Calculated density of states (DOS) for (c) Li2.2Fe0.94S5 and (d) 
Li9.1Fe0.94S5. Positive and negative values of DOS correspond to spin-up and -down, respectively.
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Fe+ ions are in the high-spin state (S = 3/2), which would be the origin of FM behavior. In addition, Bader charge 
analyses show that the average valences of Li, Fe and S ions are 0.77, 0.51 and −1.5, respectively. These results are 
reasonable each other. Although the prediction of the low valence state of Fe ions looks surprising, a low-valence 
state has also been predicted for LixTiS4 (e.g., Ti0.269+; x = 4)14.

Conclusion
In conclusion, Li ions drive a drastic phase transformation in the LixFeS5 system. Delithiation and lithiation 
accompanied by up to eight Li ions transform pristine Li8FeS5 into a Pauli paramagnetic conductor (amor-
phous Li2FeS5) and a superparamagnetic insulator (low-crystalline Li10FeS5), respectively. The findings boost 
our still-limited understanding of the ionic perturbations of magnetism and conduction. By carefully selecting 
fragile/reconfigure materials, the ionic perturbations extend far beyond other ones to realize new phases and 
emergent properties.

Methods
The primary electrochemical studies that carried out on Li8FeS5 have been reported elsewhere8. The bulk mag-
netization measurements were performed as described previously to avoid air exposure15. The local electronic 
resistance was measured by SSRM (AFM5000II, Hitachi High-Tech Science). The technique enables simultane-
ous local topographic and electronic resistance mapping on the surface of samples in real space. To confirm the 
repeatability, element distribution and absence of magnetic impurities, element mapping combined with SSRM 
(Park NX10, Park Systems) was performed using an Auger electron spectrometer (JAMP-9510F, JEOL) at room 
temperature. To investigate the electronic states near the EF in detail, HeI (21.22 eV) UPS measurements were 
performed at room temperature (PHI5000 VersaProbe I, ULVAC-PHI). To detect probe – sample interactions 
and analyze the magnetic properties of the NPs after lithiation, we conducted MFM measurements (AFM5300E, 
Hitachi High-Tech Science) under vacuum conditions (6.6 × 10−6 torr) at 150 K. First-principles calculations 
were performed using the projector augmented-wave (PAW) method16,17. The exchange-correlation functional 
was used within the generalized gradient approximation (GGA-PBE)18. The selected energy cutoff was 340 eV, 
and Brillouin zone integration was performed on a 2 × 2 × 2 k-point mesh. The structural parameters were fully 
optimized until the atomic Hellmann-Feynman forces were less than 0.05 eV Å−1 and all stress components were 
less than 0.01 eV Å−3. To model the Li2.2Fe0.94S5 (Li9.1Fe0.94S5) material, a 2 × 2 × 2 supercell containing 52 (96) 
atoms was applied. The structure models were visualized using the VESTA program19.
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