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Genetic risk score for risk prediction 
of diabetic nephropathy in Han 
Chinese type 2 diabetes patients
Li-Na Liao1, Tsai-Chung Li   1,2, Chia-Ing Li3,4, Chiu-Shong Liu3,4,5, Wen-Yuan Lin   3,5,  
Chih-Hsueh Lin3,5, Chuan-Wei Yang4, Ching-Chu Chen6,7, Chiz-Tzung Chang3,8, Ya-Fei Yang3,8, 
Yao-Lung Liu3,8, Huey-Liang Kuo3,8,9, Fuu-Jen Tsai7,10* & Cheng-Chieh Lin3,4,5*

We evaluated whether genetic information could offer improvement on risk prediction of diabetic 
nephropathy (DN) while adding susceptibility variants into a risk prediction model with conventional 
risk factors in Han Chinese type 2 diabetes patients. A total of 995 (including 246 DN cases) and 519 
(including 179 DN cases) type 2 diabetes patients were included in derivation and validation sets, 
respectively. A genetic risk score (GRS) was constructed with DN susceptibility variants based on 
findings of our previous genome-wide association study. In derivation set, areas under the receiver 
operating characteristics (AUROC) curve (95% CI) for model with clinical risk factors only, model with 
GRS only, and model with clinical risk factors and GRS were 0.75 (0.72–0.78), 0.64 (0.60–0.68), and 0.78 
(0.75–0.81), respectively. In external validation sample, AUROC for model combining conventional 
risk factors and GRS was 0.70 (0.65–0.74). Additionally, the net reclassification improvement was 
9.98% (P = 0.001) when the GRS was added to the prediction model of a set of clinical risk factors. 
This prediction model enabled us to confirm the importance of GRS combined with clinical factors 
in predicting the risk of DN and enhanced identification of high-risk individuals for appropriate 
management of DN for intervention.

Diabetic nephropathy (DN) is a serious complication in type 2 diabetes patients. Diabetic patients have a more 
rapid decline in renal function than individuals without diabetes1. Without particular managements or specific 
interventions, approximately 20–40% of patients who have type 2 diabetes and microalbuminuria will progress to 
macroalbuminuria2. Based on the 2017 USRDS reports, diabetes is the primary cause of end-stage renal disease 
(ESRD) in incident patients; approximately 44–66% of patients with new ESRD in Japan, the USA, Taiwan, South 
Korea, and Singapore are due to diabetes3. A collaborative meta-analysis of general population cohorts revealed 
that decreased estimated glomerular filtration rate (eGFR) and albuminuria are associated with all-cause and 
cardiovascular mortality4. Furthermore, DN patients have an increased risk of cardiovascular morbidity and 
mortality5,6.

Many prediction models for diseases have been published and widely used. Prediction models can help screen 
high-risk individuals and assist medical decision-making and health education. Several studies have established 
risk prediction models considering traditional clinical factors for chronic kidney disease (CKD) or ESRD in the 
general population7–12 or type 2 diabetes patients13–18, based on cross-sectional or longitudinal studies. The patho-
genesis of CKD appears to be complicated and multifactorial19. Macisaac et al. reviewed literatures and found that 
hyperglycemia and predisposing genes are the initiators of diabetic kidney disease20. Therefore, using susceptible 
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genes as a predictor only or adding genetic information into a traditional prediction model may be helpful to 
improve the predictive ability of CKD or ESRD.

A single genetic risk score (GRS), aggregating multiple single-nucleotide polymorphism (SNP) information 
into a variable, is a useful tool for examining the cumulative predictive ability of genetic variation at known loci 
on a disease21. Khera et al. used polygenic scores to quantify inherited susceptibility for common diseases, such 
as coronary artery disease and obesity, and found that these polygenic scores can identify individuals with risk 
equivalent to monogenic mutations22,23. Moreover, several disease prediction models adding genetic information 
are being continuously developed, such as those for type 2 diabetes24, cardiovascular outcomes21, and fracture25,26. 
However, studies using additional genetic information into these clinical risk prediction models of CKD in type 
2 diabetes patients are still limited. So far we have found four existing models for predicting CKD risk, including 
three in the general population27–29 and one in type 2 diabetes patients30. According to the issues discussed above, 
it is worth to develop GRS scores based on our prior findings of genome-wide association study (GWAS)31. In 
this study, we evaluated whether genetic information would offer improvement on DN risk prediction upon the 
addition of susceptibility SNPs identified from our prior GWAS findings31 to clinical risk factors in Han Chinese 
population with type 2 diabetes.

Results
The characteristics of 995 type 2 diabetes patients in the derivation set and 519 patients in the validation set are 
summarized in Table 1. A total of 246 (24.7%) DN cases were in the derivation set, while 179 (34.5%) were in 
the validation set. The mean age for DN and non-DN was 57.54 and 64.32 years, respectively, in the derivation 
set and 69.73 and 70.55 years, respectively, in the validation set. In both sets, approximately half of the type 2 
diabetes patients were male. The proportions of obesity, abnormal triglycerides, hypertension, heart disease, and 
CVA were higher in the DN cases group than in the control group in both derivation and validation sets. In the 
derivation set, DN cases had higher percentage of diabetes durations ≥10 years than the control group (56.50% 
vs. 36.98%). The average GRSs (the number of risk alleles carried) of DN cases and diabetic controls were 2.87 and 
2.08 risk alleles, respectively, in the derivation set and 2.49 and 2.28 risk alleles, respectively, in the validation set.

The genotype and allele distributions of the study subjects stratified by sample set and DN status are presented 
in Table 2. The minor allele frequencies in the derivation set (ranges: 0.23–0.48 in DN cases and 0.15–0.36 in con-
trols) were similar with the validation set (ranges: 0.19–0.45 in DN cases and 0.14–0.37 in controls).

Table 3 shows the ORs and their 95% CIs for DN in three models from the derivation sample. We found that 
age, obesity, abnormal triglycerides, hypertension, and heart disease were significant predictors of DN risk in 
model 1, and the ORs ranged from 1.07 to 2.03. The crude OR (95% CI) for DN was 1.22 (1.15–1.29) per risk allele 
of GRS (model 2). After adding GRS into model 1, the risk of DN increased by 1.24-fold (95% CI: 1.17–1.32) for 
every additional risk allele of GRS. Results of using the weighted GRS (wGRS) as a predictor were presented in 
Supplement Table 1. The crude and adjusted OR (95% CI) were 1.42 (1.28–1.56) and 1.46 (1.31–1.63) for every 
one unit increase of wGRS, respectively. Furthermore, we also performed the same analysis by using BMI and 
triglycerides as quantitative variables. We found that the GRS had the same effect on DN and its OR (95% CI) was 
1.24 (1.17–1.32) (Supplement Table 2).

In the derivation set, the AUROC (95% CI) for model 1 (clinical risk factors only) was 0.75 (0.72–0.78), which 
was higher than that of model 2 (GRS only, 0.64 [0.60–0.68]) (Fig. 1). The addition of genetic information into the 
clinical risk factor model (model 3) increased the AUROC to 0.78 (0.75–0.81), P = 0.002, indicating that model 
3 had better discrimination ability. Regarding results of using the wGRS, the prediction model had the same dis-
crimination ability as that using GRS and the AUROC was 0.78 (0.75–0.81) (Supplement Fig. 1). Moreover, when 
BMI and triglycerides were treated as quantitative variables, the AUROC of model additionally adding GRS was 
0.78 (0.75–0.81) (Supplement Fig. 2). In consideration of LD of two SNPs both in the same RAE1 gene, we also 
constructed the new 6-SNP GRS by deleting one SNP at a time. Model 3 of using these two 6-SNP GRSs had the 
same discrimination ability (both AUROCs: 0.78, 95% CIs: 0.75–0.81) as the 7-SNP GRS, indicating that consid-
ering the other SNP cannot capture extra variation of the outcome and no problem arising from the collinearity 
on the study’s findings (Supplement Fig. 3A,B). In the external validation sample, the AUROCs for model 3 (addi-
tionally adding 7-SNP GRS or wGRS) were 0.70 (0.65–0.74) and 0.70 (0.66–0.75), respectively.

Calibration plots are presented in Fig. 2 for considering GRS and Supplement Fig. 4 for considering wGRS, 
showing the predicted versus observed DN numbers according to the deciles of risk in derivation and validation 
samples. The results of Hosmer–Lemeshow χ2 test revealed that the goodness of fit for our data was excellent 
(P = 0.155 and P = 0.230 in Fig. 2; and P = 0.394 and P = 0.299 in Supplement Fig. 4).

The calibration of the present model performance was assessed based on 1,000 samples from bootstrap resa-
mpling. The optimism corrected calibration intercept and corresponding slope were 0.01 (mean absolute error: 
0.04) and 0.98 (mean absolute error: 0.12), respectively. The intercept was close to zero, indicating the absence 
of systematic deviation of the estimation of predicted probabilities. Moreover, the slope was close to one, indi-
cating that the model was not overfitted. These statistics indicate a very good calibration for the present model. 
Furthermore, when the GRS was added to the risk prediction model of a set of clinical risk factors, the NRI was 
9.98% (P = 0.001). The GRS did offer improvement in the performance of a DN model.

Discussion
Our study established a DN risk prediction model including traditional clinical factors and genetic variants in 
a sample type 2 diabetes patients with and without DN. Moreover, this study validated the derived model in an 
external sample of the same characteristics. We derived a GRS by considering the risk allele for DN susceptibility 
SNPs based on our prior GWAS findings31. We identified significant demographic and clinical factors, including 
age, obesity, abnormal triglycerides, hypertension, and heart disease. The dominance of hypertension, obesity, 
and abnormal triglycerides in predicting risk is evident. This prediction model demonstrates that the highest 
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Characteristic

Derivation sample Validation sample

DN cases 
(n = 246)

Controls 
(n = 749) P-value

DN cases 
(n = 179)

Controls 
(n = 340) P-value

Age (years) 64.32 ± 9.43 57.54 ± 9.92 <0.01 × 10−12 70.55 ± 12.40 69.73 ± 7.12 0.417

Gender 0.813 0.571

       Women 124 (50.41) 369 (49.27) 83 (46.37) 168 (49.41)

       Men 122 (49.59) 380 (50.73) 96 (53.63) 172 (50.59)

Smoking status 0.167 0.472

       No 209 (84.96) 605 (80.77) 156 (88.14) 308 (90.59)

       Yes 37 (15.04) 144 (19.23) 21 (11.86) 32 (9.41)

Alcohol drinking 0.044 0.645

       No 206 (83.74) 580 (77.44) 156 (87.64) 304 (89.41)

       Yes 40 (16.26) 169 (22.56) 22 (12.36) 36 (10.59)

Durations of diabetes 12.11 ± 8.15 8.26 ± 6.62 7.47 × 10−11 12.66 ± 10.97 — —

       <10 years 107 (43.50) 472 (63.02) 1.09 × 10−7 79 (44.13) — —

       ≥10 years 139 (56.50) 277 (36.98) 100 (55.87) —

BMI 25.75 ± 3.94 24.95 ± 3.75 0.004 26.24 ± 4.27 24.92 ± 3.49 0.001

       <27 kg/m2 150 (60.98) 536 (71.56) 0.002 112 (62.57) 256 (75.29) 0.003

       ≥27 kg/m2 (obesity) 96 (39.02) 213 (28.44) 67 (37.43) 84 (24.71)

HbA1c 8.15 ± 1.65 7.88 ± 1.42 0.022 7.16 ± 1.59 — —

       <7% 61 (24.80) 209 (27.90) 0.385 97 (56.73) — —

       ≥7% 185 (75.20) 540 (72.10) 74 (43.27) —

Creatinine 1.39 ± 1.10 0.73 ± 0.18 <0.01 × 10−12 2.89 ± 3.16 0.81 ± 0.18 <0.01 × 10−12

       Normal (M: 0.7–1.5;
       F: 0.5–1.2 mg/dL) 183 (74.39) 703 (93.86) <0.01 × 10−12 65 (36.31) 319 (93.82) <0.01 × 10−12

       Abnormal 63 (25.61) 46 (6.14) 114 (63.69) 21 (6.18)

Uric acid (mg/dL) 7.35 ± 1.87 5.87 ± 1.53 <0.01 × 10−12 6.88 ± 4.04 5.63 ± 1.34 2.40 × 10−4

       Normal (M: <7;
       F: <6 mg/dL) 76 (30.89) 518 (69.16) <0.01 × 10−12 81 (52.94) 255 (75.00) 1.94 × 10−6

       Abnormal 170 (69.11) 231 (30.84) 72 (47.06) 85 (25.00)

BUN 24.87 ± 12.38 14.98 ± 4.12 <0.01 × 10−12 38.26 ± 27.24 13.61 ± 3.87 <0.01 × 10−12

       Normal (7–20 mg/dL) 106 (43.09) 659 (87.98) <0.01 × 10−12 40 (28.37) 319 (93.82) <0.01 × 10−12

       Abnormal 140 (56.91) 90 (12.02) 101 (71.63) 21 (6.18)

Total cholesterol 192.90 ± 52.76 186.40 ± 37.14 0.071 171.20 ± 39.63 186.40 ± 35.41 1.04 × 10−5

       Normal 159 (64.63) 507 (67.69) 0.420 133 (75.57) 230 (67.65) 0.077

       Abnormal (≥200 mg/
dL) 87 (35.37) 242 (32.31) 43 (24.43) 110 (32.35)

Triglycerides 189.90 ± 157.6 155.30 ± 117.4 0.002 178.80 ± 153.9 138.50 ± 90.44 0.001

Normal 120 (48.98) 456 (61.13) 0.001 101 (56.42) 227 (66.76) 0.026

Abnormal (≥150 mg/dL) 125 (51.02) 290 (38.87) 78 (43.58) 113 (33.24)

LDL–C 118.50 ± 42.42 118.10 ± 34.39 0.907 96.26 ± 36.18 113.30 ± 30.76 6.74 × 10−6

       Normal 167 (67.89) 486 (64.89) 0.434 103 (83.74) 246 (73.87) 0.037

       Abnormal (≥130 mg/
dL) 79 (32.11) 263 (35.11) 20 (16.26) 87 (26.13)

HDL–C 46.80 ± 13.75 49.46 ± 13.79 0.009 — 42.98 ± 11.28 —

       Normal 131 (53.25) 454 (60.70) 0.047 — 128 (37.65) —

       Abnormal (M: <40; F: 
<50 mg/dL) 115 (46.75) 294 (39.30) — 212 (62.35)

Hypertension <0.01 × 10−12 1.11 × 10−8

       No 84 (34.15) 457 (61.01) 30 (16.76) 143 (42.06)

       Yes 162 (65.85) 292 (38.99) 149 (83.24) 197 (57.94)

Heart disease 2.01 × 10−6 6.96 × 10−5

       No 174 (70.73) 634 (84.65) 115 (64.25) 274 (80.59)

       Yes 72 (29.27) 115 (15.35) 64 (35.75) 66 (19.41)

CVA 3.24 × 10−4 1.13 × 10−6

       No 226 (91.87) 729 (97.33) 135 (75.42) 311 (91.47)

       Yes 20 (8.13) 20 (2.67) 44 (24.58) 29 (8.53)

Table 1.  Demographic and clinical characteristics of study samples. Data are presented as mean ± SD for 
continuous variables or n (%) for categorical variables. BMI: body mass index; BUN: blood urea nitrogen; CVA: 
cerebral vascular accident.
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predictive power for DN was observed when both clinical and genetic factors were considered with AUROCs of 
0.78, which is higher than that when clinical risk factors were considered (0.75). Moreover, the addition of genetic 
factors to the clinical factors model resulted in a NRI of 9.98%. Based on our experience, we believe 9.98% for a 
NRI value is of clinical relevance. This prediction model enabled us to confirm the importance of GRS combined 
with clinical factors in predicting the risk of DN. Our validation results also showed good discrimination and 
calibration in the validation set. Thus, this model may be applied to identifying patients at a higher risk of DN to 
deliver interventions and appropriate DN prevention management.

Although many studies have established prediction models that combine clinical and genetic risk factors, few 
of them focus on kidney disease. Four published studies thus far have evaluated CKD prediction models, includ-
ing one from Chinese type 2 diabetes patients30, two from a general population of European ancestry27,28, and one 
from the Japanese general population29. However, all authors did not report NRI values and they found that the 
creation of a GRS and its addition into the model with traditional risk factors did not substantially improve the 
discrimination of CKD risk. Due to the increases in C-statistic value were small in their studies, then, the values 
of NRI also were low. Moreover, they did not perform validation analysis.

Jiang et al. used the Hong Kong Diabetes Registry data from 2,755 type 2 diabetes patients and selected 
36 SNPs (18 type 2 diabetes risk variants, 13 obesity risk variants, and 5 fasting plasma glucose risk variants; 
Supplement Table 3) to address the question for kidney disease30. These SNPs reached a genome-wide significance 
in European-origin populations with consistent replication in Chinese cohorts. To discover novel predictors of 
CKD, Jiang et al. repeatedly applied a stepwise selection based on the Akaike information criterion to subsamples 
of the cohort of 2,755 patients. As a result, they found that AUC was improved to 0.888 in the best clinical model, 
and the GRS score based on the top 3 SNPs improved the AUC to only 0.889 while adding GRS into the best clin-
ical model. These selected clinical risk factors were age, ACR, eGFR, HbA1c, insulin, sensory neuropathy, ACEIs 
or ARBs, CHD, retinopathy, TG, and LDL. Moreover, the three selected genetic variants were rs478333 of G6PC2 
and rs7754840 and rs7756992 of CDKAL1.

O’Seaghdha et al. selected 16 SNPs (Supplement Table 3) that were associated with eGFR and stage 3 CKD 
from the CKDGen GWAS in European-origin population to construct a GRS27. Given the limited number of 
loci included in the GRS in their previous work, they selected 53 SNPs (Supplement Table 1) that are associated 
with lower eGFR from the recent CKDGen GWAS to construct a GRS28. Both O’Seaghdha et al. and Ma et al. 

SNP Chr. Gene
Genotype 
or allele

Derivation sample Validation sample

DN cases 
(n = 246)

Controls 
(n = 749)

DN cases 
(n = 179)

Controls 
(n = 340)

rs10963767 9 ADAMTSL1

TT 95 (38.62) 388 (51.80) 83 (46.37) 143 (42.06)

CT 112 (45.53) 296 (39.52) 82 (45.81) 169 (49.71)

CC 39 (15.85) 65 (8.68) 14 (7.82) 28 (8.24)

C* 0.39 0.28 0.31 0.33

rs11647932 16 ST3GAL

CC 145 (58.94) 538 (71.83) 116 (64.80) 253 (74.41)

TC 87 (35.37) 192 (25.63) 58 (32.40) 79 (23.24)

TT 14 (5.69) 19 (2.54) 5 (2.79) 8 (2.35)

T* 0.23 0.15 0.19 0.14

rs11645214 16 SF3B3

AA 63 (25.61) 309 (41.26) 51 (28.49) 129 (38.39)

GA 130 (52.85) 341 (45.53) 96 (53.63) 163 (48.51)

GG 53 (21.54) 99 (13.22) 32 (17.88) 44 (13.10)

G* 0.48 0.36 0.45 0.37

rs6499323 16 IL34

AA 64 (26.12) 327 (43.89) 56 (31.46) 141 (41.72)

GA 138 (56.33) 323 (43.36) 97 (54.49) 163 (48.22)

GG 43 (17.55) 95 (12.75) 25 (14.04) 34 (10.06)

G* 0.46 0.34 0.41 0.34

rs182784 20 BMP7

AA 123 (50.00) 439 (58.69) 95 (53.07) 185 (54.57)

GA 95 (38.62) 273 (36.50) 73 (40.78) 126 (37.17)

GG 28 (11.38) 36 (4.81) 11 (6.15) 28 (8.26)

G* 0.31 0.23 0.27 0.27

rs4811839 20 RAE1

TT 109 (44.31) 420 (56.07) 81 (45.25) 179 (52.80)

GT 104 (42.28) 281 (37.52) 85 (47.49) 128 (37.76)

GG 33 (13.41) 48 (6.41) 13 (7.26) 32 (9.44)

G* 0.35 0.25 0.31 0.28

rs6025517 20 RAE1

TT 115 (46.75) 434 (57.94) 87 (48.60) 185 (54.73)

CT 103 (41.87) 273 (36.45) 80 (44.69) 123 (36.39)

CC 28 (11.38) 42 (5.61) 12 (6.70) 30 (8.88)

C* 0.32 0.24 0.29 0.27

Table 2.  Genotype and allele distributions of study subjects. All P > 0.05 from Hardy–Weinberg equilibrium 
test. Chr.: chromosome. *Minor allele.
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used samples from the Framingham Heart Study and found that these GRS scores did not substantially improve 
discrimination of stage 3 CKD beyond the common clinical risk factors in general population (C statistics: 0.781 
vs. 0.780 in O’Seaghdha’s study; 0.785 vs. 0.783 in Ma’s study). The clinical risk factors included age, sex, baseline 
eGFR, hypertension, diabetes, and proteinuria, which were identified from stepwise logistic regression7.

Fujii et al. combined 18 eGFR-associated SNPs (Supplement Table 3), which were identified from a GWAS into 
a GRS, and found that they were associated with CKD in a general Japanese population-based sample (n = 11,283) 
by using logistic regression analysis29. However, by adding the GRS into the clinical CKD risk factors (age, sex, 
hypertension, and type 2 diabetes) model, they found that the improvement of discriminatory ability of CKD 
prevalence was small. The C statistic was 0.720 in the model considering traditional covariates along with the GRS 
and 0.719 in the model with traditional covariates.

In this study, we used the GRS, which is comprised of genetic variants that were already there at birth, and a set 
of clinical risk factors, which were observed at the time of DN observation, to predict DN. Our results show the 
AUROC (95% CI) for model with clinical risk factors only, as well as model with GRS only were 0.75 (0.72–0.78) 

Variable

Model 1 Model 2 Model 3

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Gender (ref. women) 1.11 (0.81, 1.51) 0.529 — — 1.14 (0.82, 1.57) 0.432

Age (years) 1.07 (1.05, 1.09) <0.01 × 10−12 — — 1.08 (1.06, 1.10) <0.01 × 10−12

Obesity (ref. BMI<27 kg/m2) 1.59 (1.14, 2.22) 0.007 — — 1.61 (1.14, 2.28) 0.007

Abnormal triglycerides 
(ref.<150 mg/dL) 1.63 (1.19, 2.24) 0.002 — — 1.56 (1.13, 2.17) 0.008

Hypertension (ref. No) 2.03 (1.46, 2.81) 2.26 × 10−5 — — 2.12 (1.51, 2.98) 1.33 × 10−5

Heart disease (ref. No) 1.56 (1.08, 2.26) 0.018 — — 1.48 (1.01, 2.18) 0.046

GRS (per risk allele) — — 1.22 (1.15, 1.29) 9.24 × 10−12 1.24 (1.17, 1.32) 1.27 × 10−11

Table 3.  ORs and their 95% CIs for diabetic nephropathy in derivation sample by using the GRS as predictor. 
Model 1: Clinical risk factors only; model 2: GRS only; model 3: clinical risk factors and GRS.

Figure 1.  Areas under the receiver operating characteristics (AUROC) curve for DN status in derivation 
sample. The AUROC (95% confidence interval) for model 1 (clinical risk factors only), model 2 (GRS only), 
and model 3 (clinical risk factors and GRS) were 0.75 (0.72–0.78), 0.64 (0.60–0.68), and 0.78 (0.75–0.81), 
respectively. Model 1 did have better performance than model 2 (P = 5.12 × 10−5); and that were also found 
between models 1 and 3 (P = 0.002).
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and 0.64 (0.60–0.68), respectively. Then, the prediction model with both genetic and environmental factors have 
an AUROC value of 0.78 (0.75–0.81). Furthermore, we calculated the NRI to carry out an evaluation of our 
models with and without genetic factors, and that was 9.98%. The GRS did offer improvement in the performance 
of our DN model, i.e., confirming the importance of GRS-based predictor integrated into prediction model of 
common clinical risk factors for personalized DN risk prediction. Our prediction model provides new insights 
for genetic screening test to identify patients at high risks for DN that disease prevention intervention could be 
targeted at. Moreover, through the prediction model of DN, patients and clinical staffs can easily understand the 
individuals’ risk factors and levels of DN.

There may be some possible limitations in this study. First, our DN genetic risk model was performed in a 
Han Chinese population, and the model was not probably applicable to all populations. The second limitation 
concerns our study samples from only one site. Further studies would be necessary to validate our results in Han 
Chinese population with type 2 diabetes. Finally, due to use of different genotyping platforms in our validation 
sample, the GRS was built using both observed and imputed data. Although that may have misclassification of 
genotypes by introducing information error, resulting in diluting the strength of the relationship between GRS 
and DN status, which is a lesser threat to validity.

In summary, we have constructed a GRS based on SNPs from our prior GWAS findings and demonstrated that 
the addition of genetic information into the conventional risk factor model could offer improvement on the DN 
risk prediction in Han Chinese type 2 diabetes patients. Moreover, our validation results show good discrimina-
tion and calibration. This prediction model enabled us to confirm the importance of GRS combined with clinical 
factors in predicting the risk of DN and may be applied to identifying high-risk patients of DN in order to provide 
interventions and appropriate DN prevention management.

Materials and Methods
Study individuals.  In the current study, a case–control study design was used for both derivation and val-
idation samples. Individuals diagnosed with type 2 diabetes were included based on the American Diabetes 
Association (ICD-9-CM code: 250) criteria for diagnosis of type 2 diabetes. We excluded individuals with type 
1 diabetes (ICD-9-CM codes: 250.x1/x3), gestational diabetes (ICD-9-CM codes: 648.83), and maturity-onset 
diabetes of the young. Diabetic patients with eGFR <60 mL/min/1.73 m2 or proteinuria as determined through a 
spot urine dipstick of >1+ were defined as DN cases31, and patients without nephropathy were defined as diabetic 
controls. In the derivation stage, in order to maximize our sample size, we used all 995 type 2 diabetes patients 
(246 DN cases and 749 diabetic controls) in our previous GWAS study31, and they were recruited from China 

Figure 2.  Predicted versus observed DN numbers according to the deciles of risk in (A) derivation (Hosmer–
Lemeshow χ2 = 11.93, P = 0.155) and (B) validation samples (Hosmer–Lemeshow χ2 = 10.52, P = 0.230) by 
using the model with both clinical risk factors and GRS.

https://doi.org/10.1038/s41598-019-56400-3


7Scientific Reports |         (2019) 9:19897  | https://doi.org/10.1038/s41598-019-56400-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Medical University Hospital (CMUH). In the validation stage, an additional independent sample consisting of 
179 DN cases from clinical setting and 340 diabetic controls from the community setting was used and genotyped 
during the period 2014 to 2015. These DN cases from the nephrology clinic in CMUH and diabetic controls who 
attended a 1-day health check in CMUH were recruited. All participants were of Han Chinese origin, including 
Minnan, Hakka, and Mainland Chinese. All patients signed informed consent forms. This study was approved 
by the Human Research Committee of China Medical University Hospital and all methods were performed in 
accordance with the relevant guidelines and regulations.

Measurements.  Self-administered questionnaires were utilized for each subject to collect data, including 
sociodemographic and lifestyle characteristics (including current smoking status [self-reported yes/no] and alco-
hol drinking [self-reported yes/no]), as well as self-reported health status. Hypertension was defined as under-
going treatment for elevated blood pressure or self-reported. Both heart disease and cerebral vascular accident 
(CVA) were defined as the use of medications or self-reported. Duration of diabetes (years) was defined as the 
time from diagnosis to enrollment in the study. The body mass index (BMI) was calculated as weight divided by 
height squared (kg/m2); moreover, obesity was defined as BMI ≥27 kg/m2. After a 12 h overnight fasting, blood 
samples were taken in the morning. We also collected spot morning urine samples. Total cholesterol, triglycer-
ides, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), creatinine, uric 
acid, and blood urea nitrogen (BUN) were analyzed by the Synchron LX20 system (Beckman Coulter, Synchron 
LX20, Fullerton, CA, USA). Hemoglobin A1c (HbA1c) testing was also performed. To assess the renal func-
tion of a patient, we used the Modification of Diet in Renal Disease study equation for Taiwanese: eGFR (ml/
min/1.73 m2) = 175 × [serum creatinine (mg/dL)−1.154 × (age)−0.203 × (0.742 if female) × 0.945]31,32. In addition, 
we used a spot urine dipstick test to detect proteinuria, which was defined as a positive dipstick test (>1+)33. 
Based on the report of American Diabetes Association34, the following variables were considered as clinical risk 
factors of DN: age, gender, smoking status, alcohol drinking, duration of diabetes, obesity, HbA1c, total choles-
terol, triglycerides, LDL-C, HDL-C, hypertension, heart disease, and CVA.

SNPs selection and genotyping.  From our previous GWAS findings31, we selected the seven SNPs that 
were identified and associated with DN in a Han Chinese population with type 2 diabetes. These DN suscepti-
bility SNPs include rs10963767 (ADAMTSL1), rs11647932 (ST3GAL2), rs11645214 (SF3B3), rs6499323 (IL34), 
rs182784 (BMP7), rs4811839 (RAE1), and rs6025517 (RAE1). For genotyping analysis, genomic DNA was iso-
lated from the blood samples. In the derivation set, 995 type 2 diabetes patients were genotyped using Illumina 
HumanHap550-Duo BeadChip, which was performed by deCODE Genetics (Reykjavík, Iceland). In the valida-
tion set, DNA samples from 340 type 2 diabetes patients were genotyped using an Illumina VeraCode GoldenGate 
genotyping assay (Illumina, San Diego, CA, USA), including the 7 considered SNPs. DNA samples from 179 DN 
cases were genotyped using custom Taiwan Biobank chips (TWB chip) and run on the Axiom genome-wide array 
plate system (Affymetrix, Santa Clara, CA, USA). Due to use of different genotyping platforms, genotype impu-
tation was performed using the IMPUTE2 software35 in DN cases from our validation sample. Genotype imputa-
tion refers to the statistical inference of unobserved genotypes. It includes two steps: first, inferring the haplotypes 
in a study dataset; second, combining the inferred haplotypes with the haplotypes of a genotyped reference panel 
to fill in unobserved genotypes in a study dataset. The reference panel from 1,000 Genomes Project was used. The 
GRS in DN cases from our validation sample was built using both observed and imputed data. Each SNP was 
tested for deviation from the Hardy–Weinberg equilibrium (HWE) using exact tests of HWE in PLINK (v1.07).

Statistical analysis.  The demographic and clinical characteristics of study subjects were examined. For 
continuous variables, the mean ± standard deviation were reported. For categorical variables, the number 
and percentage of observations were reported. In the bivariate analyses, we performed two-sample t-test and 
Chi-square test. Seven SNPs including rs10963767 (minor allele C), rs11647932 (T), rs11645214 (G), rs6499323 
(G), rs182784 (G), rs4811839 (G), and rs6025517 (C) were selected to define a person’s individual genetic risk for 
DN based on our prior GWAS findings (the discovery GWAS)31. The unweighted GRS was constructed for each 
individual by summing the number of risk alleles (coded as 0, 1, and 2) carried. The effects of these risk alleles 
from the derivation set were consistent with those identified in the discovery GWAS31. For the weighted GRS 
(wGRS), we used summary statistics from the discovery GWAS31, and it was defined as a weighted sum of the 
number of risk alleles of these seven considered SNPs.

In the derivation set, three predictive models were fitted to the data, in which the DN status was a function of 
(1) clinical risk factors only, (2) GRS (or wGRS) only, and (3) clinical risk factors and GRS (or wGRS) by using 
logistic regression models. To develop the best prediction model of DN36, we performed the following: (1) uni-
variable analysis for each independent variable; (2) selection of independent variable with univariable test of a 
P-value < 0.2537,38 as a candidate predictor for our multivariable model; (3) construction of a multivariable model 
with these candidate predictors without collinearity and backward elimination procedure of selected predictors 
reaching significance of 0.05. Moreover, when age and gender were not statistically significant to be candidates 
for the multivariable model, we forced them into the final model. The strength of association between risk factors 
and DN was measured by odds ratios (ORs) and their 95% confidence intervals (CIs). In the validation set, we 
included the same parameters in the validation model that estimated their values (i.e. weights) within the model 
itself.

The predictive performance of the DN risk prediction model (both discrimination and calibration) was evalu-
ated. The predictive models’ ability to discriminate DN status was evaluated by the areas under the receiver oper-
ating characteristics (AUROC) curve. We performed the Hosmer–Lemeshow goodness-of-fit test to compare the 
observed and predicted events of DN, and patients were grouped by decile of predicted probability. Furthermore, 
calibration was carried out to correct the potential for overfitting by using 1,000 times bootstrap resampling39, 
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and model calibration was conducted by using calibration-in-the-large and calibration slope approaches. To 
assess how well a new model correctly reclassifies subjects as compared to an old model, the net reclassification 
improvement (NRI) was introduced40. In our study, we calculated the NRI to quantify improvement in prediction 
performance gained by adding the GRS to a set of clinical risk factors for predicting DN. When we calculated 
the NRI, we combined the two samples and adopted the parameter values estimated from the derivation sample. 
Tertile cut-off points were used to categorize DN risk into low-, medium-, and high-risk groups. We performed 
statistical analysis using SAS 9.4 (SAS Institute Inc, Cary, NC, USA) and PLINK (v1.07). Statistical significance 
was considered at a two-sided P-value < 0.05.

Data availability
All data generated or analysed during this study are included in this published article.

Received: 29 April 2019; Accepted: 10 December 2019;
Published: xx xx xxxx

References
	 1.	 Hobeika, L., Hunt, K. J., Neely, B. A. & Arthur, J. M. Comparison of the Rate of Renal Function Decline in NonProteinuric Patients 

With and Without Diabetes. The American journal of the medical sciences 350, 447–452, https://doi.org/10.1097/
MAJ.0000000000000583 (2015).

	 2.	 Shlipak, M. Diabetic nephropathy: preventing progression. BMJ clinical evidence 2010 (2010).
	 3.	 Saran, R. et al. US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney 

Dis 71(Svii), S1–S672, https://doi.org/10.1053/j.ajkd.2018.01.002 (2018).
	 4.	 Matsushita, K. et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality 

in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081, https://doi.org/10.1016/S0140-6736(10)60674-
5 (2010).

	 5.	 Palsson, R. & Patel, U. D. Cardiovascular complications of diabetic kidney disease. Advances in chronic kidney disease 21, 273–280, 
https://doi.org/10.1053/j.ackd.2014.03.003 (2014).

	 6.	 Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. Journal of the American Society of Nephrology: 
JASN 24, 302–308, https://doi.org/10.1681/ASN.2012070718 (2013).

	 7.	 O’Seaghdha, C. M. et al. A risk score for chronic kidney disease in the general population. The American journal of medicine 125, 
270–277, https://doi.org/10.1016/j.amjmed.2011.09.009 (2012).

	 8.	 Bang, H. et al. SCreening for Occult REnal Disease (SCORED): a simple prediction model for chronic kidney disease. Archives of 
internal medicine 167, 374–381, https://doi.org/10.1001/archinte.167.4.374 (2007).

	 9.	 Chien, K. L. et al. A prediction model for the risk of incident chronic kidney disease. The American journal of medicine 123, 836–846 
e832, https://doi.org/10.1016/j.amjmed.2010.05.010 (2010).

	10.	 Hippisley-Cox, J. & Coupland, C. Predicting the risk of chronic Kidney Disease in men and women in England and Wales: 
prospective derivation and external validation of the QKidney Scores. BMC family practice 11, 49, https://doi.org/10.1186/1471-
2296-11-49 (2010).

	11.	 Thakkinstian, A. et al. A simplified clinical prediction score of chronic kidney disease: a cross-sectional-survey study. BMC 
nephrology 12, 45, https://doi.org/10.1186/1471-2369-12-45 (2011).

	12.	 Umesawa, M. et al. Validity of a Risk Prediction Equation for CKD After 10 Years of Follow-up in a Japanese Population: The Ibaraki 
Prefectural Health Study. Am J Kidney Dis 71, 842–850, https://doi.org/10.1053/j.ajkd.2017.09.013 (2018).

	13.	 Jardine, M. J. et al. Prediction of kidney-related outcomes in patients with type 2 diabetes. Am J Kidney Dis 60, 770–778, https://doi.
org/10.1053/j.ajkd.2012.04.025 (2012).

	14.	 Elley, C. R. et al. Derivation and validation of a renal risk score for people with type 2 diabetes. Diabetes care 36, 3113–3120, https://
doi.org/10.2337/dc13-0190 (2013).

	15.	 Dunkler, D. et al. Risk Prediction for Early CKD in Type 2 Diabetes. Clinical journal of the American Society of Nephrology: CJASN 
10, 1371–1379, https://doi.org/10.2215/CJN.10321014 (2015).

	16.	 Low, S. et al. Development and validation of a predictive model for Chronic Kidney Disease progression in Type 2 Diabetes Mellitus 
based on a 13-year study in Singapore. Diabetes research and clinical practice 123, 49–54, https://doi.org/10.1016/j.
diabres.2016.11.008 (2017).

	17.	 Lin, C. C. et al. Development and validation of a risk prediction model for end-stage renal disease in patients with type 2 diabetes. 
Scientific reports 7, 10177, https://doi.org/10.1038/s41598-017-09243-9 (2017).

	18.	 Wan, E. Y. F. et al. Prediction of new onset of end stage renal disease in Chinese patients with type 2 diabetes mellitus - a population-
based retrospective cohort study. BMC nephrology 18, 257, https://doi.org/10.1186/s12882-017-0671-x (2017).

	19.	 Brennan, E., McEvoy, C., Sadlier, D., Godson, C. & Martin, F. The genetics of diabetic nephropathy. Genes 4, 596–619, https://doi.
org/10.3390/genes4040596 (2013).

	20.	 Macisaac, R. J., Ekinci, E. I. & Jerums, G. Markers of and risk factors for the development and progression of diabetic kidney disease. 
Am J Kidney Dis 63, S39–62, https://doi.org/10.1053/j.ajkd.2013.10.048 (2014).

	21.	 Smith, J. A., Ware, E. B., Middha, P., Beacher, L. & Kardia, S. L. Current Applications of Genetic Risk Scores to Cardiovascular 
Outcomes and Subclinical Phenotypes. Current epidemiology reports 2, 180–190, https://doi.org/10.1007/s40471-015-0046-4 (2015).

	22.	 Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic 
mutations. Nature genetics 50, 1219–1224, https://doi.org/10.1038/s41588-018-0183-z (2018).

	23.	 Khera, A. V. et al. Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell 177, 587–596 e589, https://
doi.org/10.1016/j.cell.2019.03.028 (2019).

	24.	 Lyssenko, V. & Laakso, M. Genetic screening for the risk of type 2 diabetes: worthless or valuable? Diabetes care 36(Suppl 2), 
S120–126, https://doi.org/10.2337/dcS13-2009 (2013).

	25.	 Lee, S. H. et al. Common and rare variants in the exons and regulatory regions of osteoporosis-related genes improve osteoporotic 
fracture risk prediction. The Journal of clinical endocrinology and metabolism 99, E2400–2411, https://doi.org/10.1210/jc.2014-1584 
(2014).

	26.	 Tran, B. N. et al. Genetic profiling and individualized prognosis of fracture. Journal of bone and mineral research: the official journal 
of the American Society for Bone and Mineral Research 26, 414–419, https://doi.org/10.1002/jbmr.219 (2011).

	27.	 O’Seaghdha, C. M., Yang, Q., Wu, H., Hwang, S. J. & Fox, C. S. Performance of a genetic risk score for CKD stage 3 in the general 
population. Am J Kidney Dis 59, 19–24, https://doi.org/10.1053/j.ajkd.2011.08.030 (2012).

	28.	 Ma, J., Yang, Q., Hwang, S. J., Fox, C. S. & Chu, A. Y. Genetic risk score and risk of stage 3 chronic kidney disease. BMC nephrology 
18, 32, https://doi.org/10.1186/s12882-017-0439-3 (2017).

	29.	 Fujii, R. et al. Association of genetic risk score and chronic kidney disease in a Japanese population. Nephrology, https://doi.
org/10.1111/nep.13479 (2018).

https://doi.org/10.1038/s41598-019-56400-3
https://doi.org/10.1097/MAJ.0000000000000583
https://doi.org/10.1097/MAJ.0000000000000583
https://doi.org/10.1053/j.ajkd.2018.01.002
https://doi.org/10.1016/S0140-6736(10)60674-5
https://doi.org/10.1016/S0140-6736(10)60674-5
https://doi.org/10.1053/j.ackd.2014.03.003
https://doi.org/10.1681/ASN.2012070718
https://doi.org/10.1016/j.amjmed.2011.09.009
https://doi.org/10.1001/archinte.167.4.374
https://doi.org/10.1016/j.amjmed.2010.05.010
https://doi.org/10.1186/1471-2296-11-49
https://doi.org/10.1186/1471-2296-11-49
https://doi.org/10.1186/1471-2369-12-45
https://doi.org/10.1053/j.ajkd.2017.09.013
https://doi.org/10.1053/j.ajkd.2012.04.025
https://doi.org/10.1053/j.ajkd.2012.04.025
https://doi.org/10.2337/dc13-0190
https://doi.org/10.2337/dc13-0190
https://doi.org/10.2215/CJN.10321014
https://doi.org/10.1016/j.diabres.2016.11.008
https://doi.org/10.1016/j.diabres.2016.11.008
https://doi.org/10.1038/s41598-017-09243-9
https://doi.org/10.1186/s12882-017-0671-x
https://doi.org/10.3390/genes4040596
https://doi.org/10.3390/genes4040596
https://doi.org/10.1053/j.ajkd.2013.10.048
https://doi.org/10.1007/s40471-015-0046-4
https://doi.org/10.1038/s41588-018-0183-z
https://doi.org/10.1016/j.cell.2019.03.028
https://doi.org/10.1016/j.cell.2019.03.028
https://doi.org/10.2337/dcS13-2009
https://doi.org/10.1210/jc.2014-1584
https://doi.org/10.1002/jbmr.219
https://doi.org/10.1053/j.ajkd.2011.08.030
https://doi.org/10.1186/s12882-017-0439-3
https://doi.org/10.1111/nep.13479
https://doi.org/10.1111/nep.13479


9Scientific Reports |         (2019) 9:19897  | https://doi.org/10.1038/s41598-019-56400-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	30.	 Jiang, G. et al. Genetic and clinical variables identify predictors for chronic kidney disease in type 2 diabetes. Kidney international 
89, 411–420, https://doi.org/10.1016/j.kint.2015.09.001 (2016).

	31.	 Liao, L. N. et al. Identified single-nucleotide polymorphisms and haplotypes at 16q22.1 increase diabetic nephropathy risk in Han 
Chinese population. BMC genetics 15, 113, https://doi.org/10.1186/s12863-014-0113-8 (2014).

	32.	 DOH. The Report of Chronic Kidney Disease Prevention, 2011 [in Chinese]. [http://health99.hpa.gov.tw/Hot_News/h_
NewsDetailN.aspx?TopIcNo=6459]. (2011).

	33.	 NKF. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 
39, S1–266 (2002).

	34.	 American Diabetes, A. 10. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2018. Diabetes care 
41, S105–S118, https://doi.org/10.2337/dc18-S010 (2018).

	35.	 Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-
wide association studies. PLoS genetics 5, e1000529, https://doi.org/10.1371/journal.pgen.1000529 (2009).

	36.	 Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression. (John Wiley & Sons, Inc., 2000).
	37.	 Bendel, R. B. & Afifi, A. A. Comparison of Stopping Rules in Forward “Stepwise” Regression. Journal of the American Statistical 

Association 72, 46–53 (1977).
	38.	 Mickey, R. M. & Greenland, S. The impact of confounder selection criteria on effect estimation. American journal of epidemiology 

129, 125–137 (1989).
	39.	 Steyerberg, E. W. Clinical prediction models: a practical approach to development, validation, and updating. (Springer, 2009).
	40.	 Pencina, M. J., D’Agostino, R. B. Sr., D’Agostino, R. B., Jr. & Vasan, R. S. Evaluating the added predictive ability of a new marker: from 

area under the ROC curve to reclassification and beyond. Statistics in medicine 27, 157–172; discussion 207–112, https://doi.
org/10.1002/sim.2929 (2008).

Acknowledgements
This study was supported by the Academia Sinica’s Diabetes Biosignature Project (BM102010130 & 
BM103010095), the Ministry of Science and Technology of Taiwan (MOST 104-2314-B-039-016, MOST 
105-2314-B-039-021-MY3, MOST 105-2314-B-039-025 -MY3, MOST 108-2314-B-039 -035 -MY3 & MOST 
108-2811-B-039-519), and China Medical University (CMU107-Z-04 & CMU108-MF-37).

Author contributions
L.N.L., T.C.L., and C.C.L. carried out the conception and design. F.J.T. and C.C.L. performed project 
administration. C.I.L., C.S.L., W.Y.L., C.H.L., C.W.Y., C.C.C., C.T.C., Y.F.Y., Y.L.L., and H.L.K. acquisition of data. 
L.N.L., C.I.L., and C.W.Y. analyzed and interpreted the data. L.N.L. and T.C.L. wrote the paper. All authors read 
and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-56400-3.
Correspondence and requests for materials should be addressed to F.-J.T. or C.-C.L.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-56400-3
https://doi.org/10.1016/j.kint.2015.09.001
https://doi.org/10.1186/s12863-014-0113-8
https://doi.org/10.2337/dc18-S010
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1002/sim.2929
https://doi.org/10.1002/sim.2929
https://doi.org/10.1038/s41598-019-56400-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Genetic risk score for risk prediction of diabetic nephropathy in Han Chinese type 2 diabetes patients

	Results

	Discussion

	Materials and Methods

	Study individuals. 
	Measurements. 
	SNPs selection and genotyping. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Areas under the receiver operating characteristics (AUROC) curve for DN status in derivation sample.
	Figure 2 Predicted versus observed DN numbers according to the deciles of risk in (A) derivation (Hosmer–Lemeshow χ2 = 11.
	Table 1 Demographic and clinical characteristics of study samples.
	Table 2 Genotype and allele distributions of study subjects.
	Table 3 ORs and their 95% CIs for diabetic nephropathy in derivation sample by using the GRS as predictor.




