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Applied Precision Cancer Medicine 
in Neuro-Oncology
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Brain tumours that are refractory to treatment have a poor prognosis and constitute a major challenge 
in offering effective treatment strategies. By targeting molecular alterations, precision cancer 
medicine may be a viable option for the treatment of brain tumours. In this retrospective analysis of 
our PCM platform, we describe the molecular profiling of primary brain tumours from 50 patients. 
Tumour samples of the patients were examined by a 161-gene next-generation sequencing panel, 
immunohistochemistry, and fluorescence in situ hybridization (FISH). We identified 103 molecular 
aberrations in 36 (72%) of the 50 patients. The predominant mutations were TP53 (14.6%), IDH1 (9.7%) 
and PIK3CA (6.8%). No mutations were detected in 14 (28%) of the 50 patients. IHC demonstrated 
frequent overexpression of EGFR and mTOR, in 38 (76%) and 35 (70%) patients, respectively. 
Overexpression of PDGFRa and PDGFRb were less common and detected in 16 and four patients, 
respectively. For 35 patients a targeted therapy was recommended. In our database, the majority 
of patients displayed mutations, against which targeted therapy could be offered. Based on our 
observations, PCM may be a feasible novel treatment approach in neuro-oncology.

Effective alternative therapies in adult patients with primary brain tumours relapsing after standard therapy is 
often lacking. For most neuro-oncological patients, there is no standard treatment recommendation after failure 
of first-line therapy. This is also true for patients with a glioblastoma, which constitutes a large proportion of 
patients treated by neuro-oncologists. Glioblastoma multiforme (GBM) is the most frequent malignant brain 
tumour, making up over 50% of all gliomas and 16% of all primary brain tumours1. In addition, for patients with 
relapsed diffuse or anaplastic astrocytomas or oligodendrogliomas, there are no standard alternative therapeutic 
recommendations, and for patients with rare brain tumours and for the few patients with relapsed or progressive 
meningiomas, further neurosurgical or radiotherapeutic treatment options may be very limited or absent.

The cancer database GLOBOCAN 2018 revealed that roughly 300,000 patients (1.6% of all new cancer cases) 
were diagnosed with a brain tumour, and 241,000 patients (2.5% of all cancer deaths) died of this disease2.  
According to GLOBOCAN 2018, brain tumours are the 19th most common cancer2. But despite their relatively 
low frequency, when compared with other malignant diseases, brain tumours cause a disproportionate amount 
of morbidity and mortality, partly because of the critical location of the tumour mass3. The management of 
advanced and relapsed brain tumours poses a great challenge to physicians and healthcare providers and requires 
co-operation between and management by a multidisciplinary team. There is no consensus on treatment path-
ways in recurrent or progressive brain tumours, and the existing therapeutic options are limited4,5.

In recent years, there has been an effort to progressively individualize therapy options in specific cancers. In 
a few particular cancers, treatment with immunotherapeutics or tyrosine kinase inhibitors, tailored to the indi-
vidual, are possible, for example, trastuzumab in human epidermal growth factor receptor 2 (HER2)-positive 
breast cancer or gastric cancer, imatinib in philadelphia chromosome positive chronic myelogenous leukaemia 
(Ph + CML) or in KIT+ gastrointestinal stromal tumour (GIST), pazopanib and sunitinib in advanced renal cell 
carcinoma (RCC), or BRAF-directed therapy with vemurafenib or dabrafenib/trametinib in melanoma6–8.

Emerging techniques, such as profiling tumour molecular alterations and mutations, identifying molecular 
targets amenable to specific treatments, and developing drug treatments specific to an individual patient, provide 
the potential for novel and effective therapies. The ground-breaking pilot trial by Daniel von Hoff have ushered 
in a new era of medicine. This approach is known by a number of different names, including individualized, 
stratified, tailored or precision cancer medicine (PCM)9. The main rationale of PCM is to match a therapeutic 
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agent to its corresponding molecular target, to allow a precise treatment tailored to a specific patient. It aims to 
achieve a better and more sustained response than more generic treatments, without damaging healthy cells and 
tissues10. We conducted a retrospective subgroup analysis of all 50 patients with primary brain tumour (PBT) that 
had been enrolled and profiled in our special PCM platform of molecular oncological diagnostics and therapy 
(MONDTI) of the comprehensive cancer centre of the Medical University of Vienna (CCC-MUV). We sought 
to map the molecular profiles (MP) of highly advanced, mainly relapsed PBT and to specifically target the found 
molecular alterations.

Materials and Methods
Patients and design of the precision medicine platform.  Patients with progressive and mainly recur-
rent PBT who had progressed to all standard treatment options were eligible for inclusion in MONDTI, provided 
archival tissue samples were available. Patients had to have an Eastern Cooperative Oncology Group (ECOG) 
performance status of 0 or 1. MONDTI is not a clinical trial, but intends to provide the possibility of a targeted 
therapy to patients where no active anti-tumoural treatment is available.

The study was performed according to the International Conference on Harmonization E6 requirements for 
Good Clinical Practice and with the ethical principles described in the Declaration of Helsinki. Patients had to 
provide informed consent before inclusion in MONDTI. Furthermore, the Institutional Ethics Committee of the 
Medical University of Vienna has also approved this subanalysis (Nr. 1039/2017).

Tissue samples.  Formalin-fixed, paraffin-embedded tissue sections from patients with advanced PBT that 
were resistant to all standard therapy options were sent to or retrieved from the archive of the Department of 
Neuropathology and sent to the Department of Pathology, Medical University Vienna, Vienna, Austria.

Cancer gene panel sequencing.  DNA was obtained from paraffin-embedded tumour tissue blocks with 
a QIAamp Tissue KitTM (Qiagen, Hilden, Germany), and 10 ng DNA per sample was employed for sequencing.  
The DNA library was generated by multiplex polymerase chain reaction with the 161-gene next-generation 
sequencing panel of Oncomine Comprehensive Assay v3 (Thermo Fisher Scientific, Waltham, MA, USA).

Immunohistochemistry (IHC).  IHC was done utilizing 2-μm-thin tissue sections. The following anti-
bodies were used: ALK (clone 1A4; Zytomed, Berlin, Germany), cluster of differentiation 30 (CD30) (clone 
BerH2; Dako, Vienna, Austria), CD20 (clone L26; Dako), epidermal growth factor receptor (EGFR) (clone 
3C6; Ventana), oestrogen receptor (ER) (clone SP1; Ventana), HER2 (clone 4B5; Ventana), HER3 (clone SP71; 
Abcam), KIT (clone 9.7; Ventana), MET (clone SP44; Ventana), phosphorylated- mechanistic target of rapamycin 
(p-mTOR) (clone 49F9; Cell Signaling Technology, Danvers, MA, USA), platelet-derived growth factor receptor 
(PDGFRA) (rabbit polyclonal; Thermo Fisher Scientific), PDGFRB (clone 28E1; Cell Signaling Technology), pro-
grammed death-ligand 1 (PD-L1) (clone E1L3N; Cell Signaling Technology), progesterone receptor (PR) (clone 
1E2; Ventana), phosphatase and tensin homolog (PTEN) (clone Y184; Abcam), and ROS1 (clone D4D6; Cell 
Signaling Technology). An immunohistochemical score was calculated by multiplying the percentage of positive 
cells with their corresponding staining intensity (0 = negative, 1 = weak, 2 = moderate, 3 = strong), as described 
here: (maximum 300) = (% negative × 0) + (% weak × 1) + (% moderate × 2) + (% strong × 3).

The cut offs employed for each immunohistochemical stain used for treatment recommendation as follows: 
Oestrogen receptor and progesteron receptor: ≥10% positive tumour cells of any staining intensity, HER2: posi-
tive, Score 2+ or 3+ and additionally presence of an HER2 gene amplification with an HER2:centromer 17 ratio 
≥2, KIT: IHC score ≥100 and presence of a pathogenic/likely pathogenic KIT mutation, p-mTOR: IHC score 
≥100 and loss of PTEN expression or presence of a pathogenic/likely pathogenic PTEN mutation, PDGFRA and 
PDGFRB: IHC score of ≥100, PD-L1: tumour proportion score ≥1.

Fluorescence in situ hybridization.  FISH was done with 4-μm-thick formalin-fixed, paraffin-embedded 
tissue samples. The following fluorescent probes were utilized: ALK (2p23.1; Abbott, Abbott Park, IL, USA), RET 
(10q11; Kreatech, Berlin, Germany), PTEN (10q23.31)/Centromere 10, and ROS1 (ZytoVision, Bremerhaven, 
Germany). Two hundred cell nuclei per tumour were assessed. The cut-off level for an aberrant ALK, RET, and 
ROS1 FISH was ≥15% of cells with a split-apart signal. The PTEN FISH was considered positive for PTEN gene 
loss with ≥30% of cells with only one or no PTEN signals. A chromosome 10 centromere FISH probe served as a 
control for ploidy of chromosome 10.

Multidisciplinary boards (molecular tumour boards for PCM).  After thorough examination of the 
molecular profile of each tumour sample by a qualified and competent molecular pathologist, the results and 
findings were reviewed in a multidisciplinary tumour boards (MTB) that were held every other week. Members of 
the board included molecular pathologists, radiologists, clinical oncologists, biostatisticians, and basic scientists. 
The MTB recommended the targeted therapy based on the specific molecular profile of each patient. The targeted 
therapies included tyrosine kinase inhibitors, checkpoint inhibitors (e.g. anti- PD-L1 monoclonal antibodies), 
and growth factor receptor antibodies with or without endocrine therapy. The treatment recommendations by the 
MTB were prioritized dependent on the level of evidence from high to low according to phase III to phase I trials.

In cases where more than one druggable molecular aberration was identified, the MTB recommended a ther-
apy regimen to target as many molecular aberrations as possible, with special consideration to toxicity profile of 
each antitumoural agent and their potential interactions. Since all patients were given all available standard treat-
ment options for their cancer disease prior to their inclusion in our PCM platform, nearly all targeted agents were 
suggested as off-label use. If the tumour profile and the clinical characteristics of a patient met the requirements 
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of a clinical trial for targeted therapies that was conducted in our cancer centre, patients were preferentially asked 
if they wanted to participate in this trial.

Descriptive statistics.  For data description, we used measures of central tendency including the mean and 
median. We also used the method of frequency distribution to delineate the characteristics of the PBT patients.

Results
Fifty patients diagnosed with a primary brain tumour were included in this subgroup analysis from the cohort of 
the PCM project MONDTI, that has so far profiled 550 patients with various highly advanced cancer types. In this 
analysis, all patients were Caucasians. There were 26 men and 24 women, diagnosed with a total of 24 different 
types of PBT. The median age at first diagnosis was 39 years, range 10 to 71, and the median age at the time when 
the molecular profiling was performed was 45 years, range 10 to 72 (Table 1). The tumour tissue was obtained 
during surgical intervention.

Thirty patients had a diagnosis of glioma. The analysis also included rare brain tumours, including papillary 
tumour of the pineal region (PTPR), pineal parenchymal tumour of intermediate differentiation (PPTID), gliofi-
broma, and a very rare, as yet unclassified, type of glioma with loss of H3 K27me3 and absence of H3 K27 muta-
tion that has been verified by IHC and sequencing, and described only in extremely rare cases.

There was a time span of between six months and two years between diagnosis and when molecular profiling 
was performed. By the time of molecular profiling, 42 patients had suffered relapses of their malignant disease 
and had received a median of two courses of drug therapy (range 1–4). All patients had undergone at least one 
surgical intervention.

In total, we identified 103 molecular aberrations in 36 patients. The predominant mutations were TP53 
(14.6%), IDH1 (9.7%) and PIK3CA (6.8%). No mutations were detected in 14 patients. Some patients were found 
to have more than one mutation. The three patients diagnosed with an anaplastic oligodendroglioma had a total 
of 37 mutations. In contrast, ten patients with GBM were found to have a total of 27 aberrations. In four of the 
30 patients with glioma, the MGMT promoter was methylated. IDH1 was mutated in ten patients. IDH2 was 
mutated in one patient with secondary GBM. Interestingly, BRCA1 was mutated in one patient diagnosed with 
GBM, and BRCA2 mutation was shown in one sample of anaplastic oligodendroglioma. A genetic alteration of 
EGFR was observed in three patients; however, none of them was EGFRvIII-positive. See Tables 2 and 3 for a 
detailed analysis of all the reported mutations. Apart from TP53, IDH1, PIK3CA, ATM, BRAF and CDKN2A, 
mutations in other genes were detected in only one to two cases each.

IHC detected EGFR overexpression in 38 patients, with a high median score of 180. Seventeen patients had an 
EGFR score between 200 and 300. The overexpression of mTOR was detected in 35 patients, and was lower than 
was EGFR overexpression, with a median score of the former of 65. PTEN expression was revealed in exactly half 
of the patients, with a median score of 100. Less common and of lower levels were overexpression of PDGFRa and 
PDGFRb, which were found in 15 and eight patients, respectively. Ten patients with PDGFRa overexpression and 
two patients with PDGFRb had a high-grade glioma, including GBM, anaplastic oligoastrocytoma, anaplastic 
oligodendroglioma and anaplastic pleomorphic xanthoastrocytoma (PXA). Tumour expression of PD-L1 was 
seen in six tumour samples, including two cases of GBM, and in one case each of anaplastic oligodendroglioma, 
malignant prolactinoma, anaplastic oligodendroglioma and anaplastic hemangiopericytoma. The progesterone 
receptor was expressed in five glioma patients, and expression of the oestrogen receptor was found in only one 
woman, who had a malignant prolactinoma. Overexpression of KIT was reported in four patients. Three of these 
patients had a concomitant PDGFRa overexpression. FISH analysis revealed a loss of PTEN in three patients.

In over two-thirds (35) of the 50 patients, a targeted therapy was suggested, based on the identified genetic 
mutations. The most frequently recommended specific treatments were imatinib (n = 12), sunitinib (n = 5) and 
pembrolizumab (n = 5). For five patients, a more general treatment recommendation was produced: EGFR inhib-
itor (n = 2), AKT inhibitor (n = 1), FGFR inhibitor (n = 1), PDGFRa inhibitor (n = 1). For two patients, erlotinib 
was considered. Everolimus, cetuximab, dabrafenib/trametinib, olaparib, pazopanib and vismodegib were each 
proposed in one case each. Table 4 describes the rationale behind the specific therapy suggestions. In two cases, 
sunitinib or erlotinib were recommended, after the patients had received a course of imatinib but had subse-
quently become refractory to imatinib treatment. Except for two patients, all patients with GBM (n = 8) were 
given a therapy suggestion. For all patients with anaplastic oligodendroglioma, anaplastic astrocytoma, meningi-
oma, oligoastrocytoma or PXA, an experimental therapy option was suggested.

Patient Characteristics Number

Mean Age at Fist Diagnosis 39

Mean Age at molecular profiling 45

Men 24

Women 26

Caucasian 50

Types of PBT 24

Relapsed disease 42

Received therapy lines 2 (1–4)

Brain tumour types 25

Table 1.  Patient characteristics (N = 50).
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Discussion
In this report, we show that the information of individual genomic alterations in patients with primary brain 
tumours that are refractory to standard treatment has been translated into specific therapeutic recommendations. 
Notably in this study, the histological type was diverse, and patients with rare brain tumours were also included 
and investigated.

In this retrospective single-centre analysis, we present the molecular profiling (MP) of all 50 patients with 
PBT from the MONDTI cohort. Their disease was therapy-refractory and highly advanced. Tumour tissue was 
obtained from all patients and characterized for their MP. Subsequently, the genomic information of the patients 
was discussed in a multidisciplinary tumour board (MTB) for PCM to evaluate the possibility of a genomic-based 
treatment that was independent of the tumour’s histological classification (tissue-agnostic treatment). A treat-
ment recommendation was derived for 35 patients from the MTB. The drugs were carefully selected to form 
an individualized treatment, taking into account the patient’s clinical and treatment history and concomitant 
therapies and comorbidities.

Tumour samples commonly displayed mutations in TP53, IDH1 and PIK3CA, and revealed a high median 
EGFR score. Common therapeutic agents recommended were imatinib, sunitinib and pembrolizumab. The 
detected mutations and IHC scores observed in gliomas in this analysis are in keeping with previous studies11–13. 

Brain tumour type according to WHO classification of 2016 Number
WHO 
Grade

Number of detected mutations and
MGMT promoter methylation Number of therapy recommendations

Glioblastoma multiforme (GBM) 10 IV°

6xTP53,
2xCREBBP, 2xPIK3CA,
1xARID1A, 1x BAP1, 1x BRAF, 1xBRCA1,
1xEGFR, 1xIDH1, 1x IDH2, 1xKDR, 1x NOTCH1, 1x 
PIK3CB, 1xPIK3R1, 1xPOLE,
1x PTEN, 1x RB1, 1xSMAD4, 1x SMO, 1x STK11;
2xMGMT promoter methylation

EGFR inhibitor (n = 2), imatinib 
(n = 4), pembrolizumab (n = 2)

Anaplastic Hemangiopericytoma 4 III° 1xFGFR4, 1xPOLE FGFR inhibitor (n = 1), sunitinib (n = 1)

Anaplastic Oligoastrocytoma 3 III° 2xIDH1, 1xPDGFRA Erlotinib (n = 1), imatinib (n = 1)

Anaplastic Astrocytoma 3 III° 1xIDH1, 1xPTPN11, 1xTP53
Erlotinib (n = 1),
everolimus (n = 1),
imatinib (n = 1)

Anaplastic Oligodendroglioma,
IDH-mutant, 1p19q co-deleted 3 III°

3xIDH1, 2xMLH1, 2xATM, 1xABL, 1xALK, 1xAPC, 
1xATR,
1xBRAF, 1xBRCA2, 1xCCND3, 1xCDKN1B, 
1xCDKN2A, 1xEGFR, 1xERBB4, 1xFGFR3,
1xFGFR4, 1xIGF1R, 1xMRE11A, 1xMTOR, 
1xNOTCH1, 1xPIK3CA, 1xPIK3R1, 1xPOLE, 
1xPTCH, 1xPTPN11, 1xRAD51C, 1xRB,
1xSLX4, 1xSMAD4, 1xSMARCB1, 1xSTK11, 1x TSC2, 
1xTP53
1xMGMT promoter methylation

Imatinib (n = 1),
pembrolizumab (n = 1),
sunitinib (n = 1)

Anaplastic pleomorphic xanthoastrocytoma (PXA) 2 III° 1xBRAF V600E;
1xMGMT promoter methylation

Dabrafenib and trametinib (n = 1), 
imatinib (n = 1)

Oligoastrocytoma 2 II° 2xIDH1, 2xTP53, 1xATM Olaparib (n = 1),
imatinib (n = 1)

Atypical meningioma 3 II° 1xAKT1, 1xCDKN2A, 1xEGFR, 1xFGFR1, 1xMAF, 
1xRET, 1xTP53

Cetuximab (n = 1),
imatinib (n = 1),
AKT inhibitor (n = 1)

Medulloblastoma 2 IV° 1xATR, 1xPIK3CA, 1xSMO, 1xTERT Vismodegib (n = 1)

Anaplastic ependymoma 2 III° 1xATM Pembrolizumab (n = 1)

Chordoma 2 — 0 Imatinib (n = 1)

Hemangioblastoma 2 I° 1xVHL Pazopanib (n = 1),
PDGFRa inhibitor (n = 1)

Papillary tumour of the pineal region (PTPR) 1 III° 0 Sunitinib (n = 1)

Pituitary carcinoma – malignant prolactinoma 1 — 0 Pembrolizumab (n = 1)

Pilocytic astrocytoma 1 I° 1xPIK3CA 0

Melanotic schwannoma 1 I° 1xGNAQ 0

Myxopapillary ependymoma 1 I° 1xKDR Sunitinib (n = 1)

Atypical choroid plexus papilloma (aCPP) 1 II° 1xTP53 0

Pineal parenchymal tumour of intermediate differentiation 
(PPTID) 1 III° 0 0

Diffuse midline glioma H3 K27M-mutant 1 IV° 1xNF1
1xTP53 Imatinib (n = 1)

MPNST 1 — 0 Sunitinib (n = 1)

Diffuse astrocytoma 1 II° 1xIDH1, 1xTP53 0

Glioma with loss of H3 K27me3 and absence of H3 K27 
mutation (described in rare cases) 1 — 1xCDKN2A, 1xPIK3CA, 1xTP53 0

Gliofibroma (described in rare cases) 1 — 1xPIK3CA 0

Table 2.  Types of primary brain tumours, genetic alterations and recommended therapy.
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The analysis presented in this study shows that molecular profiling from tumour samples of patients and subse-
quent identification of therapeutic options with highly advanced PBT appears feasible and safe, and consistent 
with previous work. While outcome data are not presented in this study, previous work has shown that the drug 
treatments used here may be effective in improving clinical outcomes.

A similar study used molecular profiling to offer an individualized therapy only in patients with recurrent 
or advanced glioblastoma. They enrolled a limited number of 20 patients of whom seven actually received the 
recommended treatment. The investigators reported the feasibility of treatment plan guided by the identified 
molecular profiling14.

A pilot trial evaluated the feasibility and potential of precision medicine in young patients below 25 years with 
newly diagnosed diffuse intrinsic pontine glioma. Based on whole exome sequencing and RNA sequencing, a 
personalized therapy concept was developed for 15 patients15.

Another trial performed exome and transcriptome sequencing in 91 young patients with therapy refractory 
or relapsed cancer and integrated and incorporated the information into clinical management. In roughly half 
of the patients (46%), druggable molecular alterations were found and were considered in the treatment plan16.

Imatinib and sunitinib were offered in this current study as a treatment when overexpression of PDGFRa/b 
or KIT was identified. Haberler et al. have shown previously that, in a cohort of 101 glioblastoma patients, the 
expression of anti-PDGFRa and b, c-kit, c-abl and arg protein that can be targeted by imatinib17. According to a 
phase II trial in patients with recurrent gliomas, treatment with imatinib is well tolerated, with a limited antitumour 
activity18. Hassler et al. also tested the antitumour activity of imatinib in 24 recurrent glioblastoma patients with 
at least one tyrosine kinase expression that can be targeted by imatinib. Six patients survived over one year, and 
twelve patients achieved stable disease (SD). Median progression-free survival was 3 months and median over-
all survival was 6 months19. Based on preclinical data, sunitinib appears to impede brain tumour progression and 
reduce tumour-induced neurodegeneration in the microenvironment20. In this study, imatinib was preferred over 
sunitinib or erlotinib due to its relatively favourable and manageable safety profile and longer experience of its use.

Pazopanib has previously been used in a patient with hemangioblastoma and von Hippel-Lindau (VHL) dis-
ease. An important study published in The Lancet investigated the efficacy of pazopanib in 31 patients with 
VHL and reported an objective response in 13 patients (42%). However, treatment-related serious adverse events 
included one case each of appendicitis and gastritis, and one patient had a fatal central nervous system bleeding21.

Notably, we identified a BRCA1/2 and an ATM mutation that are rational targets for Poly [ADP-ribose] pol-
ymerase 1 (PARP) inhibitors, for example olaparib22. It has been shown that olaparib penetrates the blood-brain 
barrier (BBB) and therefore easily accesses the tumour site, and it may enhance the cytotoxic effects of ionising 
radiation and temozolomide. Halford et al. treated 35 patients with olaparib and temozolomide and achieved 
six-month progression-free survival (PFS) rates in all patients, with a favourable safety profile23.

BRAF V600E mutation has been reported in a young woman with anaplastic PXA, who was offered dab-
rafenib/trametinib as tailored therapy. This drug combination has achieved Food and Drug Administration 
(FDA) approval for the treatment of melanoma displaying the BRAF V600E mutation. Our observation is in line 
with a retrospective study by Burger et al., who noted SD in three patients with recurrent, BRAF V600E-mutated 
malignant glioma after receiving dabrafenib24.

Pembrolizumab has been suggested in patients with tumour expression of PD-L1 or with a hypermutability. 
In a small study of 25 patients with refractory high-grade glioma, pembrolizumab was administered as salvage 
treatment and achieved a median overall survival of four months25. In May 2017, the FDA granted accelerated 
approval to pembrolizumab for the first tissue-agnostic indication in patients with unresectable or metastatic, 
microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) solid tumours that have progressed 
following prior treatment and which have no satisfactory alternative treatment options26.

For one male patient with recurrent medulloblastoma and SMO mutation, vismodegib was considered as tar-
geted therapy in our analysis. The antitumour activity of vismodegib acting as a sonic hedgehog (SHH) pathway 
inhibitor has previously been confirmed by Robinson et al.27.

In patients with chordoma, PTPR and diffuse midline glioma imatinib or sunitinib were recommended due 
to expression of PDGFR28,29.

Despite the efforts and the investigated agents in brain tumours, progressive recurrent PBT have a very poor prog-
nosis and there are only few FDA-approved therapeutic agents for brain tumours currently recommended or in use.

It is a difficult and complex task to classify and prioritize the plethora of reported genetic alterations and 
epigenetic changes of brain tumours, in order to identify molecular targets and to choose adequate tailored ther-
apeutic measures. Most of the identified alterations are therefore currently undefined regarding their role in the 
pathogenesis of brain tumours and their therapeutic consequences and implications30.

With the exception of TP53, IDH1, PIK3CA, ATM, BRAF and CDKN2A, mutations in all other genes were 
detected only one to two times in the current study. This finding is consistent with the well-described extreme and 
complex intratumoural heterogeneity which occurs within the same tumour tissue; vascularization, proliferation, 
tumour mutational burden (TMB) and subclones are all known to be highly variable. The pattern of genetic and 
epigenetic aberrations changes both spatially and temporally. The tumour biology at metastatic sites is different 
from the primary site and differs again at the time point of relapse. In addition, it is known that the therapy 
itself can influence and inform the clonal tumour evolution, by creating new driver mutations in subclones that 
become insensitive to drugs30,31.

Another relevant issue is the drug delivery to the brain tumour. Tailored drugs applied in neuro-oncology 
must be capable of bypassing the physiological constraint of the BBB to reach the tumour32.

Taken together, the extremely complex tumour biology, the spatial and temporal heterogeneity in PBT genetics,  
and the difficulty of bypassing the BBB pose unique challenges for the management of brain tumours and in drug 
development. Further research is required to better comprehend the tumour biology.
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One limitation of this subgroup analysis is that neurotrophin receptor kinases (TRK) fusion genes were not 
assessed and evaluated. TRK fusion genes are important oncogenic drivers in high-grade glioma that have a 
therapeutic consequence, as they can be targeted by specific inhibitors such as larotrectinib or entrectinib33,34. 

Mutation Number Percent

ABL1 1 1.0%

AKT1 1 1.0%

ALK 1 1.0%

APC 1 1.0%

ARID1A 1 1.0%

ATM 4 3.9%

ATR 2 1.9%

BAP1 1 1.0%

BRAF 3 2.9%

BRCA1 1 1.0%

BRCA2 1 1.0%

CCND3 1 1.0%

CDKN1B 1 1.0%

CDKN2A 3 2.9%

CREBBP 2 1.9%

EGFR 3 2.9%

ERBB4 1 1.0%

FGFR1 1 1.0%

FGFR3 1 1.0%

FGFR4 2 1.9%

GNAQ 1 1.0%

IDH1 10 9.7%

IGF1R 1 1.0%

IDH2 1 1.0%

KDR 2 1.9%

MAF 1 1.0%

MLH1 2 1.9%

MRE11A 1 1.0%

MTOR 1 1.0%

NF1 1 1.0%

NOTCH1 2 1.9%

PDGFRA 1 1.0%

PIK3CA 7 6.8%

PIK3CB 1 1.0%

PIK3R1 2 1.9%

POLE 3 2.9%

PTCH 1 1.0%

PTEN 1 1.0%

PTPN11 2 1.9%

RAD51C 1 1.0%

RB1 2 1.9%

RET 1 1.0%

SLX4 1 1.0%

SMAD4 2 1.9%

SMARCB1 1 1.0%

SMO 2 1.9%

STK11 2 1.9%

TERT 1 1.0%

TP53 15 14.6%

TSC2 1 1.0%

VHL 1 1.0%

Total 103 100%

Table 3.  Number of detected mutations.
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Another limitation is that the tumour tissue was obtained during surgical intervention and there was subse-
quently a time delay of between six months and two years until molecular profiling was performed. This limita-
tion is important, since the tumour biology differs at the time of relapse or progression following the failure of 
initial therapy. Thus, the antitumour activity of targeted agents that are aimed at mutations present at the time of 
diagnosis may be reduced due to the changed molecular landscape of the tumour. For future analysis and studies, 
it would be of major clinical relevance to obtain genetic information of the tumour at the time of relapse or pro-
gression e.g. via liquid biopsy of cerebrospinal fluid to recommend the targeted therapy according to the current 
molecular characteristics of the tumour35–38.

Despite the limited number of patients included in this subgroup analysis, the results are promising. PCM 
clearly has the potential to inform treatment of PBT by expanding the therapeutic repertoire. Currently, PCM in 
neuro-oncology is in its infancy but has the potential to become more widely used in cancer drug development 
and therapy planning and strategy11,31.
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