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Statin treatment prevents the 
development of pulmonary arterial 
hypertension in a nonhuman 
primate model of HIV-associated 
PAH
Whitney Rabacal1,2, Finja Schweitzer1,2, Emily Rayens1, Rebecca Tarantelli1, Patrick Whang1, 
Viviana Cobos Jimenez1, Judy A. Outwater1 & Karen A. Norris1*

Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by pulmonary vascular 
remodeling, elevated pulmonary arterial pressure, and right heart failure. Human immunodeficiency 
virus (HIV)-infected individuals have a higher incidence of PAH than the non-HIV infected population 
and evidence suggests a role for systemic and pulmonary inflammation in the pathogenesis of HIV-
associated PAH. Due to their pleiotropic effects, including immune-modulatory and anti-inflammatory 
effects, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have been 
considered for the treatment of PAH, with conflicting results. The effects of statins on HIV-associated 
PAH have not been specifically evaluated. We have developed a non-human primate (NHP) model of 
HIV-associated PAH that closely mimics HIV-PAH using simian immunodeficiency virus (SIV)-infected 
rhesus macaques (Macaca mulatta). We determined that treatment of healthy macaques with 
atorvastatin prior to and throughout SIV infection prevented the development of SIV-associated PAH. 
Additionally, SIV-infected macaques that initiated atorvastatin treatment during the early chronic 
disease stage had reduced incidence of PAH compared to untreated animals. Statin treatment reduced 
inflammatory mediators TGF-β, MIP-1α, and TNF-α and the numbers of CD14dimCD16+ non-classical 
monocytes, and CD14+CCR7−CD163−CD206+ alveolar macrophages previously shown to be associated 
with SIV-PAH. These results support the concept that statins reduce inflammatory processes that 
contribute to PAH and may provide a safe and effective prophylactic strategy for the prevention of PAH 
in HIV-infected individuals.

Pulmonary arterial hypertension (PAH) is a subgroup of pulmonary hypertension that includes idiopathic 
PAH and heritable forms, as well as PAH associated with congenital heart disease, connective tissue disease, 
portal hypertension, human immunodeficiency virus (HIV) and other infections1. The hemodynamic definition 
of PAH is defined by a mean pulmonary artery pressure (mPAP) at rest ≥25 mmHg with a pulmonary capil-
lary wedge pressure <15 mmHg2. PAH occurs in approximately 0.5% of HIV-infected persons, which is 100 to 
1000 times greater than the prevalence of PAH in non-HIV infected populations3. Despite the improvements in 
HIV-associated morbidity and mortality, the prevalence of PAH has not changed significantly in the post-ART 
era3,4. Recent echocardiaographic studies of HIV-infected outpatients found that between 15% and 35% had ele-
vated pulmonary artery systolic pressures5,6, indicating that PAH may be even more common than previously 
thought. Even with diagnosis and treatment, prognosis remains poor for both HIV and non-HIV-associated PAH.

3-hydroxy-3-methylgluaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) can suppress inflamma-
tion7 independently of their lipid lowering effects8,9. Statins have markedly improved morbidity and mortality 
in clinical trials of disease10,11 and transplantation12,13, and ameliorated disease in experimental models of auto-
immunity14,15. Through their pleiotropic functions, statins are hypothesized to mitigate PAH pathogenesis by 
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maintaining vascular cell homeostasis and preventing inflammatory feedback cascades that promote aberrant 
proliferation and vessel occlusion9,16,17. Statins have been shown to suppress vascular inflammation, inhibit pul-
monary smooth muscle cell proliferation, and improve hemodynamic parameters in experimental rodent models 
of PAH18–21; although, limited clinical trials in late stage PAH have yielded conflicting results22–27. Several studies 
have reported moderate improvement in PAH-associated biomarkers but long term physiologic benefits were not 
generally evident26–28. An examination of statin efficacy in preventing or treating HIV-associated PAH has not 
been tested, and it is unclear whether the results of previous statin trials are applicable to HIV-associated PAH 
populations, where chronic immune activation and inflammation are believed to play key roles in the develop-
ment of cardiopulmonary co-morbidities.

Until recently, a lack of adequate animal models that faithfully recapitulates the immunologic, histologic, 
and hemodynamic features of human PAH has inhibited understanding of the disease pathobiology, and 
hindered the development of novel therapeutic strategies. Rodent models of PAH have provided key insights 
into PAH pathogenesis but do not mimic the complex immunological dysregulation that contributes to 
idiopathic29,30, autoimmune31, and HIV-PAH32,33. Rhesus macaques have been extensively used for mod-
eling HIV infection and preclinical testing of therapeutics34,35, and closely mimic human hemodynamics 
during healthy and PAH diseased states36. Moreover, SIV-nfected macaques develop pulmonary arterial 
lesions, similar to patients with idiopathic PAH, characterized by intimal and medial thickening with lumi-
nal occlusion37–40.

Through longitudinal evaluation of SIV-infected macaques by right heart catheterization (RHC), Tarentelli 
et. al, recently established a nonhuman primate (NHP) model of HIV-PAH where 52.4% of SIV-infected 
macaques develop elevated pulmonary pressures (mPAP ≥ 25 mmHg) within 6–12 months following SIV infec-
tion36. SIV-mediated PAH in these animals was associated with increased levels of pro-inflammatory cytokines 
(TGF-β, MIP-1α, and TNF-α) and an increased frequency of pro-inflammatory monocytes and pro-fibrotic mac-
rophages36,41. Interestingly, SIV-infected NHPs that did not develop PAH had increased levels of plasma IL-15 and 
lung tissue IL-1036,41. In the present study, we tested the effects of statin treatment on the development of PAH and 
associated immunologic phenotypes in SIV-infected rhesus macaques.

Results
Early statin treatment prevents PAH in SIV-infected NHPs.  52.4% (11 of 21) of SIV-infected 
macaques developed elevated pulmonary pressures within 6–12 months of infection (SIV/Untreated Group 1 
PAH+); whereas 47.6% (10 of 21) maintained normal hemodynamic parameters throughout the course of infec-
tion (up to 12 months post-infection) (SIV/Untreated Group 1 PAH−) (Table 1; Fig. 1; Extended Data Fig. 1). To 
determine if statin therapy in healthy macaques could alter the incidence or progression of SIV-PAH, atorvastatin 
treatment was initiated in a cohort of NHPs 1 week prior to SIV infection (Fig. 1a, SIV/Statin Group 2; Extended 
Data Fig. 1) and maintained on drug throughout infection. Hemodynamics were measured by serial right heart 
catheterizations at baseline (BL), 6 months post-infection (6 mpi), and at terminal (end of study, 10–12 mpi). We 
were unable to obtain complete hemodynamic data from two animals (monkey 22–16 and terminal timepoint 
from monkey 47–16). In contrast to untreated controls (SIV/Untreated Group 1, 52.4% PAH+), 14.3% (Table 1, 
2 of 14, P = 0.03) of statin-treated animals (SIV/Statin Group 2) developed elevated mPAP (monkey 33–16 at 
25.4 mmHg and monkey 24–16 at 46.3 mmHg) at 6 months post-infection (Fig. 1). Of these animals, one main-
tained slightly elevated mPAP until the end of the study (monkey 33–16, terminal mPAP = 25.7 mmHg). At study 
termination, mPAP of monkey 24–16 decreased to 21.2 mmHg.

We further tested whether statin treatment initiated following SIV infection could prevent the development 
of PAH or alter progression (Fig. 1, SIV/Statin Group 3; Extended Data Fig. 1). In this group, atorvastatin was 
administered four months following SIV infection and maintained throughout infection. We were unable to 
obtain RHC data from 44–16 at 6mpi; terminal RHC data from 26–16, 27–16, and 29–16; and 6mpi and terminal 
data from 49–16. One animal (31–16) developed rapidly progressing SIV/AIDS and was removed from study at 
13 weeks post-infection. Of the 12 remaining monkeys that had hemodynamic measurements following infec-
tion, 1 of 12 monkeys (Tables 1, 8.3%, P = 0.02) developed PAH (animal 29–16; 6mpi mPAP = 45.5) at 6 months 
post-infection. This monkey (29–16) had a relatively high baseline mPAP (23.0 mmHg) and was euthanized at 36 

Cohort SIV/Untreated Group 1 SIV/Statin Group 2 SIV/Statin Group 3

All animals n = 21 n = 14 n = 12

Male, sex, N (%) 11 (52.4) 8 (57.1) 6 (50)

Age at infection, years (Mean ± SD) 6.1 ± 1.0 8.1 ± 1.9 8.8 ± 1.2

Primary Outcome

Incidence PAH ≥ 25 mmHg 6–12 mpi 11 2 1

Prevalence of PAH (% PAH+) 52.4 14.3 8.3

Relative Risk of PAH with statin treatment

Value — 0.273 0.159

95% CI, Koopman asymptotic score — 0.073–0.859 0.028–0.739

Association between statins and PAH

Fisher’s exact test P value — *0.03 *0.02

Table 1.  Association between statin treatment and PAH in SIV-infected macaques. CI, confidence interval; 
PAH, pulmonary arterial hypertension. *P < 0.05.
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weeks post-infection due to Pneumocystis pneumonia without performing a terminal RHC. These results demon-
strate that SIV-PAH can be prevented through prophylactic and therapeutic intervention with atorvastatin.

Effects of statins on peripheral CD4+ T cells and SIV infection.  Statins have been reported to inhibit 
lymphocyte migration which in turn can impair T effector responses necessary for pathogen clearance and 
viremic control42,43. We therefore examined peripheral blood CD4+ T cell levels and plasma viral load through-
out SIV infection. CD4+ T cell frequencies in both statin-treated cohorts were similar to SIV/Untreated controls, 
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Figure 1.  Hemodynamic evaluation of pulmonary arterial hypertension with statin treatment in a NHP model 
of HIV-PAH. (a) Study schematic of statin treatment, SIV infection, and serial right heart catheterization 
(RHC). (b) Mean arterial pressure (mPAP), comparing treatment cohorts at baseline (BL), 6 months post-
infection (6mpi), and terminal timepoints (10–12mpi). (c) mPAP is calculated from (d) right ventricular 
systolic pressure (RVSP), where = . × + .mPAP in mmHg RVSP( ) 0 65 ( ) 0 55. PAH is defined as 
mPAP ≥ 25 mmHg as indicated by the dashed lines. (b–d) Serial and group characterizations of hemodynamics 
were analyzed using repeated measures mixed modeling. Data represents the mean ± SD.
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except in SIV/Statin Group 2 at 1 and 3 weeks post-infection (Fig. 2a); however, cell numbers recovered by 8 
weeks post-infection and remained similar throughout the remainder of the experiment. In addition, statin treat-
ment did not significantly alter viral load compared to SIV/Untreated Group 1 controls (Fig. 2b). All SIV-infected 
macaques displayed the typical decline in peripheral blood CD4+ T cells and a characteristic chronic-phase 
plasma viral level. Together, these data indicate that statin treatment did not significantly alter peripheral CD4+ 
T cell homeostasis or viral load in this study.

Statin treatment prevents alterations in cytokine profiles associated with SIV-PAH.  HIV 
induces a state of chronic inflammation that may drive PAH pathogenesis. Among inflammatory cytokines asso-
ciated with SIV-PAH, bronchoalveolar lavage fluid (BALF) TGF-β (Fig. 3a, P = 0.02) and plasma MIP-1α (Fig. 3b, 
P = 0.02) and TNF-α (Fig. 3c, P = 0.049) levels are significantly higher in SIV-PAH+ animals compared with 
SIV-PAH− controls. To determine if statin treatment could modify these inflammatory mediators associated with 
SIV-PAH, we compared cytokine profiles in our statin-treated cohorts. Consistent with our hypothesis that sta-
tin treatment can suppress SIV-PAH-associated inflammation, levels of BALF TGF-β at 6 months post-infection 
were significantly lower in both statin-treated cohorts compared to SIV-PAH+ (Fig. 3a; SIV/Statin Group 2, 
P < 0.0001; SIV/Statin Group 3, P < 0.0001) and SIV-PAH− controls (Fig. 3a; SIV/Statin Group 2, P = 0.006; SIV/
Statin Group 3, P = 0.01). In addition, terminal level of plasma MIP-1α (Fig. 3b, P = 0.0002) and TNF-α (Fig. 2c, 
P = 0.0001) was significantly lower in SIV/Statin Group 2 compared with SIV-PAH+ controls. However, terminal 
plasma levels of MIP-1α and TNF-α were not significantly reduced in SIV/Statin Group 3, indicating that these 
responses may not be suppressed when statin treatment is initiated during the post-acute phase of infection.

In contrast with inflammatory cytokines TGF-β, MIP-1α, and TNF-α, IL-15 is elevated in animals resist-
ant to SIV-PAH (Fig. 3d, P = 0.01) and is inversely correlated with increased pulmonary pressures at 6 months 
post-infection (Fig. 3e; left panel, P = 0.0097). Plasma IL-15 was elevated in both statin cohorts compared with 
SIV-PAH+ controls (Fig. 3d; SIV/Statin Group 2, P = 0.06; SIV/Statin Group 3, P < 0.0001). Moreover, IL-15 
levels in both statin cohorts did not correlate with increased pulmonary pressures (Fig. 3e; center, right panels). 
Collectively, these data indicate that statin treatment suppresses chronic inflammation and may promote cytokine 
responses associated with SIV-PAH resistance.

Statin treatment prevents monocyte and macrophage skewing associated with inflamma-
tion and fibrosis in SIV-PAH.  Among cytokine signatures associated with SIV-PAH, the inflammatory 
mediators MIP-1α, TNF-α, and TGF-β have been previously associated with macrophage populations that 
promote fibrosis36,41. At 6 months post-infection, SIV-PAH+ animals had higher numbers of peripheral blood 
CD14dimCD16+ non-classical monocytes (Fig. 4a, P = 0.06) and CD14+CCR7−CD163−CD206+ BALF mac-
rophages (Fig. 4c, P = 0.04) compared to SIV-PAH− controls. Moreover, increased numbers of CD14dimCD16+ 
non-classical monocytes (Fig. 4b, left panel, P = 0.04) and CD14+CCR7−CD163−CD206+ macrophages 
(Fig. 4d, left panel, P = 0.03) correlated with increased pulmonary pressures in SIV/Untreated Group 1 con-
trols at 6 months post-infection. Given the pleotropic effects of statins upon monocyte and macrophage skew-
ing and cytokine secretion15,44,45, we hypothesized that statins may dampen myeloid phenotypes associated 
with SIV-PAH. Consistent with our hypothesis, the number of CD14dimCD16+ non-classical monocytes were 
significantly lower in both statin-treated cohorts compared to SIV-PAH+ controls (Fig. 4a; SIV/Statin Group 
2, P = 0.02; SIV/Statin Group 3, P = 0.005) and did not correlate with increased pulmonary pressures (Fig. 4b, 
center, right panels). Moreover, the numbers of BALF CD14+CCR7−CD163−CD206+ BALF macrophages 
were significantly reduced with statin treatment (Fig. 4c; SIV/Statin Group 2, P < 0.0001; SIV/Statin Group 3, 
P < 0.0001) compared to both SIV-PAH+ and SIV-PAH− controls. Furthermore, these macrophage numbers 
did not correlate with increased pulmonary pressures (Fig. 4d, center, right panels). These data suggest that statin 
treatment reduces monocyte and macrophage phenotypic skewing associated with SIV-PAH.

Statin treatment prevents SIV-PAH-associated fibrosis in the heart and pulmonary arteries.  
SIV-infected macaques exhibit pulmonary arterial lesions similar to idiopathic human PAH; however, the extent 
of vascular remodeling is relatively mild compared to HIV-PAH37–40. Our previous studies indicate that right 
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Figure 2.  Evaluation of peripheral blood CD4+ T cells and viral load throughout SIV infection and statin 
treatment. (a) CD4+ T cells of SIV-infected macaques comparing SIV/Untreated Group 1 vs SIV/Statin Group 2 
or SIV/Statin Group 3. (b) Viral load. Data represents the mean ± SD. Differences in CD4+ T cells and viral load 
were analyzed by repeated measures mixed modeling. CD4+ T cells statistically differed between SIV/Untreated 
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Figure 4.  Effect of statins on SIV-PAH-associated monocyte and macrophage phenotypes. (a) Absolute cell 
numbers of CD14dimCD16+ non-classical monocytes in the peripheral blood at 6mpi. (b) Correlation analysis 
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ventricular (RV) fibrosis is a relatively early manifestation of SIV-PAH and occurs in advance of significant pul-
monary vascular lesions36. SIV-PAH+ animals had significantly higher levels of fibrosis within the right ventricle 
(Fig. 5a, P = 0.002) and pulmonary arteries (Fig. 5d, P = 0.002) compared with SIV-PAH− animals. Collagen lev-
els within both the right ventricle (Fig. 5b, P = 0.004; Fig. 5c) and small pulmonary arteries (Fig. 5e, P = 0.0005) 
correlated with increased pulmonary pressures in SIV/Untreated Group 1 controls. Given the substantial damp-
ening of pro-fibrotic immune phenotypes that we observed with statin treatment (Figs. 3–4), we examined RV 
and lung periarteriolar collagen deposition following statin treatment. Within the right ventricle, collagen depo-
sition was significantly lower in both statin-treated cohorts compared to SIV-PAH+ animals (Fig. 5a; SIV/Statin 
Group 2, P < 0.0001; SIV/Statin Group 3, P < 0.0001), and did not correlate with increased peak pulmonary 
pressures (Fig. 5b, center and right panels). Similarly, within the lung, periarterial collagen deposition was sig-
nificantly lower in both statin-treated cohorts compared to SIV-PAH+ controls (Fig. 5d; SIV/Statin Group 2, 
P < 0.0001; SIV/Statin Group 3, P < 0.0001). Interestingly, statin treatment reduced fibrosis in both the RV and 
lung to levels lower than those observed in SIV-PAH− controls. These data reveal that statin intervention therapy 
significantly reduces fibrosis in the heart and pulmonary arteries during SIV infection.

Discussion
In this study, we evaluated the efficacy of statins on preventing PAH in a rhesus macaque model of HIV-associated 
PAH through longitudinal hemodynamic measurements and analysis of inflammatory signatures. We determined 
that treatment of healthy macaques with atorvastatin initiated prior to SIV infection lowered the prevalence 
of SIV-PAH to 14.3% in treated macaques (SIV/Statin Group 2; 2 of 14) compared to 52.4% among untreated 
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Figure 5.  Effect of statins on SIV-associated fibrosis in the heart and pulmonary arteries. (a) Quantification of 
right ventricle (RV) collagen deposition quantified from Masson’s trichrome-stained heart sections. (b) Correlation 
analysis between peak mPAP and RV fibrosis (%RV Collagen/170 mm2) in SIV/Untreated animals (left), and 
statin-treated cohorts (center, right). (c) Representative images of Masson’s trichrome-stained right ventricle 
sections. (d) Quantification of pulmonary periarteriolar collagen deposition quantified from Picro-Sirius Red-
stained lung sections. (e) Correlation analysis between peak mPAP and periarteriolar fibrosis (%Area threshold) 
in SIV/Untreated animals (left), and statin-treated cohorts (center, right). (a,d) Mann-Whitney U test was used for 
statistical analysis. Data represents the mean ± SD. (b,e) Spearman correlation analysis; R, Spearman coefficient.
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controls (SIV/Untreated Group 1; 11 of 21). Statin treatment prevented SIV-PAH-associated increases in inflam-
matory cytokines TGF-β, and MIP-1α, and TNF-α, and prevented increases in CD14dimCD16+ non-classical 
monocytes, and CD14+CCR7−CD163−CD206+ BALF macrophages. Additionally, SIV-infected macaques treated 
in the post-acute phase were similarly protected from developing SIV-PAH (SIV/Statin Group 3; 8.3%, 1 of 12). 
Although statins have known anti-inflammatory effects, treatment of infected animals did not significantly 
alter peripheral CD4+ T cells or viremic control. These results present an optimal therapeutic balance whereby 
SIV-PAH is prevented by curbing inflammation, without significantly altering viremic control.

As an extension of our investigation into the immunomodulatory effects of statins, we also examined IL-15 
levels in statin-treated cohorts. Although primarily associated with maintaining lymphocyte homeostasis and 
chronic inflammation46,47, IL-15 has been recently proposed as a potential anti-fibrotic agent in mouse models of 
interstitial pulmonary fibrosis and pancreatic fibrosis48–50. Likewise, SIV-infected macaques that do not develop 
PAH have higher plasma IL-15 levels than their SIV-PAH+ counterparts36. In this study, statin treatment signif-
icantly increased levels of plasma IL-15 and correlated with a decreased incidence of SIV-PAH. Interestingly, the 
three statin-treated animals that developed SIV-PAH had the lowest levels of IL-15 within their respective treat-
ment cohorts, suggesting a potential biomarker for HIV-PAH risk. Further investigation is ongoing to determine 
whether IL-15 pathways can be manipulated for the development of novel prophylactic or therapeutic strategies.

In addition to investigating immune signatures, we examined collagen deposition in the right heart and pul-
monary vasculature to determine if statin treatment can reduce fibrosis. SIV-PAH is associated with increased 
right heart and lung periarteriolar collagen deposition36. Here we report that statin treatment reduced collagen 
deposition in both the right heart and pulmonary vasculature compared to SIV-PAH+ controls. Interestingly, sta-
tin treatment reduced RV collagen to levels lower than those observed even in SIV-PAH− animals. These data 
support the concept that statins prevent elevated pulmonary pressures by preventing SIV-associated fibrosis.

Several factors have been proposed that may contribute to the higher prevalence of PAH among HIV-infected 
individuals, including intravenous drug use, cardiovascular comorbidities, and co-infection with respiratory 
pathogens1. Pneumocystis infection in SIV-infected rhesus macaques can lead to life threatening pneumo-
nia (PCP)51. In a murine model, Swain et al. reported that CD4-depleted animals subsequently infected with 
Pneumocystis developed PAH52. In the current study, two animals (29–16 and 46–16) developed PCP. Of these, 
29–16 of developed PAH (peak mPAP = 45.5) and was euthanized at 36 weeks post-infection due to clinically 
advanced PCP; however, we have not observed a correlation between Pneumocystis infectionand the development 
of SIV-PAH (Norris, unpublished). We did not observe other opportunistic infections or comorbidities (neuro-
logic symptoms, systemic hypertension, malignancies) among cohorts throughout this study.

This study builds upon previous work in several ways. This study is the first to demonstrate that SIV-PAH 
is a preventable disease that can be abrogated through pharmaceutical intervention up to the early chronic 
phase of infection and possibly later. In addition, these data demonstrate that SIV-PAH pathogenesis is driven 
by key immunologic processes that include specific inflammatory pathways and pro-fibrotic myeloid popula-
tions. Moreover, these processes can be curtailed through preventive therapy using one of the most widely pre-
scribed classes of drugs available, statins. These observations can be potentially extended and applied to both 
HIV-infected and non-infected individuals at risk of developing PAH.

The full breadth of pathogenic mechanisms driving HIV-PAH is still unknown. Further investigation is 
necessary to identify novel immune-mediated pathways that may drive or prevent HIV-PAH pathogenesis. 
Nevertheless, statin treatment successfully inhibited several PAH-associated immunologic parameters previously 
identified. There are limitations to this study. We did not address whether statin-based therapeutic strategies can 
ameliorate disease following established PAH, as has been investigated in several clinical trials. We also did not 
evaluate the effect of antiretroviral therapy (ART) on development of SIV-PAH or whether statins are effective in 
combination with ART.

This prospective study is the first to demonstrate the efficacy of statin prevention therapy in a highly relevant 
pre-clinical, NHP model of HIV-PAH, and identify potential immunologic biomarkers of disease progression 
that are affected by statin treatment. Herein these data demonstrate the efficacy of statin therapy in the absence 
of confounding factors such as illicit drug use, ART, and non-Pneumocystis co-infection. These data are clinically 
significant because they suggest that HIV-PAH can be prevented early in HIV infection by administering a drug 
that is already FDA approved. The findings of this study provide a strong rationale for the clinical evaluation of 
statin therapy for the prevention and treatment of HIV-associated PAH.

Methods
Animals.  28 adult Chinese rhesus macaques (Macaca mulatta) aged 6–10 years old were obtained from 
national primate centers or vendors and housed in accordance with the NIH Guide for the Care and Use of 
Laboratory Animals53 in a BSL2+ primate facility at the University of Georgia. Prior to admission to the study, all 
animals were screened and found negative for simian retroviruses and preexisting cardiovascular disease.

Study design and statin treatment.  All cohorts were infected with SIV/Delta B67054,55 (1:100 in 
PBS), tissue culture infectious dose of 50% (TCID50) = 2.6 × 105), intravenously or mucosally as previously 
described36,41. To determine if statin prevention therapy in healthy macaques could alter the incidence or pro-
gression of SIV-PAH, atorvastatin treatment was initiated in a subset of NHPs 1 week prior to SIV infection (SIV/
Statin Group 2; n = 14).To test the hypothesis that therapeutic treatment with atorvastatin could alter the inci-
dence or progression of PAH after SIV-infection, treatment was initiated in a second cohort 4 months following 
SIV-infection (SIV/Statin Group 3; n = 14). SIV/Statin-treated cohorts received 10 mg/day atorvastatin, orally. 
SIV/Statin treated cohorts were compared to untreated historical controls (SIV/Untreated Group 1) previously 
described in Tarentelli et al.36 and Schweitzer et al.41. All procedures were approved by the University of Georgia 
Institutional Animal Care and Use Committee.
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Hemodynamic measurements through right heart catheterization (RHC).  Right heart catheteri-
zation (RHC) was performed and analyzed as previously described36 using a Swan-Ganz balloon wedge pressure 
catheter advanced through the right atrium, right ventricle, and pulmonary artery. Mean arterial pulmonary 
pressue (mPAP) is calculated from right ventricular systolic pressure (RVSP), where mPAP is reported as:

mPAP in mmHg RVSP( ) 0 65 ( ) 0 55= . × + .

Flow cytometry.  Peripheral blood and bronchoalveolar lavage fluid (BALF) were collected at baseline (BL), 
6 months post-infection (6mpi) and at study termination (10–12mpi), and processed for flow cytometry56,57 as 
previously described. CD14dimCD16+ non-classical monocytes and CD14+CCR7−CD163−CD206+ BALF mac-
rophages were identified by flow cytometry and calculated as previously described41. All analyses were performed 
using FlowJo Analysis software (Tree Star, Inc., Ashland, OR).

Cytokine measurement in plasma and BALF.  Quantitative analysis of cytokines and chemokines in the 
plasma and BALF was performed using the Cytokine 29-Plex Monkey Panel (Invitrogen, Carlsbad, CA) accord-
ing to the manufacturer’s instructions. BALF analytes were normalized on the assumption that plasma and BALF 
have equal urea concentrations as previously described41, using Quanti Chrom Urea Assay Kit (BioAssay Systems, 
Destin, FL).

Histopathology and quantification of right ventricular and lung periarteriolar collagen dep-
osition.  5 µm thick FFPE sections of the right heart and lung were cut and stained with Masson’s trichrome 
and 0.1% Pico Sirius Red counterstained with Weigert’s hematoxylin, to reveal fibrillar collagen, respectively by 
the UGA CVM Histopoathology Laboratory (Athens, GA). Whole slide images were acquired by Servicebio 
(Woburn, MA). To quantify right ventricular collagen deposition in Masson’s trichrome stained sections, 
170 mm2 regions were analyzed using Image J software (https://imagej.nih.gov/ij), with the threshold color plugin 
set to RGB; bright blue collagen was selected, converted to a binary image, and measured to quantify the collagen 
area. Collagen deposition results are reported as:

= × .RV collagen total collagen area
total muscle area

% 100%

To quantify periarteriolar collagen deposition in Picro-Sirius Red stained sections, the average of five small 
pulmonary vessels approximately <100 µm were analyzed using Image J software, with the color deconvolution 
plugin (http://www.mecourse.com/landinig/software/cdeconv/cdeconv.html) followed by application of the MRI 
fibrosis tool (http://dev.mri.cnrs.fr/projects/imagej-macros/wiki/Fibrosis_Tool) to quantify percentage area of 
fibrosis using the default settings (red 1: 0148, green 1: 0772, blue 1: 0.618, red 2: 0.462, green 2: 0.602, blue 2: 
0.651, red 3: 0.187, green 3: 0.523, blue 3: 0.831)58. Periarteriolar collagen deposition results are reported as:

= ×Area threshold total collagen area
total vessel area

% 100%

Statistical analysis.  All statistical analyses were performed using GraphPad Prism (GraphPad Software, 
La Jolla, CA). Continuous outcomes were summarized using mean ± SD. Serial and group characterizations of 
hemodynamics (mPAP, RVSP), CD4+ T cell count, and viral load, were analyzed using repeated measures mixed 
modeling. In each model, the main effects of group and time were included, as well as their interaction.

For hemodynamic data and CD4+ T cell count, post hoc analysis of the significant group by time interaction 
was performed based on Fisher’s least significant difference procedure for pairwise differences.

Following assessment of an overall significant group effect using the Kruskal-Wallis test, differences in 
cytokines, monocytes and macrophage phenotypes, and collagen deposition were analyzed using Mann-Whitney 
U tests. To test for associations between mPAP and immune markers, Spearman rank correlation was used to 
evaluate associations between mPAP and immune markers. Fisher’s exact test used to determine association 
between statin treatment and the incidence of PAH in the treated cohorts compared the untreated group while 
the relative risk was calculated using Koopman asymptotic score.
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