
Automatic segmentation of all lower
limb muscles from high-resolution
magnetic resonance imaging using a
cascaded three-dimensional deep
convolutional neural network

Renkun Ni
Craig H. Meyer
Silvia S. Blemker
Joseph M. Hart
Xue Feng

Renkun Ni, Craig H. Meyer, Silvia S. Blemker, Joseph M. Hart, Xue Feng, “Automatic segmentation of all
lower limb muscles from high-resolution magnetic resonance imaging using a cascaded three-
dimensional deep convolutional neural network,” J. Med. Imag. 6(4), 044009 (2019),
doi: 10.1117/1.JMI.6.4.044009.



Automatic segmentation of all lower limb muscles
from high-resolution magnetic resonance imaging
using a cascaded three-dimensional deep
convolutional neural network

Renkun Ni,a Craig H. Meyer,b Silvia S. Blemker,b Joseph M. Hart,c and Xue Fenga,b,*
aSpringbok, Inc., Charlottesville, Virginia, United States
bUniversity of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States
cUniversity of Virginia, Department of Kinesiology, Charlottesville, Virginia, United States

Abstract. High-resolution magnetic resonance imaging with fat suppression can obtain accurate anatomical
information of all 35 lower limb muscles and individual segmentation can facilitate quantitative analysis.
However, due to limited contrast and edge information, automatic segmentation of the muscles is very challeng-
ing, especially for athletes whose muscles are all well developed and more compact than the average popu-
lation. Deep convolutional neural network (DCNN)-based segmentation methods showed great promise in many
clinical applications, however, a direct adoption of DCNN to lower limb muscle segmentation is challenged by the
large three-dimensional (3-D) image size and lack of the direct usage of muscle location information. We devel-
oped a cascaded 3-D DCNN model with the first step to localize each muscle using low-resolution images and
the second step to segment it using cropped high-resolution images with individually trained networks. The work-
flow was optimized to account for different characteristics of each muscle for improved accuracy and reduced
training and testing time. A testing augmentation technique was proposed to smooth the segmentation contours.
The segmentation performance of 14 muscles was within interobserver variability and 21 were slightly worse
than humans. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.4.044009]
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1 Introduction
Lower limb skeletal muscles, as the producers of force and
movement, play an essential role in athletic performance as
well as in injury reduction as muscle strength and imbalance
are important risk factors.1 Quantification of these muscles is
of high interest to better understand these relationships by meas-
uring muscle volumes. A positive correlation was reported
between sprint velocity, squat jump power, absolute force–
velocity leg power, and total leg muscle volume.2,3 Differences
in muscle distributions for athletes were also evaluated and
showed that quantitative mapping of all 35 lower limb muscles
has the potential to improve power and agility in athletes by tar-
geted training.4,5

Magnetic resonance imaging (MRI) with fat suppression has
been used to accurately measure muscle volumes in the lower
limb,6 from which individual muscle can be distinguished from
the surroundings with segmentation.7 However, due to the sim-
ilarity in intensity values,8 reduced edge information, and the
variability in muscle shapes, segmenting individual muscles
from MRI is challenging so that it is often performed manually
by trained experts. As the image volume is large, the segmen-
tation process is extremely time-consuming and also suffers
from interobserver variability. Segmentation for muscles of ath-
letes is even more difficult since almost all muscles are well

developed and closely packed so that intermuscular boundary
information is limited.

Several techniques have been developed for automatic
muscle segmentation such as atlas-based and shape-based meth-
ods. A deformable registration method to match the edges from
the template meshes of muscles and other thigh anatomy to the
boundaries of the target image was developed with regulariza-
tion terms.9,10 However, this may fail when the edge information
is very limited. A technique for incorporating prior shape mod-
els built from the training dataset into a random work segmen-
tation framework,11 and a generalized log-ratio segmentation
representation on training statistical shape models, which ben-
efited from encoding meaningful localized uncertainty informa-
tion,12 were recently proposed. However, the particular shape
model may not capture all the shape variability and complicated
preprocessing is often required. Furthermore, most methods
only focused on major thigh muscles, which have relatively
large volumes and distinct features and often ignored smaller
thigh and calf muscles. Recently, deep convolutional neural net-
work (DCNN) has been successfully applied in many medical
image segmentation tasks from MRI or computed tomography
images.13,14 For muscles, segmentation of human thigh using
fully convolutional network was developed to separate quadri-
ceps, bone, and marrow from the backgrounds.15 A DCNN
method was also proposed to get the response vector from each
slice and use the principal component analysis to reconstruct
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two two-dimensional (2-D) parametric images to represent the
three-dimensional (3-D) inputs.16 However, both methods used
2-D slices as the training input, which may lose structural and
edge information of the 3-D images since muscle boundaries
may not present at every slice. In addition, for individual muscle
segmentation, global information of the whole leg is important
since muscles are localized with respect to the leg, which gives
more information beyond the 2-D slices. However, the graphics
processing unit (GPU) memory and computation speed limit
a direct adoption of DCNN with large 3-D dataset since high-
resolution raw data cannot fit into the GPU without image com-
pression, which leads to significant loss of spatial resolution and
boundary information.

In this study, to overcome these issues, we developed a cas-
caded 3-D DCNN segmentation framework for fully automatic
segmentation of all 35 lower limb muscles (70 on both left and
right legs). The first stage of the framework extracts bounding
boxes for each muscle as the location information using low-
resolution images and the second stage obtains accurate con-
tours for each one using cropped high-resolution images. The
workflow was also optimized to encode feature variability for all
individual muscles and reduce training and testing time. Testing
augmentation was proposed to further improve segmentation
accuracy and contour smoothness.

2 Methods
Our proposed segmentation workflow is summarized in Fig. 1.
Preprocessing was used to correct the image inhomogeneity.
As discussed before, it is impractical and inefficient to feed
the raw high-resolution 3-D images into a neural network for
simultaneous segmentation of all 70 regions-of-interest (RoIs).
Therefore, a two-stage process was designed to capture location
and detailed features, respectively, and trained on the 3-D
images with different resolutions. The final results for each
RoI were combined and merged for evaluation. Details are pro-
vided as follows.

2.1 Dataset and Preprocessing

The dataset in this study consists of 64 whole leg muscle images
from collegiate athletes of different sports, including basketball,
baseball, track, football, and soccer. Proton density weighted
images with fat suppression were acquired from thoracic verte-
brae T12 to ankle on a Siemens 3T scanner for each subject.
Two protocols were used in this study: a customized 2-D multi-
slice spiral protocol and an optimized 2-D Cartesian protocol
with parallel imaging. For both protocols, the in-plane spatial
resolution was 1 mm × 1 mm and slice thickness was 5 mm

with 200 to 240 continuous axial slices in total. In-plane matrix
size was 512 × 512 for the spiral protocol and 476 × 380 for the
Cartesian protocol. The total scan time was 25 to 30 min. This
study was approved by the Institutional Review Board for
Health Sciences Research of the University of Virginia and
informed consent was obtained from each subject.

Manual segmentation of all muscles was performed and vet-
ted by trained engineers as the ground truth. Image inhomoge-
neity due to radiofrequency field (B1) variations was corrected
using improved nonparametric nonuniform intensity normaliza-
tion (N3) bias correction17 during preprocessing, followed by
cropping to unify the in-plane matrix size from both protocols.
51 cases were randomly selected for training and 13 for testing.

2.2 Cascaded DCNN Framework

2.2.1 Muscle localization

The main goal of the first stage is to obtain a bounding box that
encloses the target muscle from the entire 3-D lower limb vol-
umes, which can then be used to crop the original images to only
keep relevant regions. As the first step, the whole leg images
were split into three parts: abdomen, upper leg, and lower leg
based on the superior–inferior coordinates and the estimated
ratios of the lengths of the three parts. To allow for variations
in the ratios, the split was performed with significant overlap,
e.g., the upper leg images would contain many slices of abdo-
men and lower leg images. Therefore, for muscles that belong to
the upper leg, only the upper leg images need to be considered.
However, even after split, the images at the acquired resolution
cannot fit into a typical GPU memory (12 Gb) so that the res-
olution of the input images needs to be reduced using linear
interpolation and kept as high as possible without exceeding the
GPU memory.

To generate the bounding box of the RoI from the low-
resolution images, detection-based networks such as faster
RCNN18 are usually used, however, in this study, due to the lim-
ited number of training images and bounding box labels, it is
difficult and time-consuming to train a detection network with
good accuracy. In addition, we empirically found that for most
muscles, small errors in muscle localization would not hurt the
segmentation accuracy in the second stage, as long as all voxels
of the target muscle are included in the cropped images.
Therefore, a modified 3-D U-Net was built to segment the
low-resolution images and generate the bounding boxes based
on the pixelwise prediction maps. The network follows the
structure of 3-D U-Net, which consisted of an encoder and
a decoder, each with four resolution levels. Each level in the
encoder contains two blocks of a 3 × 3 × 3 convolution layer,

Fig. 1 Workflow of the automated segmentation framework for one target muscle. All the inputs and
outputs are 3-D MR images and label map, respectively. After localization, the bounding box is slightly
enlarged for actual cropping and individual segmentation.
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a batch normalization (BN) layer, and a rectified linear unit
(ReLU) activation layer, followed by a 2 × 2 × 2 maxpooling
except for the bottom-most level. In the decoder, each level con-
sists of a 2 × 2 × 2 deconvolution layer, followed by two blocks
of a 3 × 3 × 3 convolution layer, a BN layer, and a ReLU layer.
In addition, feature maps from the encoder were concatenated to
those of the same resolution in the decoder as the skip connec-
tion. The final block of the network contains a 1 × 1 × 1 con-
volution layer to reduce the dimension of the features to match
the number of label maps, followed by a pixelwise softmax
classifier.

Due to the relatively small training size and a large number of
muscles, instead of using single models to segment all muscles
in the abdomen, upper leg, and lower leg regions at the same
time, using dedicated separate models for each individual
muscle or muscle groups can greatly improve the accuracy.
However, it is time-consuming to train the models individually
since there are 70 RoIs on both left and right legs. To reduce the
total training time, the workflow is optimized by training the
grouped muscles together in this stage. The total 70 RoIs were
divided into 10 groups, each containing about four adjacent
muscles on both legs. The division was largely based on the
anatomical location along the superior–inferior direction. For
each group, the input was the correspondingly split images and
the output was the label map for the RoIs within the group with
distinguished left and right muscles. It is worth noting that the
muscles with extremely small size, such as external rotators,
may disappear during the shrinkage of the original images in
the first stage so that there are no predicted output labels for
them. In this case, these muscles were localized based on the
output of neighboring large muscles and then cropped from the
estimated regions from the original images.

2.2.2 Individual muscle segmentation

In the second stage, individual networks were trained for each
target muscle to obtain more accurate contours from images
cropped based on the output of the first stage, whose resolution
is close to the originally acquired images. During training,
instead of cropping the images from the tight bounding box that
just encompasses the target muscle, the images were cropped
at a box enlarged with a ratio randomly chosen from a range
(e.g., 1.0 to 1.8) along each dimension. As the two edges of the
bounding boxes along each dimension were sampled separately,
the center of the bounding boxes may also change. However,
the target muscle was guaranteed to be within the bounding box.
For simplicity, the uniform distribution was used in sampling
the ratio. The enlarged bounding box with varied enlargement
ratio can enrich the background information at different levels
and can serve as training augmentation to improve the segmen-
tation accuracy and robustness. During deployment, an augmen-
tation method was also used to improve the segmentation
accuracy and contour smoothness. Specifically, a series of
images were cropped at varied bounding boxes based on the first
stage output and fed into the network. The range and distribution
for the enlargement ratio were the same as during training.
The outputs from each input were then averaged after putting
back to the uncropped original images as the final label map.
The number of bounding boxes was chosen to be six as a bal-
ance between deployment time and number of augmentations.
To reduce the number of models to be trained and increase the
data size, left and right muscles were combined together to share
the same model due to their symmetry and similarity. The total

number of models to be trained was then 35. For implementa-
tion, simplification without accuracy drops, networks for each
muscle share the same network structure, except for the input
size, which was optimized based on the average muscle sizes
to maintain the aspect ratio as much as possible.

As the goal is to maximize the accuracy, in this stage, differ-
ent network structures, including the plain U-Net, U-Net with
residual and with dense blocks, and different hyperparameters,
including number of layers and filters were compared to evalu-
ate their performances. The plain U-Net having the same struc-
ture with the network in the first stage was considered as the
baseline. Residual blocks contain short connections from pre-
vious convolutional layers so that the neural networks can be
substantially deeper without gradient vanishing and the training
becomes easier.19 The dense blocks extend the short connections
by introducing connections between all layers,20 and its adop-
tion in segmentation showed improved performance.21 In this
study, we replaced the blocks of convolution, BN and ReLU
layers, in the plain U-Net with the residual blocks and the dense
blocks, respectively. The detailed structure is illustrated in
Fig. 2. For a fair comparison, the number of filters and the depth
of the convolutional layers were kept the same. Furthermore, the
U-Net structure is compared with two other structures, a fully
convolutional network with fusion predictions (FCN-8s)22 and
SegNet,23 which use deeper networks (five resolution levels) for
both encoder and decoder. All the comparison studies were con-
ducted to segment the target muscle adductor brevis, which has
a relatively small volume and thus is difficult to segment.

2.2.3 Implementations

The method was implemented based on the TensorFlow frame-
work and training and testing were performed on two NVidia
1080Ti GPUs with 11 Gb memory each. During training, the
weights were initialized randomly from Gaussian distribution
and updated using the adaptive moment estimation (Adam)
optimizer24 for gradient descent with an initial learning rate
of 0.01 and the pixelwise cross-entropy as the loss function.
Due to memory limitations, the batch size was set to be 1.
Extensive data augmentation including shearing, rotation, and
left–right flipping was applied in the training process of both
stages. For stage 2, augmentation was performed after cropping.
The training time for a muscle group in stage 1 was about 2 h
with 2000 iterations and for a muscle in stage 2 was about 6 h
with 5000 iterations. Testing time was 25 to 40 s per group in
stage 1 and 5 to 8 s per muscle in stage 2, which roughly cor-
responds from 4 to 6 s per 2-D slice and 18 to 24 min per case for
all the muscles on average with a single GPU.

2.3 Postprocessing and Evaluation

Postprocessing workflow includes false-positive reduction
through connection analysis and binary closing to guarantee that
only one connected, dense and closed 3-D volume is kept for
each RoI. When combining all RoIs, since each network makes
a voxel-by-voxel prediction of whether it belongs to the target
RoI, it is possible that different networks predict the same voxel
to be different RoIs in the second stage. To resolve conflict, the
output probabilities from all these networks were compared and
the label with maximum probability was retained. In the end,
a modified Ramer–Douglas–Peucker algorithm25 was used to
simplify the original contour boundary points to get a much
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smaller number of control points, which can be used for con-
venient contour editing, if necessary.

To evaluate the segmentation performance, different metrics
were calculated including the Dice similarity coefficient (Dice),
mean surface distance (MSD), and muscle volumes (V), given as
follows:

EQ-TARGET;temp:intralink-;e001;63;367Dice ¼ S ∩ G
S ∪ G

; (1)

in which S and G are the automatically segmented RoI label and
the ground truth label, respectively. The larger Dice score indi-
cates a larger overlap and more accurate segmentation. The
mean distance calculates the average distance between the con-
tour of each segmentation and its corresponding ground truth
contour. The distance of a single voxel on one contour to another
contour is given as follows:

EQ-TARGET;temp:intralink-;e002;63;253dðp;CÞ ¼ minp 0∈Ckp − p 0k2; (2)

where p is a voxel and C is the contour. We then calculate the
mean of the distances of all voxels on our segmented contour to
the ground truth contour. In addition, since, in many studies, the
volume of each muscle was used for subsequent analysis
together with the performance and injury data, and the accuracy
in muscle volume quantification is another important criterion
for the segmentation quality, which was calculated by taking the
summation of the sizes of all voxels belongs to a muscle m,
given as follows:

EQ-TARGET;temp:intralink-;e003;63;125Vm ¼ sumi∈mðviÞ: (3)

In comparison, the percentage differences with the ground
truth volumes were used to eliminate the effect of volume var-
iations among muscles.

3 Results

3.1 Bias Correction

Figures 3(a)–3(c) show the effect of the improved N3 bias cor-
rection method in the data preprocessing step. The bias field in
the original image due to B1 inhomogeneity indicated by the red
arrow (top row) was corrected with this method [Figs. 3(d)–
3(f)]. This normalized the range of pixel values and improved
the homogeneity of the images, which can make the training and
testing of the model less biased.

3.2 Segmentation from Both Stages

Figure 4 shows one slice of the segmentation contours of the
right adductor longus from both stages (red) and the ground
truth labels (green). Figure 4(a) shows the output from stage
1. Due to the loss of resolution, the contours were jagged.
However, from this contour, the location of the RoI can be accu-
rately identified and the images can be cropped for a more accu-
rate segmentation in stage 2. To show the effectiveness of testing
augmentation in stage 2, Fig. 4(b) shows a hypothetical situation
in which the images were cropped with the ground truth labels.
In practice, the cropping can only be based on the stage 1 output
and thus may contain some errors. However, with multiple
cropped images at slightly varied boundaries and the averaged
output, Fig. 4(e) shows good segmentation quality that is com-
parable with or even superior than Fig. 4(b) while Figs. 4(c) and
4(d) show the results using only one cropped image based on
stage 1 output with different enlargement ratios. The differences
between Figs. 4(c) and 4(d) also show that different bounding
boxes can affect the model output, especially at hard-to-tell
boundaries.

Fig. 2 Multiple network structures for comparison. The plain U-Net structure (left) is used in stage one
and two as the baseline. Top right shows an example of residual block, which adds the previous filter to
the latter by elementwise addition. Bottom right shows an example of a four-layer dense block, which
concatenates each layer to every other layer. Either the residual or the dense block replaces the conven-
tional convolutional block in each resolution level (as shown in red box) to build the corresponding
networks.
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3.3 Network Structure Comparison

Comparison among different network structures and hyperpara-
meters were made on adductor brevis on stage 2. Figure 5 shows
the averaged Dice scores for all testing cases as a function of the
training iterations. Figure 5(a) shows the effect of the number of
encoding and decoding blocks, which also reflects the number
of spatial-resolution levels. Larger number of resolution levels
tend to have better results; however, the difference is very small
between three and four. In Fig. 5(b), the results from different
number of filters at the root level for the plain U-Net are

compared. More filters can lead to higher Dice scores. In
Fig. 5(c), the plain U-Net is compared with the U-Net with
residual blocks and dense blocks under the same resolution level
and similar numbers of filters. Dice score from the model with
residual blocks is slightly higher than the other two models, in
the end, however, the difference with plain U-Net is small. The
U-Net with dense blocks performs the worst among the three
network structures. In Fig. 5(d), the U-Net structure is compared
with FCN-8s and SegNet. Dice scores from U-Net and SegNet
are comparable and slightly better than FCN, especially at early
epochs.

Fig. 4 Automatically segmented contours (red) for the target muscle adductor longus in different stages
and with different input strategies for stage two and the ground truth (green). (a) Output from stage one,
(b) output from stage two using the ground-truth contour as the cropping basis, (c) and (d) outputs from
stage two using the stage one output with two different enlargement ratios, and (e) output from stage two
by averaging multiple enlargement ratios.

Fig. 3 Comparison of the muscle images (a)–(c) without and (d)–(f) with improved N3 bias correction.
The bias field due to B1 inhomogeneity indicated by the red arrows is largely corrected with the proposed
method.

Fig. 5 (a) Mean Dice scores on the validation dataset as functions of training iterations using U-Net with
different resolution levels, (b) U-Net with different filter numbers, (c) different convolutional block struc-
tures in U-Net, and (d) different network structures.
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3.4 Overall Results

Table 1 summarizes the Dice scores of our framework for all 35
muscles as well as the results from an interobserver variability
study conducted on three randomly selected subjects. Two in-
dependent engineers segmented the same subject and the Dice
scores between the two segmentations were calculated. The
accuracy of our automated segmentation methods is the same as
or even superior than interobserver variability for most muscles,
especially for muscles with large volumes.

Figures 6(a) and 6(b) show the histograms for percentage
volume error and MSD, respectively, when compared with the
ground truth values. Most muscles have less than 5% volume
errors and less than 4 mm surface distances. The mean volume
error between our segmentation results and ground truth is
6.5%, where seven muscles have errors larger than 10%: adduc-
tor brevis, flexor digitorum longus, obturator externus, obturator
internus, pectineus, piriformis, and quadratus femoris. Variability
is generally higher in muscles with small volumes and irregular
boundaries, such as quadratus femoris, and in muscles with
a medial-lateral orientation, such as the deep hip rotators.
The overall mean distance is 2.9 mm, where seven muscles have
mean distance values larger than 4 mm. The result is consistent
with the Dice scores and shows a strong positive correlation.

An example of the cross-sectional segmentation results for
both the upper and lower legs is shown in Fig. 7, as well as the
3-D rendered muscle maps directly reconstructed from the auto-
matic segmentation. Almost all muscles have good contour
quality and 3-D shape.

4 Discussions
We have presented the segmentation results of all 35 individual
lower limb muscles from high-resolution MRI using a cascaded
3-D DCNN. As shown in Fig. 4, the resolution of the input
images is essential to obtain good segmentation quality.
Although the major part of the target muscles can be extracted
through a network with low-resolution images as the input, the
muscle boundaries are inaccurate due to the significant loss of
fine details. Therefore, we trained a second network based on
the output of stage 1, which keeps the resolution of the input
but with cropped field-of-view to make it fit into the GPU
memory. Furthermore, to overcome the issue that the error from
stage 1 output may negatively affect the accuracy of the stage 2
and further increase the model performance, we used a testing
augmentation method by varying the stage 2 input multiple
times and averaging the results. The robustness against the stage
1 error is improved and the contours are smoothed due to multi-
ple averages. The final segmentation results achieved similar or
even superior performances than humans in 14 muscles while
only slightly worse in 21 muscles.

In this study, we also compared the hyperparameters and net-
work structures for segmentation to optimize the results from
stage 2. In general, a deeper and wider network can yield better
performance, however, it comes at the cost of increased memory
requirement and computation time. We observed that the benefit
with a deeper network is marginal when the resolution level is
larger than 3 while the width of the network has a more signifi-
cant influence. One explanation is that for muscle segmentation,
very high-level information captured with deep layers of the net-
work may not contribute as much to the results as the low-level
image structures, such as edges and contrast. Comparing differ-
ent convolutional block structures, adding short-cut connections
to the network only has minimal impact as the differences in

Table 1 Dice scores of all lower limb skeletal muscles in an interob-
server study and using the proposed automatic segmentation method.

Muscle name Inter observer Proposed method

Adductor brevis 0.88 0.83� 0.024

Adductor longus 0.94 0.94� 0.011

Adductor magnus 0.92 0.94� 0.015

Biceps femoris: long head 0.95 0.94� 0.034

Biceps femoris: short head 0.95 0.93� 0.013

External rotators 0.84 0.70� 0.101

Fibulari 0.93 0.93� 0.036

Flexor digitorum longus 0.94 0.85� 0.032

Flexor hallucis longus 0.83 0.87� 0.038

Gastrocnemius: lateral head 0.92 0.92� 0.016

Gastrocnemius: medial head 0.94 0.95� 0.012

Gluteus maximus 0.97 0.97� 0.006

Gluteus medius 0.94 0.93� 0.013

Gluteus minimus 0.90 0.88� 0.015

Gracilis 0.96 0.94� 0.010

Iliacus 0.91 0.91� 0.033

Obturator externus 0.66 0.78� 0.058

Obturator internus 0.78 0.78� 0.043

Pectineus 0.92 0.84� 0.036

Piriformis 0.86 0.80� 0.050

Phalangeal extensors 0.89 0.90� 0.030

Popliteus 0.90 0.88� 0.029

Psoas major 0.92 0.78� 0.067

Quadratus femoris 0.89 0.81� 0.057

Rectus femoris 0.97 0.96� 0.026

Sartorius 0.95 0.93� 0.020

Semimembranosus 0.90 0.93� 0.030

Semitendinosus 0.95 0.93� 0.011

Soleus 0.93 0.94� 0.019

Tensor fasciae latae 0.96 0.94� 0.016

Tibialis anterior 0.88 0.92� 0.015

Tibialis posterior 0.94 0.90� 0.034

Vastus intermedius 0.87 0.88� 0.026

Vastus lateralis 0.95 0.94� 0.018

Vastus medialis 0.96 0.95� 0.009
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Dice scores for the three networks are within 0.01, which is
likely due to the fact that the network is relatively shallow so
that the effect of short-cut connections to avoid “gradient
vanishing”19 is not significant in this application. With different
network structures, Dice scores are also similar. Overall, consid-
ering the minimal differences and the fact that the network with
residual block needs more parameters and computations, the
plain U-Net with three resolution level, two convolutional layers
per level, and 96 filters on the first convolutional layer were used
to train all the target muscles in stage 2.

Although the promising overall results suggest that the cas-
caded DCNN method can achieve high segmentation accuracy
and robustness for almost all lower limb skeletal muscles, the
performances on muscles with small volumes, such as external
rotators, are still suboptimal. In stage 1, the localization network
performed poorly and even completely failed to generate any
labels for these muscles due to class imbalances. Therefore,
we cannot directly get any location information from the output
labels but have to estimate it from neighboring muscles, which
may affect the accuracy. Continued work will focus on these
muscles such as using a single output label for the grouped
muscles, including the small ones to extract the boundary

information. This method cannot use the individually optimized
bounding boxes but can greatly reduce the likelihood of failing
to predict a bounding box.

Another main limitation is the size and population distribu-
tion of the data in this study. Due to the high cost of obtaining
MRIs and manual segmentation, the dataset is small and from
a single institution. Therefore, the trained model may have
worse performances on images using different imaging proto-
cols and/or scanners. Furthermore, although the muscles from
athletes are more difficult to segment as there are fewer inter-
muscular fat, which can be used to distinguish muscles, com-
pared with healthy populations, it may not be the case for
patients with metabolic syndrome or disease, whose MR images
may contain more abnormal structures. As the application of this
study is to examine whether targeted training strategies on dif-
ferent muscles can yield enhanced performances and/or reduced
injury risk, the study population is on athletes and the automatic
segmentation method developed in this study can greatly facili-
tate the data analysis process. Furthermore, although the trained
model is limited by the population distribution, the training and
testing method is generic. Based on our experiences, having 40
to 60 training cases from the desired population can yield good

Fig. 6 (a) Histograms showing volume errors and (b) MSDs for all muscles.

Fig. 7 Segmentation results obtained with 3-D cascaded DCNN showing (a) one slice of the upper leg,
(b) one slice of the lower leg, and (c) the 3-D rendered muscle maps.

Journal of Medical Imaging 044009-7 Oct–Dec 2019 • Vol. 6(4)

Ni et al.: Automatic segmentation of all lower limb muscles from high-resolution magnetic resonance. . .



segmentation performances, which can be even reduced if start-
ing from an already-trained model, such as the one optimized for
athletes.

In conclusion, we developed a cascaded 3-D DCNN segmen-
tation framework to obtain accurate segmentation for individual
skeletal muscles. Our workflow is optimized to segment all 35
lower limb muscles with high quality, validated by various met-
rics. Compared with previous studies, the deep learning-based
method allows more variability in the images and leads to
a robust overall result. This can greatly facilitate quantitative
study on muscle profiles using high-resolution MRI.
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