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Zinc finger protein 462 (ZNF462) is a relatively newly discovered vertebrate specific protein with
known critical roles in embryonic development in animal models. Two case reports and a case
series study have described the phenotype of 10 individuals with ZA/F4621oss of function variants.
Herein, we present 14 new individuals with loss of function variants to the previous studies to
delineate the syndrome of loss of function in ZNVF462. Collectively, these 24 individuals present
with recurring phenotypes that define a multiple congenital anomaly syndrome. Most have some
form of developmental delay (79%) and a minority have autism spectrum disorder (33%).
Characteristic facial features include ptosis (83%), down slanting palpebral fissures (58%),
exaggerated Cupid’s bow/wide philtrum (54%), and arched eyebrows (50%). Metopic ridging or
craniosynostosis was found in a third of study participants and feeding problems in half. Other
phenotype characteristics include dysgenesis of the corpus callosum in 25% of individuals,
hypotonia in half, and structural heart defects in 21%. Using facial analysis technology, a
computer algorithm applying deep learning was able to accurately differentiate individuals with
ZINF462 loss of function variants from individuals with Noonan syndrome and healthy controls. In
summary, we describe a multiple congenital anomaly syndrome associated with haploinsufficiency
of ZNF462that has distinct clinical characteristics and facial features.

Keywords

ZINF462, ptosis; developmental delay; autism spectrum disorders; corpus callosum;
craniosynostosis

INTRODUCTION

Heterozygous loss of function variants in ZNF462 present with a recognizable pattern of
phenotype characteristics (Weiss et al., 2017). The first reported case was a reciprocal
translocation t(2;9)(p24;932) that disrupted both ZNVF462and ASXL 2 (Ramocki et al., 2003;
Talisetti et al., 2003). This individual presented with ptosis, agenesis of the corpus callosum,
ventricular septal defect, periventricular nodular heterotopia, retina and iris colobomas, and
a dysplastic left ear and hearing loss. ASXLZ2was subsequently associated with Shashi-Pena
syndrome which presents as macrocephaly, retrognathia, low set ears, hypertelorism, arched
eyebrows, intellectual disability, scoliosis, congenital heart disease, and hypotonia (Shashi et
al., 2016). The phenotype of the individual in this case report likely resulted from the loss of
function of both ZNVF462and ASXLZ2. Over a decade later, Weiss et al. described 6
individuals from four families with putative loss of function variants and two unrelated
individuals with deletions involving adjacent genes (Weiss et al., 2017). The individuals
described by Weiss et al. presented with ptosis (100%), trigonocephaly or metopic ridging
(83%), and developmental delay or autism spectrum disorder (33%) (Weiss et al., 2017).
Subsequently, Cosemans et al. described an individual with a de novo translocation that
disrupted ZNVF462 and KLF12who presented with clinical features similar to those
described by Weiss et al. (Cosemans et al., 2018; Weiss et al., 2017).

Zinc finger protein 462 (ZNF462) is a C2H2 type zinc finger transcription factor of
unknown function (Nagase, Nakayama, Nakajima, Kikuno, & Ohara, 2001). Although the
specific function of this molecule is unknown, animal studies have shown that it plays a vital
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role in embryonic development. In Xenopus laevis, knockdown expression of Zfp462
disturbs early embryonic development and results in altered cell division during the cleavage
stage; this phenotype is rescued with human ZNF462 mRNA (Laurent et al., 2009). In the
mouse model, Zfp462 knockout (KO) mice were prenatal lethal and heterozygous knockout
mice (Zfp462*/7) had developmental delay, low body and brain weights, and anxiety-like
behaviors with excessive self-grooming behavior (Wang et al., 2017).

In this report, we describe 14 new individuals in addition to the 10 previously reported cases
in the medical literature with truncating variants in ZNF462, collectively review the clinical
presentation of this syndrome, and test facial analysis technology’s ability to diagnose this
syndrome.

METHODS

Clinical

The study was approved by National Human Genome Research Institute Institutional
Review Board (IRB). Thirteen new individuals in this report with loss of function variants in
ZNF462 were diagnosed using whole exome sequencing (WES) in multiple research and
commercial labs including GeneDx and Ambry, and one individual (patient 5) was
diagnosed by whole genome sequencing. Nine of the fourteen individuals were ascertained
through GeneMatcher (Sobreira, Schiettecatte, Valle, & Hamosh, 2015).

Facial analysis technology

RESULTS

Clinical

We performed two binary classification experiments using the Face2Gene Research
application (FDNA Inc., Boston, MA), as previously described (Gurovich et al., 2019).
Frontal facial 2D images were collected for three cohorts: individuals with ZNF4621oss of
function variants, Noonan syndrome, and healthy controls. Noonan syndrome was used as a
second control group due the overlapping facial features of ptosis, downslanting palpebral
fissures, hypertelorism, and low set ears in a subset of individuals. All facial images were
fully de-identified through the use of the DeepGestalt facial analysis (Gurovich et al., 2019).
Controls were matched for age, gender, and ethnicity.

Figure 1 shows the single nucleotide variant and small insertion/deletion (indel) locations on
ZINF462 for both the 14 newly reported cases and previously reported cases. All variants are
predicted to result in loss of function, including a canonical splice variant in patient 6 that is
predicted to result in abnormal splicing (Table 1; Figure 1). Most of these variants are in
exon 3, which makes up 54% of the coding region of ZNF42. .

Table 1 summarizes the clinical features of all 24 affected individuals with 96% of
individuals being Caucasian. Seventeen of 21 families (86%) have de novo variants, the
other four families include unknown, mosaic, and autosomal dominant inheritance (Table 1).
The two families with autosomal dominant inheritance demonstrated that the ZNVF462
variant segregated with the phenotype characterized in this study: patient 5’s father had
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ptosis surgery and patients 15-17 are from the same family, and previously described (Weiss
etal., 2017). The one case of mosaicism was in the mother of patient 1 who had 175
reference reads and 35 alternate reads on WES from a peripheral blood sample [alternate
allele frequency = 35/(35+175) = 17%], compared to 120 reference reads and 79 alternate
reads in the proband [alternate allele frequency = 79/(79+120) = 40%]. The majority of
individuals had developmental delay (79%) and 33% reported autism spectrum disorders
(Table 1). The most common facial features were ptosis (83%), down slanting palpebral
fissures (58%), exaggerated Cupid’s bow/wide philtrum (54%), arched eyebrows (50%), and
short upturned nose with bulbous tip (46%). Feeding issues (50%) and hypotonia (50%)
were common. Less than half of affected individuals reported metopic ridging or
craniosynostosis (38%) or dysgenesis of the corpus callosum (25%). Less common
characteristics included structural heart defects (21%) and minor limb anomalies (25%). The
clinical analysis of the individuals in this study was heterogenous and not all individuals
received brain and heart imaging (Supplementary Clinical Information), thus the above
fractions may be an underestimation of brain and heart malformations. Figure 2 shows facial
images of individuals with loss of function variants in ZNVF462.

Facial analysis technology

Binary comparison between individuals with loss of function variants in ZNVF462and
controls was resulted in two statistics: the mean results involved the computation of the
average of the AUC of each of the 10 results, and secondly, the aggregated results consist of
a score distribution curve and a receiver-operating-characteristic (ROC) curve for the
aggregated results for each photo used in the validation set. The binary comparison between
ZNF462 (n=21) and healthy controls (n=21) yielded an AUC of 0.96 (STD 0.03),
demonstrating good separation between these two cohorts (Supplementary Table 1).
Similarly, the comparison between the ZNF462 cohort (n=21) and the Noonan syndrome
cohort (n=16) yielded an AUC of 0.97 (STD 0.02) which is also good separation
(Supplementary Table 1). The aggregated binary comparison for the ZNVF462 group versus
health controls yielded an AUC of 0.955 (P=0.006) and for the ZNF462 group versus health
Noonan syndrome yielded an AUC of 0.972 (P=0.001) (Supplementary Figure 1).

Applying DeepGestalt, the confusion matrix/multi-class comparison of the 58 frontal images
of the Z\VF462 group and both control groups yielded a mean accuracy of 82.88% (STD
11.79%) which is significantly better than randomly expected (36.21%).

DISCUSSION

We report 24 individuals with loss of function variants in ZMF462 which includes 14
previously unpublished individuals and 10 individuals reported in the medical literature.
Based on this larger assembled cohort of individuals, the phenotype of loss of function in
ZINF462is now a distinct multiple congenital anomaly syndrome. We show that ptosis
(83%), developmental delay (79%), and down slanting palpebral fissures (58%) are three
most reported phenotypic features (Table 1). In the previous case series of 6 families and 8
individuals, metopic ridging/craniosynostosis (63%) was a major phenotypic feature. In this
report, we show that metopic ridging/craniosynostosis is still important, but less prevalent
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(25%) in this syndrome. Consistent with the previous report by Weiss et al. 2017 (Table 1:
patients 15-17), loss of function in ZNVF462 appears to have variable expressivity and
complete penetrance as demonstrated by patient 5 in the present study with a paternally
inherited variant and a father requiring surgery for his ptosis (Table 1; Supplementary
Clinical Information). Facial analysis technology was able to accurately differentiate
individuals with loss of function in ZNF462 from Noonan syndrome and healthy controls.
We predict that the widespread use of facial analysis technology will result in an increase in
the number of cases diagnosed this syndrome.

Based on the prevalence of developmental delay, corpus callosum anomalies, congenital
heart defects, and hearing loss, we recommend a comprehensive multidisciplinary evaluation
of individuals with loss of function variants in ZMF462. This evaluation includes at a
minimum: a developmental evaluation, a cardiac exam with echocardiography, brain
imaging, hearing evaluation, and consultation with a clinical geneticist and genetic
counselor. Other evaluations specific to an individual’s presentation such as neurosurgery
consultation for craniosynostosis may be appropriate. At this time, treatment of
complications associated with ZNIF462 related syndrome are not different from the general
population. As more individuals are studied, future specific management recommendations
for ZNF462 related syndrome may be needed.

Pathogenicity of variants in ZNF462is presumed to be haploinsufficiency based on
individuals having loss of function variants only, and this is reinforced by theGenome
Aggregation Database (gnomAD) constraint metric of observed/expected loss of function
(o/e) value (Karczewski et al., 2019). Values less than 0.35 (o/e) are considered under
selection against LOF (https://gnomad.broadinstitute.org) and ZNF462is well below this
threshold with an o/e value of 0.03 (90%Cl, 0.01-0.09). As noted in the introduction,
ZINF462is important to embryonic development in multiple species. ZNVF462 contains 23
C2H2-type zinc finger domains, making DNA binding a likely function (Chang, Stoykova,
Chowdhury, & Gruss, 2007). We now know that ZNF462 is involved in chromatin
remodeling. Using histone peptide pull down assays in mouse brain and kidney, Eberl et al.
showed that ZNF462 binds H3K9me3, identifying Znf462 as a chromatin reader involved in
heterochromatin modification (Eberl, Spruijt, Kelstrup, Vermeulen, & Mann, 2013).
Additionally, Eberl et al. report an interaction with Heterochromatin Protein 1a. (HP1a)
(Eberl et al., 2013). As hallmarks of heterochromatin, HP1a and H3K9me3 are critical for
transcriptional silencing of gene and repetitive DNA and for the maintenance of genome
integrity (Almouzni & Probst, 2011; Beisel & Paro, 2011; Ren & Martienssen, 2012),
further supporting ZNF462’s role in chromatin remodeling. Masse et al. used short hairpin
RNA knockdown of pluripotent mouse cells, demonstrating a disruption of pericentromeric
domains and redistribution of HP1a proteins, giving evidence that Znf462 is instrumental in
maintaining heterochromatin in pluripotent cells (Masse et al., 2010).

In summary we present 24 individuals with loss of function variants in ZNF462, and we
define a multiple congenital anomaly syndrome that is recognizable from phenotype
elements and by using facial analysis technology.
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Zinc Finger Protein 462 (ZNF462)

p.(Arg864%*)
p.(Glu899*) p.(Tyr2265*)
p.(Val994Trpfs*147)

p.Cys848Valfs*66
p.(Pro684Serfs*14)

* c.7057-2A>G
p.(Ser412*) p.(Arg1263*)
. p.(GIn1389%)
PitSeradsgfs"64) p.(Glu14225erfs*6)
p.(Arg277Serfs*26) p.(Tyr1716Thrfs*28)
p.(Arg255*) p.(His2072fs)
p.Arg2211Glyfs*59
chr9 I I
0 2506

FSDIL FKTN  TMEM388 ZNF462 RAD23B  KLF4

Chr9:g.(108940763-110561397)del (hg19)
Chro:g.( (hg19)

Figure 1.
ZINF462 variant locations. Variants from the present study are in blue and variants from

previous publications are shown in black. Thirteen of the seventeen variants are on exon 3
which makes up 54% of ZNIF462. Note that there are two unrelated individuals with the p.
(His2072Tyrfs*8) variant (patients 4 and 11 in Table 1).
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Figure 2.
A. Patient 1; B. Patient 2; C. Patient 3; D. Patient 4; E. Patient 5 at 8 years; F. Patient 6 at

two and 7 months; G. Patient 7; H. Patient 8 at 3 months and 2.5 years; I. Patient 9 at ages 8
and 15 years; J. Patient 12; K. Patient 13; L. Patient 14; M. Patient 15; N. Patient 16; O.
Patient 17; P. Patient 18; Q. Patient 19; R. Patient 20; S. Patient 21; T. Patient 22; U. Patient
24; (Figures M-T are from Weiss et al., 2017 and Figure U is from Cosemans et al., 2018)
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