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Abstract

Background: Porcine astroviruses (PAstVs) are common in pigs worldwide. There are five distinct lineages with
each lineage representing a different ancestral origin. Recently, multiple reports have demonstrated the evidence of
extra-intestinal infection of PAstVs, but little is known about viremia.

Results: In this study, a total of 532 fecal samples and 120 serum samples from healthy pigs were collected and
tested from 2013 to 2015 in Guangxi province, China; of these 300/532 (56.4%) and 7/120 (5.8%) of fecal samples
tested positive for PAstVs, respectively. Our study revealed that there was wide genetic diversity and high
prevalence of the virus in the pig population. All five of the known PAstVs genotypes (1-5) prevailed in the pig
population of Guangxi province and were distributed in all age groups of pigs, from suckling piglets to sows, with
PAStV2 (47.7%), PAstV1 (26.2%) and PAstV5 (21.5%) seen predominantly. Phylogenetic analysis of partial ORF1b and
partial capsid sequences from fecal and serum samples revealed that they were divided into the five lineages.
Among these genotypes, based on partial ORF2 genes sequencing 23 strains were grouped as PAstV1, including 6
serum-derived strains, and were regarded as the causative agents of viremia in pigs.

Conclusions: Due to the information regarding the types of PAstV in blood is limit. This is the first report for the
presence of PAstV1 in blood and PAstV3 in the feces of nursery pigs of China. This study provides a reference for
understanding the prevalence and genetic evolution of PAstVs in pigs in Guangxi province, China. It also provides a
new perspective for understanding of the extra-intestinal infection of PAstVs in pigs.
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Background

Astroviruses (AstVs) belonging to the family Astroviridae
was first identified by electron microscopy (EM) in fecal
samples from children suffering with diarrhea in 1975 [1].
To date, AstVs are divided into two genera: Mamastro-
virus and Avastrovirus, which contain 19 and 3 species, re-
spectively [2]. AstVs are single-stranded positive-sense
RNA viruses, about 28-30 nm in diameter, whose genome
contain three open reading frames (ORFs), namely ORFla,
ORF1b and ORF2. ORFla and ORF1b code for non-
structural proteins, a protease and a RNA-dependent
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RNA polymerase (RdRp), respectively [3]. ORF2 codes for
a highly divergent capsid protein which is formed in re-
sponse to the immune pressure from the host [3]. More-
over, the genome also includes a 5 -untranslated region
(UTR), a3 “ -UTR and a poly-A tail.

Generally, AstVs were considered to be enteroviruses,
causing diarrhea in most of the sensitive mammalians. In
particular, human astrovirues (HAstVs) have been recog-
nized as the second most common cause of viral diarrhea
in young children, the first being rotaviruses [3]. Porcine
astroviruses (PAstVs) belong to the genus Mamastrovirus
and were identified for the first time in 1980 by electron
microscopy [4]. Based on the phylogenetic analysis of the
full length ORF2 capsid protein, PAstVs are divided into
five genotypes (PAstV1-PAstV5) circulating in the
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worldwide [5-9]. In 2010, the International Committee on
Taxonomy of Viruses (ICTV) classified PAstV1 as Mamas-
trovirus 3 [10]. However, the other four genotypes of
PAstVs have not been confirmed to exist in which species
of Mamastrovirus [10]. Astroviruses are detected relatively
more often in diarrheic pigs as opposed to healthy ones [11,
12], but there is lack of more evidence to clarify the direct
or indirect association of PAstVs with diarrhea [13]. Be-
sides, there was more evidence of extra-intestinal infection
of AstVs, it is worth noting that AstVs are detected in the
central nervous system (CNS) presenting with encephalitis
in various cases involving humans [14-16], mink [17], cattle
[18-20], pigs [21, 22] and sheep [23]. Additionally, PAstVs
were also detected in serum [24, 25] and in the respiratory
and circulatory systems of animals [24, 26].

The prevalence of PAstVs in most pig herds of China is
still poorly documented, especially as little is known about
viremia. Therefore, the main objective of our study is to
provide more data on the prevalence of different types of
PAstVs in Guangxi province and bring new knowledge
with respect to infection in extra-intestinal system.

Results

Detection of PAstVs in pig serum and fecal samples

In this study, all the samples were tested for the existence
of PAstVs by the nested RT-PCR method. The positive
rates of PAstVs in feces samples reached 56.4% (300/532),
in pigs of different developmental stages which showed di-
vergent prevalence, including 71.0% (103/145) in nursery
pigs, 58.2% (82/141) in suckling pigs, 53.3% (65/122) in fin-
isher pigs and 40.3% (50/124) in sows (Table 1). Interest-
ingly, there were 7 PAstVs-positive samples tested in 120
serum samples, including one (belonging to PAstV1) on
each from suckling pig and nursery pig, respectively and
five from sows belonged to PAstV1(4/5) and PAstV2(1/5).
The PAstVs-positive prevalence in serum samples reached
to 10% in farm A and 1.7% in farm B (Table 1).

Molecular and phylogenetic analysis

Amplification and sequencing for 3 ~ -terminal conserved
region of the ORF1b gene segment (400 bp) and the par-
tial ORF2 gene (183 bp) was successful with a total of 72

Table 1 Results for detection of PAstVs in fecal and serum samples
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sequences including 49 partial ORF1b genes of PAstV2-5
and 23 partial ORF2 genes of PAstV1. Phylogenetic trees
were constructed based on these obtained nucleotide se-
quences compared with the selected AstV sequences from
other species available in GenBank, respectively. Clearly,
five clades corresponding to the five PAstV types were de-
lineated in two phylogenetic trees (Fig. 1a and b), includ-
ing PAstV1 (23/72, 31.9%), PAstV2 (32/72, 44.4%),
PAstV3 (1/72, 1.4%), PAstV4 (2/72, 2.8%) and PAstV5
(14/72, 19.4%). Among these sequences, 7 serum-derived
PAstV sequences were clustered into PAstV1 (6/7, 85.7%)
and PAstV2 (1/7, 14.3%) from sows.

Phylogenetic analysis based on the nucleotide sequences
from the 3 ~ -terminal conserved region of partial ORF1b
gene segments revealed that there were four known gen-
etic lineages circulating in the pig population of Guangxi
province (Fig. 1a). In the clade of PAstV2, they were clas-
sified into three subclades (PAstV2a, PAstV2b and
PAstV2c). A total of 32 strains were distant with the deer
or bovine astrovirus strains (PAstV2b), but genetically
closer to characterized PAstV2 strains IA122 and 43 from
the USA [8] and SF55 from Croatia [5], sharing 74.9—
79.6% nucleotide identity with each other. Besides, this
branch included the serum-derived JGMZ17 strain, which
was slightly distant from the serum-derived strain of
Croatia [24] with an average nt identity of 85.9%. Another
subclade (PAstV2c) clustered with strain JHW-1 from
Shanghai [27] and 4-2 from Hungary [28] sharing 87.3
and 79.8% of the mean nt identities, respectively. The sub-
clades of PAstV2a and PAstV2c were more closely related
to porcupine astrovirus (KJ571486) and bat astrovirus
(KX702367) detected in China respectively [29, 30], shar-
ing 88.7 and 60.4% of the mean nt identities, respectively.

In the clade of PAstV5, 14 strains in this study shared
higher identities with LL-2 from Hebei of China and
SF39 from Croatia with mean nt identity of 92.6%, but
with lower identities (on average 77.0% nt) with strains
IA122 and 33 from the USA [8] and CC12 from Canada
[31]. In addition, the strain, GXFC33, was grouped with
PAstV3-2-2 from Canada, sharing 84.3% nt identity.
The remaining strains GXFC36 and GXNN45 were di-
vided into the lineage of PAstV4, sharing higher identity

Age groups No. Positive rate (%)  No.clones?/

Positive rate (%) of the

Positive rate (%) of

samples  of fecal samples  PS samples sequenced (2013-2015) serum samples (2015)
PAstV1 PAstV2 PAstV3 PAstvV4 PAstV5 Farm A Farm B
Suckling pigs 141 58.2 (82/141) 19/82 31.6(6/19) 42.1(8/19) 0 (0/19) 10.5(2/19) 158 (3/19) 0 (0/20) 5.0 (1/20)
Nursery pigs 145 71.0 (103/145) 19/103 263(5/19)  474(9/19)  53(1/19)  0(0/19) 21.1 (4/19) 100 (1/10) 0 (0/10)
Finisher pigs 122 533 (65/122) 10/65 20.0(2/10) 60.0(6/10) 0(0/10) 0 (0/10) 20.0 (2/10) 0 (0/10) 0 (0/10)
Sows 124 40.3 (50/124) 17/50 23.5(4/17) 47.1(8/17) 0(0/17) 0(0/17) 294 (5/17) 25.0(5/20) 0 (0/20)
Total 532 56.4 (300/532) 72/300 26.2(17/65)  47.7(31/65) 1.5(1/65) 3.1(2/65) 215 (14/65) 100 (6/60) 1.7 (1/60)

@ refers to the sequence of phylogenetic analysis in Fig. 1; PS indicates positive samples
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Fig. 1 Phylogenetic trees of partial RdRp coding region (400 bp) amplified using Chu's primers (a) and partial ORF2 coding region (183 bp)
amplified using Indik's primers (b). Two trees were generated with the neighbor-joining method using the p-distance substitution model, with
1000 bootstrap replicates and a cut-off value of 70%, with the MEGA 7.0 software. Sequences from fecal samples are marked with the dot (e)and
from serum samples are marked with the triangle (A)

with stain 3-2724 from Spain with mean nt identity of
89.1%.

The 23 sequences of partial ORF2 genes were grouped
into the lineage of PAstV1 (Fig. 1b). Based on its phylo-
genetic analysis, PAstV1 could be clustered into four sub-
clades (PAstV1a, PAstV1b, PAstV1c and PAstV1d). In the
branch of PAstVla, six serum-derived strains clustered
with other PAstV1 strains shared higher identity (on aver-
age 98.7%/96.4% nt/aa) with the strain, GX1, obtained in

2013, which was the first to describe the presence of
PAstV1 viruses in blood. Four strains GXNN42, GXNN44,
GXGG8 and GXYL5 were clustered with strain PUJP65
from Colombia, 12-3 from Canada, Y15938 and 83-74
from Japan, sharing 89.2%/72.1% of mean nt/aa identities.
One of 23 strains (GXGGY) in the branch of PAstVlc
showed higher genetic relationship with strain 1533-3
from Germany and strain 2 from Shanghai, China, sharing
90.8 and 93.5% nt identities, respectively. Additionally, five
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strains including two serum-derived strains (GXBY17 and
GXPR6) form a single subclade (PAstV1d), sharing 88.5—
96.7% nt identities with each other. Moreover, the lineage
of PAstV1 showed a close relationship to other astro-
viruses species recovered from sea lions and humans.

Genome features and phylogenetic analysis of the 3-end
from four PAstVs
In these PAstVs-positive samples, we were only able to
successfully amplify the 3 ~ -end of the genome (about 3 kb
in size) from 4 strains (GXBS5, GXXZ5, GXNN144 and
GXFC36) with 3~ -RACE-PCR. These contain the 3 * -end
of the ORF1b gene, the complete capsid gene (ORF2) and
the 3~ -end untranslated regions (UTRs). The lengths of
GXBS5, GXXZ5, GXNN144 and GXFC36 were 2310 bp,
2364 bp, 2322 bp and 2475 bp, respectively. Sequence align-
ment showed that, there is a highly conserved region
(UUUGGAGGGG (A/C) GGACCAAANS/11AUGGC
(N=A/T/C/Q)) located at the junction of ORFlb and
ORF2 (Fig. 2b), which was considered to be a subgenomic
promoter for RNA transcription. An insertion of 3 nt ahead
of the start codon AUG resulting at N11 was different be-
tween the four strains (i.e. CGC in PAstV2-GXBS5, ATC in
PAstV2-GXNN144 and PAstV2-GXXZ5, GCC in PAstV4-
GXFC36). There is no a highly conserved stem-loop-II-like
motif (s2m) in the 3'-end of the genomic RNA for these
four strain (Fig. 2c), which was consistent with the other
PAstV2 strains and the PAstV4 strains [25, 27, 28, 32].
Using the comparison of 19 species in the genus
Mamastrovirus, a phylogenetic tree based on the complete
amino acid sequences of capsids was built and analyzed. It
was found that four strains (GXBS5, GXXZ5, NN144 and
GXFC36) in the study were classified as two distinct
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branches (Fig. 3), including PAstV2 and PAstV4. The
strains GXBS5, GXXZ5 and NN144 were clustered into
PAstV2, sharing 58.2-652% identity at the nucleotide
level, which revealed that they were genetically close to
porcupine AstV, dromedary AstV, bovine AstV from
Hong Kong and other classical PAstV2 strains. In
addition, the strain GXFC36 was clustered into PAstV4,
compared to strain IL135 from the USA, sharing identities
of 83.4 and 84.6% at the nucleotide and amino acid levels,
respectively.

Discussion

Previous reports revealed that PAstVs were highly prevalent
in pigs in different countries, such as Spain (100%) [9],
Austria (100%) [9], Croatia (89%) [5], Hungary (84%) [9],
Canada (79.2%) [33], Italy (67.4%) [34], USA (63.9%) [8],
Hunan province of China (46.3%) [12] and Czech Republic
(34.2%) [35]. On the other hand, there was a comparable
lower prevalence in South Korea (19.4%) [7], Germany
(20.8%) [36] and Sichuan province of China (17.5%) [6].
The present overall positive rate in our study reached
56.4% (300/532), and this encompassed 28 farms from nine
regions/cities without a history of diarrhea. This rate is
similar to the detection results seen in the Hunan province
of China. Moreover, it was found that all five PAstV types
were circulating in Guangxi province of China from 2013
to 2015. It was found that PAstV2 (47.7%) showed the
highest prevalence, followed by PAstV1l (26.2%) and
PAstV5 (21.5%), which became predominant among five
PAstVs genotypes and was detected from suckling pigs to
sows. This finding is similar to the results seen in Sichuan
[6], which is different from the reports from Hunan [12],
suggesting that the dominance type of PAstVs varies with
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the different geographical locations, such as PAstV4 in the
USA [8] and South Korea [7] and PAstV2 in Croatia [5].
There was low prevalence of PAstV3 (5.3%) and PAstV4
(10.5%) which existed in nursery and suckling pigs, respect-
ively. Notably, there is no report regarding PAstV3 in
China, with its first detection being noted in this study. This
phenomenon is similar to what had been reported previ-
ously in other nations [5, 33, 37]. The low positive rate of

PAstV4 was significantly different from the Xiao’s report,
which displayed the higher prevalence of 62.3% in all age
groups [8]. The application and efficiency of the different
primers used for detection might be mainly responsible for
the differences observed in the two studies. The specific
primers for genotyping will be necessary to investigate the
presence of different genotypes of PAstVs. In addition, the
pig population selected, the density of selected farms,
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feeding environment, maintenance condition of fecal sam-
ple will result in the biases.

In the past, Mamastrovirus was considered to be only
found in the intestine, but in recent years, many studies
suggested that it also can be detected in extra-intestinal
tissues, such as the brain in humans [14, 16], cattle [19,
20] and pigs [21, 22, 38], and the kidney, lung, spleen in
pigs [12]. PAstV2, PAstV4 and PAstV5 have also been
found in the blood of healthy pigs [24, 25]. Moser et al.
showed that infection with human astrovirus could in-
crease the intestinal barrier permeability in a Caco-2 cell
culture model system, suggesting that other astroviruses
might use the same way to enter the bloodstream [39].
Our study brings new knowledge about viremia caused
by PAstVs which is different from genotype reported
from Croatia [24]. Six serum-derived samples belonged
to PAstV1 and one sample belonged to PAstV2. It kept
unknown whether PAstVs could be long-standing in
sows or could have been infected from nursery pigs.
More paired fecal and serum samples need be investi-
gated to show better insights into whether there is verti-
cal transmission, possible age-restriction and extra-
intestinal pathogenesis.

In order to understand genetic diversity of the strains of
PAstVs in Guangxi province, 65 sequences from fecal
samples were investigated, including 48 partial ORF1b
genes and 17 partial ORF2 genes. Phylogenetic analysis
showed that multiple distinct genotypes of PAstVs were
circulating in the pig farms, which would facilitate their
genetic recombination and even probably increase the oc-
currence of interspecies recombination events. Luo et al.
indicated that PAstV1 and PAstV3 were closely related to
strains found in sheep, mink, cats and humans [33], but
PAstV2 was possibly restricted to pigs. Actually, in our
study, PAstV2 was closer to other animal astroviruses,
such as those in porcupines, bats, cattle and deer. In par-
ticular, there was higher homology (92.8% nt identity) be-
tween porcupine astrovirus and PAstV2-XYM14, further
suggesting they could share the same ancestral origin, but
whether there were past cross-species transimission be-
tween porcupine and swine by yet-undentified intermedi-
ate hosts required further investigation [30].

Further 3" partial genomic sequencing and
characterization of four selected stains revealed the genetic
diversity that exists. They only shared 58.2-65.2% identity
at the nucleotide level between PAstV2-GXBS5, PAstV2-
GXXZ5 and PAstV2-NN144. Previous studies have shown
that most of the AstVs strains contain a conserved stem-
loop II-like motif (s2m) near the 3~ -UTR [25, 31, 40]
which was thought to play an important role in viral life
cycle [41]. However, our study found the lack of s2m in
PAstV2 and PAstV4 strains, in agreement with the previous
reports [25, 33, 42], so whether the lack of s2 m will affect
the biological function, or whether the virus could
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compensate by forming stable secondary structures in the
different regions of their 3 “ -UTR [33], remains to be con-
firmed by further studies.

Conclusion

Our present work shows a comprehensive overview of
PAstVs for the first time in Guangxi province, China. In
particular, the results reveal the existence of all five known
lineages in the pig population with a high prevalence of
PAstV2, PAstV1 and PAstV5 in animals of different ages
and newly described PAstV3 presence in China. Import-
antly, this study also proved that porcine astroviruses exist
in blood with the dominance of PAstV1, adding to the re-
ported genotypes (PAstV2, PAstV4 and PAstV5), which
suggested there would be wider presence of different
PAstV genotypes in blood, possibly resulting in a more
complicate pathogenesis outside the enteric system. Fur-
thermore, phylogenetic analysis of the partial genes and
molecular characterization revealed high genetic hetero-
geneity and more information about 3’ partial genome.
The strains of PAstV2 and PAstV3 were close to known
astrovirus species from many different animals suggesting
different ancestral origins or occurrence of interspecies
transmission. More PAstVs whole genome sequences will
be needed in order to fully understand the evolution and
ecology of the Astroviridae family of viruses.

Materials and methods

Samples collection and processing

A total of 532 composite fecal samples (fecal swabs and
feces) were collected from pigs of 28 different scale
farms in Guigang, Yulin, Baise, Baihai, Qinzhou, Wu-
zhou, Hezhou and Fangchenggang of Guangxi Zhuang
Autonomous Region (Guangxi province) from 2013 to
2015, including suckling pigs (n = 141), nursery pigs (n =
145), fully grown pigs (n =122) and sows (n=124). In
addition, a total of 120 serum samples were randomly
collected only from two industrialized pig farms (desig-
nated as farm A and farm B, respectively) in 2015, in-
cluding 60 serum samples from each farm. Sixty serum
samples were collected from each pig farm and these in-
cluded suckling pigs (n = 20), nursery pigs (n = 10), fully
grown pigs (n =10) and sows (1 = 20). The fecal samples
were placed into 10mL centrifuge tubes and diluted
with 1 x Phosphate Buffered Saline (PBS, pH7.4) con-
taining 200 U/ml penicillin, 200 mg/ml streptomycin.
Samples were homogenized by vortexing for 5min at
room temperature and centrifuged at 12,000 rpm for 15
min at 4°C. Viral RNA was extracted from 20% (w/v)
fecal supernatants and serum samples using the RNAiso
PLUS kit (Takara Bio, Inc., Dalian, China). 300 pL of
fecal homogenate were prepared for viral extraction and
viral RNA was stored at — 80 °C until needed.
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Detection for PAstVs using nested RT-PCR

c¢DNA was generated from RNA using PrimeScript Re-
verse Transcriptase and random hexamers (Takara Bio,
Inc., Dalian, China) from 8 uL. of RNA sample according
to the manufacturer’s instructions. The nested primers
for PCR were used to amplify the partial RNA-
dependent RNA polymerase (RdRp) gene specific for
PAstV2-PAstV5 [40]. Due to the low sensitivity to
PAstV1, another set of primers specific for the partial
ORF2 gene were employed to detect PAstV1 [43], re-
spectively (Table 2). To avoid the possible contamin-
ation, the fecal samples and serum were processed and
detected separately and the double negative controls
were set up in RT-PCR. Once we obtained the PAstV-
positive samples, which will be double checked. The
PCR cycling conditions using the two different sets of
primers were as described previously [33]. PCR products
were purified and ligated to pMD18-T vector (Takara,
Japan). The plasmids were identified by double diges-
tions with Qcut BamH I and Qcut Hind III (Takara,
Japan) and sequenced as described previously [44].

Amplification of 3"-end of selected PAstVs using 3"-RACE
PCR

The 3~ -end genes of selected PAstVs were amplified
using a commercial 3~ -RACE kit (Takara, Japan). Ac-
cording to the manufacturer’s instructions, two groups
specific forward nested primers based on the ORF1b se-
quence were designed (Table 2). Among these, the primer
GSP-2A (Outer specific primer) and GSP-2B (Inner spe-
cific primer) were used for capsid protein region amplifi-
cation of the PAstV2 strains (GXBS5, GXXZ5 and
GXNN144) in this study. The primer GSP-4A (Outer spe-
cific primer) and GSP-4B (Inner specific primer) were
used for the PAstV4 strain (GXFC36) in this study.

Table 2 Primers used in this study
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Briefly, the viral RNA was reverse-transcribed into
¢DNA using the M-MLV reverse transcriptase (RNase
H-) and 3 * -RACE adaptor primer (provided in the kit).
Then the 3 “ -end was amplified using nested PCR. The
first PCR reaction was performed using the outer spe-
cific primer and the 3 “ -RACE outer primer (comple-
mentary to the outer part of 3~ -RACE adaptor primer)
provided in the kit and the reaction was pre-degenerated
at 94.°C for 5 min, followed by 20 cycles at 94 °C for 30s,
58°C for 30s, 72 °C for 2 min 30s and final extension at
72 °C for 10 min. The first-round PCR product was used
as the template for the second-round PCR reaction
which was performed using an inner specific primer and
a 3" -RACE inner primer (complementary to the inner
part of 3~ -RACE adaptor primer) provided in the kit.
The reaction conditions were the same as the first round
PCR except the cycles were increased to 35 cycles. PCR
products were purified, cloned and sequenced as de-
scribed previously [44].

Sequence alignment and phylogenetic analysis

The first comparisons of PAstV sequences obtained with
AstVs reference strains were performed by BLAST pro-
gram in NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
At the same time, the nucleotide sequences obtained in
this study were aligned with published AstVs reference
strains by the ClustalW (1.6) method using MEGA 7.0
software. The same software was used to reconstruct
phylogenetic trees from evolutionary distances using the
Neighbor-Joining (NJ) method with p-distances for nu-
cleotide sequences. The clustering stability of the NJ tree
was evaluated by the bootstrap test value of 1000 repli-
cates. Astrovirus sequences characterized in this study
were deposited to GenBank under accession numbers
KM211520 to KM211529, KY230626 to KY230653 and

Primer name Primers sequences(5™-3) Genes for amplification Reference
GSP-2A CTAAGTACGTGCTCATGCCATCT Complete ORF2 In this study
GSP-2B GATGACAGGCTTACAACCACTCC Complete ORF2 In this study
GSP-4A GTATGTTATGATGCCGAGTGG Complete ORF2 In this study
GSP-4B TTGACCCGTTATCCAATCTTACCAG Complete ORF2 In this study
AST248F GTGTCACAGGTCCAAAACCAGCAAT 5" end of ORF2 Indik et al. [43]
ASTE65R TGGTGTTCGTCAACCACCAGCC 5"end of ORF2 Indik et al. [43]
ASTneF CTCGAGGCATGCATCCTCAC 5" end of ORF2 Indik et al. [43]
ASTneR AAGAGAAGCACGGACAACTG 5" end of ORF2 Indik et al. [43]
panAV-F11 GARTTYGATTGGRCKCGKTAYGA Partial RdRp Chu et al. [40]
panAV-F12 GARTTYGATTGGRCKAGGTAYGA Partial RdRp Chu et al. [40]
panAV-F21 CGKTAYGATGGKACKATICC Partial RdRp Chu et al. [40]
panAV-F22 AGGTAYGATGGKACKATICC Partial RdRp Chu et al. [40]
panAV-R1 GGYTTKACCCACATICCRAA Partial RdRp Chu et al. [40]
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KY412128 to KY412139 and MH064173 to MH064176
for partial RNA dependent RNA polymerase, KY412101
to KY412123 for partial capsid protein sequences and
KY412124 to KY412127 for the complete capsid protein
sequences.
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PAstVs: Porcine astroviruses; RT-PCR: Reverse transcriptase-polymerase chain
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