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Abstract

Background: Cronobacter sakazakii is an emerging opportunistic bacterial pathogen known to cause neonatal and
pediatric infections, including meningitis, necrotizing enterocalitis, and bacteremia. Multiple disease outbreaks of C.
sakazakii have been documented in the past few decades, yet little is known of its genomic diversity, adaptation,
and evolution. Here, we analyzed the pan-genome characteristics and phylogenetic relationships of 237 genomes
of C. sakazakii and 48 genomes of related Cronobacter species isolated from diverse sources.

Results: The C. sakazakii pan-genome contains 17,158 orthologous gene clusters, and approximately 19.5% of these
constitute the core genome. Phylogenetic analyses reveal the presence of at least ten deep branching
monophyletic lineages indicative of ancestral diversification. We detected enrichment of functions involved in
proton transport and rotational mechanism in accessory genes exclusively found in human-derived strains. In
environment-exclusive accessory genes, we detected enrichment for those involved in tryptophan biosynthesis and
indole metabolism. However, we did not find significantly enriched gene functions for those genes exclusively
found in food strains. The most frequently detected virulence genes are those that encode proteins associated with
chemotaxis, enterobactin synthesis, ferrienterobactin transporter, type VI secretion system, galactose metabolism,
and mannose metabolism. The genes fos which encodes resistance against fosfomycin, a broad-spectrum cell wall
synthesis inhibitor, and mdf(A) which encodes a multidrug efflux transporter were found in nearly all genomes. We
found that a total of 2991 genes in the pan-genome have had a history of recombination. Many of the most
frequently recombined genes are associated with nutrient acquisition, metabolism and toxin production.

Conclusions: Overall, our results indicate that the presence of a large accessory gene pool, ability to switch
between ecological niches, a diverse suite of antibiotic resistance, virulence and niche-specific genes, and frequent
recombination partly explain the remarkable adaptability of C. sakazakii within and outside the human host. These
findings provide critical insights that can help define the development of effective disease surveillance and control
strategies for Cronobacter-related diseases.
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Background

Cronobacter sakazakii (family Enterobacteriaceae; class
Gammaproteobacteria) is a motile, gram-negative, rod-
shaped opportunistic pathogen that is closely related to
more well-known pathogenic genera such as Enterobacter
and Citrobacter [1, 2]. Although C. sakazakii has been iso-
lated from various environments, clinical sources, and
insects [3-7], many disease cases have been associated
with the ingestion of C. sakazakii-contaminated dry food
products such as powdered milk formula, spices, starches,
and herbal teas [8] because of its remarkable ability to tol-
erate dry conditions [9, 10]. Individuals most susceptible
to C. sakazakii-induced infections are premature infants
and low birth-weight neonates [8, 11], but infections in
adults and the elderly have also been reported [12]. C.
sakazakii infections in neonates and immunocomprom-
ised infants are associated with clinical presentations of
septicemia, meningitis, and necrotizing enterocolitis [13].
While neonatal infection rates remain low [14, 15], as in
the case of the United States where there is one Cronobac-
ter infection per 100,000 infants [16], the overall lethality of
Cronobacter infection can be as high as 27-80% [14, 17],
and its impact on the most vulnerable individuals in society
makes it a serious health issue. Even when infants survive
the infection, different sequelae can potentially threaten
their health, including developmental delays, hydrocephaly,
and mental retardation [18].

Genomic and evolutionary studies of C. sakazakii have
been few compared to other bacterial pathogens, but
nonetheless reveal important insights that provide a hint
to its pathogenic potential and adaptive qualities. Several
virulence factors which aid in tissue adhesion, invasion,
and host cell injury have been previously reported [19].
An isolate sampled from a female neonate in China was
reported to harbor three resistance plasmids IncHI2,
IncX3, and IncFIB, which carry multiple resistance genes,
including those associated with carbapenems, aminoglyco-
side, tetracyclines, phenicols, and sulphonamide/trimetho-
prim [20]. The species exhibits high level of genetic
diversity, with some clonal complexes often associated
with disease outbreaks. For example, a recent genomic
study of 59 contemporary and historical C. sakazakii iso-
lates collected from Europe showed remarkable levels of
genetic diversity comprising 17 different sequence types
(STs) and several isolates harboring genes associated with
resistance to multiple classes of antibiotics [21]. Genetic
diversity can be high even within an individual patient or
a single outbreak event [11]. In the 1994 C. sakazakii
outbreak in a French neonatal intensive care unit, whole
genome phylogeny of 26 isolates revealed four distinct
clusters each associated with a distinct ST and the co-
circulation of different STs within the same neonate [11].
However, despite its serious health threat to neonates and
immunocompromised adults, there has not been a

Page 2 of 14

systematic analysis of its population structure, genomic
variation and evolutionary history.

In this study, we aim to elucidate the genomic charac-
teristics and phylogenetic relationships of C. sakazakii
and related species using 285 strains available in the Na-
tional Center for Biotechnology Information (NCBI). We
were particularly interested in determining whether the
species is genetically homogenous and if not, to what
extent do distinct lineages differ and what processes
contribute to this variation? We show that C. sakazakii
is composed of several deep branching monophyletic
lineages that vary in their core allelic and accessory gene
content, including many antibiotic resistance and
virulence genes. Overall, our results indicate that the
presence of a large accessory gene pool, ability to switch
between ecological niches, a diverse suite of antibiotic
resistance, virulence and niche-specific genes, and
frequent recombination partly explain the remarkable
adaptability of C. sakazakii to survive both within and
outside the human host. These findings provide crucial
insights on the evolution and pathogenicity of an
emerging pathogen that cause fatal neonatal and
pediatric diseases, and provide a baseline for the devel-
opment of effective disease surveillance and control
strategies.

Results

Characteristics of the C. sakazakii pan-genome

A total of 313 genomic short read sequences of globally
distributed C. sakazakii were downloaded from the
NCBI Sequence Read Archive (SRA) in October 2018.
After checking the quality of genomes using CheckM
[22], we further filtered the dataset based on the number
of contigs, genome assembly size and number of pre-
dicted genes. In all, we used a total of 237 genomes, with
the number of contigs ranging from 24 to 443 (median =
68) and assembly size ranging from 4.14—4.8 Mb (Add-
itional file 4: Table S1). Calculation of the genome-wide
average nucleotide identity (ANI) for all pairs of
genomes indicates that all genomes are within the mini-
mum 95% threshold that defines a species [23] (Fig. 1la;
Additional file 5: Table S2).

The number of predicted genes per genome ranges from
3739 to 4535 (mean = 4156). We used Roary [25] to calcu-
late the C. sakazakii pan-genome, which refers to the sum
of all genes present in a species or any group of genomes
under study [26] (Additional file 6: Table S3; Fig. 1b). The
number of genes present in at least 99% of the strains, also
referred to as core genes, is 3072. The number of soft core
genes, which are present in at least 95% but less than 99%
of the strains, is 273. The combined core and soft core
genes (n = 3345 genes; Additional file 7: Table S4) consti-
tute only 19.5% of the entire species’ pan-genome (1 =17,
158 genes). The size of the core genome that we identified
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Fig. 1 Pan-genome structure and phylogeny of C. sakazakii. a Distribution of pairwise ANI values. b The number of unique genes that are shared
by any given number of genomes or unique to a single genome. Numerical values for each gene category are shown in Additional file 6: Table
S3. ¢ The size of the core genome (purple line) and pan-genome (green line) as more genomes are added. The list of core genes is listed in
Additional file 7: Table S4. d The number of unique genes, i.e., genes unique to individual strains (orange line) and new genes, i.e., genes not
found in the previously compared genomes (light blue line) as more genomes are added. e Gene presence-absence matrix showing the
distribution of genes present in each genome. Each row corresponds to a branch on the tree. Each column represents an orthologous gene
family. Dark blue blocks represent the presence of a gene, while light blue blocks represent the absence of a gene. The phylogeny reflects
clustering based on presence or absence of accessory genes. The colors on the tip of each branch reflect the BAPS clustering. f Contour plots of
pairwise distances between genomes in terms of their core genome divergence (measured by SNP density distance across the core genome)
and the difference in their accessory genomes (measured by the Jaccard distance based on the variation in the gene content of their sequences)
calculated using popPUNK [24]. g The midpoint-rooted maximum likelihood phylogenetic tree was calculated using sequence variation in the
core genome alignment. Outer rings show the BAPS cluster, geographical origin, and ecological source. Scale bar represents nucleotide
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is consistent with that found in 59 C. sakazakii isolates
from a 2017 multicenter study from 11 countries in Eur-
ope which reported 2831 core genes [21]. The core gen-
ome makes up 73.81-86.46% (mean = 79.28%) of each C.
sakazakii genome. The accessory genome is composed of
the shell genes which are present in at least 15% but less
than < 95% of the strains (n = 1458 genes) and cloud genes
which are present in less than 15% of strains (n = 12,355
genes representing 72.0% of the pan-genome). It is notable

that many accessory genes are unique to a single strain
(4545 genes, representing 26.49% of the pan-genome). In
microbes, large accessory genomes and high numbers of
strain-specific genes are often associated with frequent
gene gain and loss [27-29].

We next estimated how many new genes are discov-
ered as more and more strains are sequenced [26, 30].
The pan-genome of C. sakazakii is open, which means
that future sequencing of genomes will likely result
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in finding previously unidentified genes (Fig. 1c). The
existence of a large and open pan-genome is often asso-
ciated with organisms that are able to inhabit diverse
habitats (e.g., present in both soil and eukaryotic host,
present in multiple host species) or those that frequently
undergo horizontal gene transfer with other taxa [31,
32]. We also found that the core genome declines in size
as more genomes are added. Finally, we also show that
the number of novel genes and unique genes continue
to rise as additional genomes are included (Fig. 1d). The
distribution of accessory genes however varies among
strains (Fig. 1e). We also calculated the genomic fluidity
¢, which estimates the number of identical gene families
that are shared between genomes [33]. C. sakazakii has
a genomic fluidity value of 0.875 (standard deviation, s.d.
= 0.309), which indicates that 87.5% of the genes are
unique to their host genome and the remaining 12.5%
are shared between genomes. Overall, these results show
that strains of C. sakazakii have access to a large
accessory genome pool, with individual strains each hav-
ing a unique repertoire of potentially useful genes.

To gain insight on how the accessory genome has di-
verged in relation to the core genome, we used PopPUNK
which employs pairwise nucleotide k-mer comparisons to
distinguish shared core sequence and gene content [24].
Results show a discontinuous distribution of pairwise gen-
omic distances, with more genetically similar genomes
found tightly clustered near the origin of the graph, while
larger genetic distances are concentrated away from the
origin (Fig. 1f). This discontinuity in the two sets of points
is indicative of the presence of multiple genetically distinct
clusters that are diverging in both core sequences and
accessory gene content. Overall, these data show that C.
sakazakii is composed of many genetically distinct line-
ages that can be distinguished in their core and accessory
genome divergence patterns.

To investigate the genetic structure of the C. sakazakii
dataset, we extracted and concatenated the sequences of
the 3345 core genes using RhierBAPS [34]. The cluster-
ing analysis started with 20 initial populations until it
converged to a local optimum, resulting in 11 identified
primary sequence clusters (called SCs), of which one
consisted of unclustered strains that cannot be classified
in any of the SCs. The ten SCs range in size from 4 to
66 genomes per cluster (Fig. 1g). There are several deep
branching monophyletic lineages indicative of ancestral
diversification. Three large SCs (SCs 3, 6, and 9) consti-
tute majority of the dataset, but we also found numerous
highly diverse SCs that are present in low frequency.
There is relatively little structure related to geographical
or ecological sources. Almost all SCs contain strains
from different continents and origins (food, human, or
environment), which shows that none of the lineages
appear to be specifically associated with any one niche.
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Frequent switching between ecological niches appears to
be common, as observed from the intermingling of strains
from different sources within each SC and throughout the
phylogenetic tree.

Within-species variation in the core and accessory
genomes of C. sakazakii

Considering the phylogenetic and ecological diversity of
C. sakazakii strains in this dataset, we further examined
the mutations that contribute to this variation within the
species. We first compared the three largest SCs (SCs 3,
6, and 9) by estimating the number of core single nu-
cleotide polymorphisms (SNPs) within each SC (Add-
itional file 1: Fig. S1). We found significant differences
among them (p < 0.001, ANOVA), with SC 6 having the
highest mean SNP distance (number of pairwise SNPs =
1249.81, s.d. 1538.26) followed by SC 3 (265.63, s.d.
468.54) and SC 9 (216.42, s.d. 89.59). We next examined
pairwise distances between strains grouped by source
(food, human, environment) (Additional file 1: Figure S1).
We also found significant differences among the three
(p <0.001, ANOVA), with food strains having the highest
mean SNP distance (51,248.27, s.d. 17,378.93) followed by
environmental strains (46,454.3, s.d. 22,034.74) and
human strains (32,924.87, s.d. 28,083.43).

We also calculated the ratio of substitution rates at
each nucleotide site by estimating the dN/dS ratio of all
core genes, thereby providing insights to the strength of
selection acting on the core genome of C. sakazakii
(Additional file 1: Figure S1 and Additional file 8: Table
S5). The ratio dN/dS is commonly used metric to detect
selection acting on a gene, with dN/dS >1 indicating
positive selection and dN/dS<1 indicating purifying
selection [35]. We found evidence for positive selection
in 16 genes, of which nine have hypothetical functions.
Five genes have dN/dS approaching infinity, indicating
either positive, diversifying selection on amino acids or
strong purifying selection on synonymous codons [35].
The gene macA, which encodes a macrolide-specific ef-
flux protein [36] and has been reported in the type strain
C. sakazakii ATCC BAA-894 [37], has a dN/dS =3.95.
Other genes with dN/dS >1 include yaiY (1.96; inner
membrane protein), elfA (1.84; fimbrial subunit), atpC
(1.83; ATP synthase), kdul (1.70; hexuronate metabol-
ism) and livK (1.51; leucine-specific-binding protein),
although these functions are based on Escherichia coli
and their specific functions in C. sakazakii remain un-
clear. Two genes are notable however. The gene elfA
codes for a fimbrial subunit protein, and fimbriae-related
proteins are known to be virulence factors in Cronobacter
and other Enterobacteriaceae, promoting attachment and
aggregation on biotic and abiotic surfaces [38, 39]. The
gene kdul is a component of the hexuronate metabolism
pathway in E. coli which converts the carbohydrates
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galacturonate and glucuronate under osmotic stress con-
ditions in mice fed with a lactose-rich diet, playing an es-
sential role in bacterial adaptation to lactose-mediated
osmotic stress [40]. The gene with the highest dN and dS
values is icsA, which encodes an outer membrane auto-
transporter protein known to be a key virulence factor in
Shigella flexneri and functions to mediate intracellular
motility, intercellular spread and adhesion [41].

We next sought to identify the accessory genes that
are unique to each SC or ecological source (food,
human, or environment). Using the pan-genome output
of Roary, we first searched for genes that are exclusive
to a specific SC or ecological source. The number of
accessory genes that are SC-exclusive range from 64 in
SC2 to 1,871 in SC6 (Additional file 2: Figure S2, Add-
itional file 9: Table S6), while source-exclusive accessory
genes total to 3,297, 2,570 and 1,968 in human, food and
environmental sources, respectively (Additional file 2:
Figure S2; Additional file 10: Table S7). Using PAN-
THER [42], we next examined the functional classifica-
tion of both the genes present in each SC and the genes
exclusive to each SC, using the full set of genes in the
pan-genome as a reference (Additional file 11: Table S8).
We obtained significant results only for three SCs. The
genes exclusive to SC 1 were enriched for genes involved
tryptophan biosynthesis, indole biosynthesis, and amine
metabolism. The genes exclusive to SC 4 were enriched
for genes associated with nucleoside-triphosphatase,
pyrophosphatase and hydrolase activities. The genes
exclusive to SC 5 were enriched for biofilm formation.
These differences between SCs suggest fine-scale vari-
ation in adaptive potential among some lineages and
may explain the findings from previous studies that report
that certain C. sakazakii lineages are often associated with
disease outbreaks [11, 43]. However, it is curious that none
of the three major SCs displayed significant functional en-
richment. We also classified the functions of genes exclu-
sive to each ecological source. We detected enrichment of
genes involved in proton transport and rotational mechan-
ism in human-exclusive accessory genes. In environment-
exclusive accessory genes, we detected enrichment for those
involved in tryptophan biosynthesis and indole metabolism.
However, we did not find significantly enriched gene func-
tions for those genes exclusively found in food strains. We
also did not detect significant depletion of genes associated
with the SCs or source. These source-associated differences
may therefore partly explain the ability of C. sakazakii to
adapt to different ecological niches both outside and inside
the human host, and the repertoire of niche-associated
genes will be instrumental in their adaptive capability. We
predict that certain lineages and strains are more able to
adapt and are frequently found in either human or environ-
mental settings, although experimental evidence and more
extensive sampling is needed to verify this.
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Antibiotic resistance and virulence in Cronobacter

While rare, non-sakazakii species have been reported to
potentially cause morbidity and life-threatening complica-
tions in infants and adults [12, 44] and we therefore in-
cluded them in our analyses (1 =48 genomes; Additional
file 4: Table S1). Initially considered a unique group within
the genus Enterobacter, Cronobacter species have had a
convoluted history of misclassification and multiple in-
stances of re-naming [45]. To date, there are seven recog-
nized species of Cronobacter, with C. sakazakii being the
most clinically significant. However, correct species identi-
fication of Cronobacter species remains a challenge. In this
study, six species of Cronobacter were included (Crono-
bacter dublinensis, Cronobacter malonaticus, Cronobacter
muytjensii, Cronobacter turicensis and Cronobacter uni-
versalis). Cronobacter condimenti was not included be-
cause of lack of sequenced genomes in the NCBI database.

Studies of recent infections and disease outbreaks indi-
cate that C. sakazakii and related species exhibit resist-
ance to certain antibiotics [20, 46]. We sought to
systematically examine the presence and distribution of
horizontally acquired genes that confer antibiotic resist-
ance and encode virulence factors across the entire
Cronobacter dataset. Using the program ABRicate, we
found that the most common horizontally acquired anti-
biotic resistance genes (in contrast to resistance due to
chromosomal mutations) across the genus were fos and
mdf(A), which were detected in all genomes (Fig. 2; Add-
itional file 12: Table S9). The fos gene encodes resistance
against fosfomycin, a broad-spectrum cell wall synthesis
inhibitor [47]. It has been previously reported in Crono-
bacter [46] and is also known to be widespread in many
genera of gram-negative bacteria [48]. The gene mdf(A)
has been well characterized in E. coli and is known to
encode a multidrug efflux transporter with an unusually
broad pattern of drug specificities [49]. However, it re-
mains unclear if this transporter confers resistance to
the same spectrum of antibiotics in Cronobacter. Other
antibiotic resistance genes detected but at lower fre-
quencies are those confer resistance against aminoglyco-
sides, beta-lactams, and tetracyclines. We also detected
genes acrA and acrB in all genomes. In E. coli, the
AcrB-AcrA fusion protein acts as a multidrug efflux
transporter [50]. The genes fos, acrA and acrB have been
previously detected in C. sakazakii strains SP291 and
type strain ATCC BAA-894 isolated from powdered in-
fant formula [37]. Future work should therefore focus on
understanding the origins of these acquired resistance
genes and developing effective detection methods of
multidrug resistant phenotypes.

We also used ABRicate to identify the variety of virulence
genes in Cronobacter genomes (Fig. 2; Additional file 12:
Table S9). The most frequently detected genes are those
that encode proteins associated with chemotaxis,
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enterobactin synthesis, ferrienterobactin transporter, type
VI secretion system (T6SS), galactose metabolism, and
mannose metabolism. Other virulence genes detected in all
or majority of genomes are gnd (6-phosphogluconate de-
hydrogenase), ompA (outer membrane protein A essential
for adhesion to and invasion of the cell), rcsB (transcrip-
tional regulatory protein), tsr (methyl-accepting chemotaxis
protein), and waaC (heptosyltransferase involved in the
synthesis of lipolysaccharides). It is not surprising that these
genes are prevalent throughout C. sakazakii and related
species. Cronobacter can enter human intestinal cells and
in rare cases invade the blood brain barrier [38]. Chemo-
taxis, flagellar proteins and outer membrane proteins are
therefore critical in the attachment to and invasion of the
intestinal cells [51, 52]. The ability to acquire and
metabolize nutrients is also crucial to surviving outside of
the human host, enabling the bacterium to utilize limiting
nutrients such as iron from powdered milk formula and
dried food products. Metabolism of the sugars galactose
and mannose are also critical to surviving in these envi-
ronments so they can take advantage of these nutrients.
Lastly, T6SS-associated proteins are widely distributed in
gram-negative bacteria and this secretion system is used
as a molecular weapon against hosts, predators and com-
petitors [53]. In Cronobacter, T6SS likely plays a role in
cellular invasion, adherence, cytotoxicity, and growth in-
side macrophages [38].

Overall, we show that a multitude of genes that encode
resistance and virulence factors are widespread not just
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in C. sakazakii but also in other Cronobacter species.
Many if not all genomes carry genes that allow them to
grow and survive inside the human host as well as in dry
food products outside of their host. However, we did not
find evidence for resistance or virulence genes that are
associated with specific lineages or species.

Recombination in C. sakazakii genomes

Bacteria can receive DNA fragments from other species
and integrate them into their chromosomes through re-
combination [54, 55]. The process of recombination plays
a fundamental role in the evolution of many bacterial
pathogens and has been implicated in the emergence of
highly virulent and drug resistant lineages [54, 55]. Here,
we sought to determine the extent of recombination in C.
sakazakii because this process may likely contribute to its
genomic variation and evolutionary history. Here, we
focus only on homologous recombination of both core
genes and shared accessory genes, and not on other mech-
anisms of recombination (e.g., illegitimate, site-specific).
Recombination that brings in novel DNA sequences, as in
the case of strain-specific genes and acquired antibiotic
resistance genes described above, are likely mediated by
mobile genetic elements and are not included in the ana-
lyses below.

Under the null hypothesis of no recombination, we
calculated the pairwise homoplasy index (PHI) statistic
[56] and detected evidence for significant recombination
in the core genome (p-value = 0.0). Recombination in C.
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sakazakii core genome can be visualized using Neigh-
borNet implemented in SplitsTree4 [57], which incorpo-
rates reticulations due to non-vertical inheritance in
phylogenies (Fig. 3a). This observation is further sup-
ported by results from calculating the probability that a
pair of genomes differs at one locus conditional on hav-
ing differences at the other locus using the program
mcorr [58]. The correlation profile for C. sakazakii ex-
hibits a monotonic decay (Fig. 3b), which shows that re-
combination causes pairs of sequences to become
identical over random DNA blocks [58]. Overall, the re-
sults of the Splitstree, PHI test and correlation profile
analyses all provide evidence that recombination has had
an impact on the evolutionary history and core genome
structure of C. sakazakii.

We next sought to precisely quantify the impact of re-
combination on the genetic diversity of C. sakazakii. To
achieve this, we again used the program mcorr to calcu-
late different recombination parameters (Fig. 3c; Add-
itional file 13: Table S10). The mean fragment size (f) of
a recombination event was estimated to be 815.559 bp
(s.d. = 80.203). The recombination coverage (c) indicates
the fraction of the genome whose diversity was derived
from recombination events since its last common ances-
tor and ranges from 0 (clonal evolution) to 1 (complete
recombination) [58]. We estimate this parameter to be
0.53346 (s.d. = 0.00529), which means that 53.3% of the
genome has had a history of recombination. Lastly, the
ratio y/y, which gives the relative rate of recombination
to mutation, was estimated to be 1.6054 (s.d. = 0.04224).
These values are comparable to Acinetobacter bauman-
nii, another well-known pathogen that is closely to Cro-
nobacter and is a member of Gammaproteobacteria,
which has a f, ¢ and y/p of 860 bp, 0.40 and 1.3, respect-
ively [58].

We hypothesize that certain genes are more often
recombined than others, which may reflect their eco-
logical importance. To identify the specific genes that
are frequently recombining, we ran fastGEAR [59] on in-
dividual sequence alignments of core and shared
accessory genes. We found that, of the 17,158 genes that
comprise the pan-genome, a total of 2991 genes have
had a history of recombination (Fig. 3d; Additional file 14:
Table S11). A total of 2843 genes were involved in
recent recombination and 1097 genes in ancestral
recombination. Many of the most frequently recombined
genes identified by fastGEAR are associated with
metabolic growth, survival, and toxicity. Among the me-
tabolism genes, the ydaP genes is a homologue of E. coli
pyruvate oxidase and has been suggested to convert
pyruvate to acetyl-P [60] thereby contributing to aerobic
growth efficiency [61]. The narG gene encodes for the
nitrate reductase 1 alpha subunit, which functions in ni-
trogen metabolism [37]. It has been found in
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Cronobacter, but its presence has not been shown to
change the ability of a strain to metabolize nitrogen [37].
The gene entF encodes for the serine activating enzyme
in enterobactin biosynthesis and is part of a gene cluster
that functions in iron acquisition [62]. Enterobactin is a
high affinity siderophore (iron chelator) that is produced
and secreted specifically in response to iron deficiency
[63]. The zntA gene codes for a zinc/cadmium/lead-
transporting P-type ATPase, which has been found to
confer resistance to zinc, cadmium, and lead in E. coli
[64]. This stress response gene has been found in C.
sakazakii resistance plasmids [20]. The ptrA gene codes
for the metalloendopeptidase pitrylysin, which is in-
volved in insulin degradation in E. coli The genes rhsA
and rhsC are part of the complex 5-member rks family
(which stands for rearrangement hot spots) and was pre-
viously identified as having a core open reading frame
that provided homology for a frequent but unequal
intrachromosomal recombinational event [65, 66]. In En-
terobacter cloacae, rhsA causes growth inhibition of
other bacteria via T6SS [67]. In Vibrio cholerae, vgrG1
encodes thee valine-glycine repeat protein G and has
been shown to function as a toxin through actin cross-
linking [68]. In E. cloacae and Pseudomonas aeruginosa,
VgrG has been shown to function in the delivery of
T6SS effectors [67]. Furthermore, it has recently been
shown that T6SS-2 is a virulence factor in C. sakazakii
[69]. Other Cronobacter species also show evidence of
recombination and likely contributes to their pathogen-
icity (Additional file 3: Figure S3; Additional file 15:
Table S12). Frequent recombination is often reported to
accelerate adaptation in bacterial populations, enabling
survival in rapidly changing environments [70]. Hence,
for C. sakazakii, frequent recombination of these genes
likely confers a benefit to a lifestyle that requires rapid
adaptation and metabolic growth to disparate ecological
niches (human, food, environment).

Discussion

Although rates of C. sakazakii infection in neonates re-
main low, its impact on the most vulnerable individuals
in society makes it a serious health issue. Several C.
sakazakii outbreaks in infant and adult patients have
been reported in previous years [8, 16, 21]. However,
large-scale genomic studies, which can provide crucial
information on a pathogen’s genetic diversity, ecological
adaptation, antibiotic resistance and virulence have been
noticeably lacking in C. sakazakii. While previous gen-
omic studies have revealed important insights into its
ecology and evolution, only a few genomes are typically
compared. Hence, an important step forward in under-
standing the mechanisms that shape microbial genome
dynamics is to examine populations that represent clus-
ters of close relatives within and between environments.
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The emerging field of population genomics offers unpre-
cedented sensitivity for the detection of rare genotypes,
vastly improved resolution for evolutionary studies, and
direct sequencing of functionally and ecologically rele-
vant loci [71-73]. The open pan-genome of C. sakazakii
implies that more and more novel genes will be discov-
ered with the addition of more sequenced genomes and
can therefore be used as a springboard for developing
future experimental and functional assays. We present a
systematic, population-level analysis of 285 genomes
from a variety of sources to gain insight into the eco-
logical differentiation and associations of C. sakazakii.
This study also offers a deeper understanding of the evo-
lutionary mechanisms that create and maintain diversity
within and between C. sakazakii populations.

There are two main findings in this study. First, C.
sakazakii is composed of multiple distinct lineages that
greatly vary in their core and accessory genomic charac-
teristics. Results indicate that within-species genomic di-
versity is due to the presence of multiple deep branching
lineages indicative of ancestral diversification. The global
C. sakazakii population is dominated by three major lin-
eages (SCs 3, 6, and 9) and within each SC, genomes dis-
play very similar core genome sequences indicative of
recent but rapid diversification. We detected core genes
that have undergone either positive or diversifying selec-
tion, which include those associated with virulence (e.g.,
motility) and ecological adaptation (e.g., osmotic stress).
There are also numerous highly diverse SCs that are
present in low frequency, which further expands the
genetic diversity of the species. The existence of multiple
co-circulating but genetically diverse lineages have been
reported in other pathogenic bacteria [74], and may con-
tribute to the adaptability of the entire species. The
intermingling of genomes from different ecological
sources, whether it was food, human, or environmental,
suggests that there is not one specific lineage that is
often associated with each source and that they can eas-
ily switch between different environments. We also did
not find any evidence that certain acquired antibiotic re-
sistance and virulence genes are associated with specific
phylogenetic groups or sources. However, we did find
significant functional differences in the accessory genes
that are exclusively found in some SCs or ecological
source. We interpret these results from the phylogenetic
distribution and functional classification to mean that
any one lineage can potentially inhabit multiple environ-
ments, but some are more likely to succeed in specific
environments because of the niche-specific genes they
carry. This is particularly notable in our results that
show enrichment of genes involved in chemotaxis and
flagella in human-associated strains, while nutrient syn-
thesis and metabolism are enriched in environmental
strains. However, we did not find significant functional
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enrichment in the three major SCs, which may imply
that they likely have similar adaptive potential. One im-
portant line of inquiry for future research is therefore
determining the genetic and ecological factors that drive
the dominance of certain lineages (SCs 3, 6, 9) in the
population and whether these same lineages are also the
major cause of infections, or that their prevalence is sim-
ply due to sampling bias. Future work also requires a
more extensive and consistent sampling from a multi-
tude of sources (e.g., countries, age groups of patients,
clinical presentations, food products, animals) to pre-
cisely define how the C. sakazakii gene pool is distrib-
uted across the spatiotemporal landscape. Elucidating
the frequency, mechanisms and drivers of niche switch-
ing in this pathogen is also critical to making accurate
predictions of the impact of foodborne Cronobacter-re-
lated infections and disease outbreaks. Population gen-
omics, which involves analyses of hundreds or thousands
of genomic sequences from microbes that inhabit differ-
ent hosts or environments, will be instrumental in ad-
vancing our knowledge about the adaptive potential of
this pathogen as has been done in other well-studied
bacterial pathogens (e.g. Streptococcus pneumoniae,
Staphylococcus aureus) [75]. This study provides a first
step to developing a population-level framework to pre-
cisely define the range of C. sakazakii’s adaptive strat-
egies in difficult conditions and the boundaries of its
ecological niches.

Second, in addition to ancestral diversification and
group-specific functional differences, recombination
has greatly contributed to shaping the population
structure of C. sakazakii. While its recombination
rate is comparable to other pathogenic Gammaproteo-
bacteria [58], it is notable that the most frequently re-
combining genes are those associated with metabolic
growth, survival, and toxicity, all of which can aid in
survival within the human host and in extreme envi-
ronments and which can be disseminated rapidly to
other members of the population. The large number
of strain-specific genes and horizontally acquired anti-
biotic resistance genes further supports frequent gene
gain and loss, likely through mobile genetic elements.
Pathogens that can thrive in ecologically diverse set-
tings have in place a plethora of systems, including
frequent recombination, to respond to changes in
their surroundings. Recent studies of large-scale se-
quencing of bacterial genomes indicate that rates of
recombination can vary dramatically within a species
[76, 77]. In these studies, certain lineages have been
reported to act as hubs of gene flow, whereby they
are more often involved in DNA donation and receipt
compared to other closely related lineages [76]. These
differences are often not trivial because such fine-scale
variation may define major functional, clinical, ecological
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and adaptive potential. For example, hyper-recombinants
have been reported to exhibit significantly higher levels of
antibiotic resistance [70, 78]. Recombination hubs in bac-
terial populations may also allow certain rare genes to be
maintained in the population and not be lost, thereby
allowing the population or species as a whole to benefit
from these rare genes when needed. Future work in C.
sakazakii should therefore examine whether certain line-
ages exhibit higher than average rates of recombination,
whether through investigations of naturally occurring
isolates or experimental evolution approaches, and the
barriers that reduce recombination between certain popu-
lations (e.g., lack of niche overlap, geographical distance,
or intrinsic genetic mechanisms such as restriction-
modification enzymes [79]). Moreover, it is also impera-
tive that a deeper investigation of the different mecha-
nisms of recombination (e.g., homologous, illegitimate,
site-specific, mediated by mobile genetic elements, re-
placement versus additive) is needed, focusing on their
relative contributions in shaping the genome structure
and evolution of C. sakazakii.

Limitations of the present work stem mainly from
the biases in sampling schemes and genome sequen-
cing studies of Cronobacter. Information on the diver-
sity, pathogenicity, and virulence of other Cronobacter
species obtained from various sources is still relatively
scarce and fragmentary, although they have been re-
ported to be also implicated in serious infections [3,
46]. Hence, genomic comparison of different species
proves to be challenging. To date, evaluating inter-
species differences in Cronobacter relies mainly on
representative or type strains. Another limitation is
that detection of antibiotic resistance, virulence and
other ecologically relevant genes depends mainly on
the composition of current databases that are used
for comparing sequence similarities. It is probable
that C. sakazakii harbors novel mechanisms of resist-
ance and virulence or has novel cellular targets that
may be absent in other well studied bacterial patho-
gens. Its large repertoire of strain-specific genes may
hold valuable insights into these new functions. We
expect that our findings will provide critical informa-
tion to mine these genomes for novel functions and
traits. Niche-adaptive genes involved in chemotaxis,
enterobactin synthesis, ferrienterobactin transporter,
T6SS, galactose metabolism, and mannose metabolism
as well as positively selected core genes will be an ex-
cellent starting point in functional assays in the fu-
ture. Lastly, we underscore the need to undertake
population genomics approaches to elucidate the gen-
etic diversity of C. sakazakii and ensure the develop-
ment of accurate detection methods, effective disease
control and reliable microbial source tracking of con-
taminated foods.
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Conclusions

In summary, we show that C. sakazakii is phylogenetic-
ally and genomically diverse. There are at least ten deep
branching monophyletic lineages indicative of ancestral
diversification, each of which appears to have rapidly di-
versified in recent times. The presence of a large
accessory gene pool, ability to switch between ecological
niches, a diverse suite of antibiotic resistance, virulence
and niche-specific genes, and frequent recombination
partly explain the remarkable ecological versatility and
xerotolerant lifestyle of C. sakazakii. Results from this
study are expected to inform molecular diagnostic tools
that can be used in implementing successful surveillance
programs and in the control and prevention of Crono-
bacter-related foodborne illnesses.

Methods

Dataset

A total of 313 Cronobacter genomes available in October
2018 were downloaded from the NCBI SRA database. Ac-
cession numbers and information (total read length, anno-
tation statistics, and metadata) are shown in Additional
file 4: Table S1. The sequences were trimmed using Trim-
momatic v.0.36 [80] with a four-base sliding window, a
minimum PHRED score of 15 and a minimum length of
35. The sequences were assembled using SPAdes v3.10.0
[81] with default parameters. Two misassembled genomes
(SRR7235683 and SRR7439201) were removed from ana-
lysis. We assessed the quality of the genomes using
CheckM v.1.0.13 [22] to exclude genomes with less than
90% completeness (SRR7419954) and greater than 5%
contamination (SRR7367482, SRR7419954, DRR015813,
DRR015986, DRR015987, SRR944696, DRR015812). Fi-
nally, we removed those assemblies with >500 contigs
(SRR7235892, SRR7419951, SRR7419962, SRR7439218,
DRR015912). The genomes were annotated using Prokka
v.1.12 with default parameters [82]. We carried out
genome re-assembly and re-annotation to maintain
consistency in gene assignments.

To determine the degree of genomic relatedness, we cal-
culated pairwise ANI values using the program FastANI
v.1.1 [23] and were visualized using an heatmap generated
by the R package gplots (https://cran.r-project.org/web/
packages/gplots/index.html). A highly divergent cluster
with only 81% identity compared to the other genomes
was removed from downstream analysis. This cluster in-
cluded genomes corresponding to SRA run numbers

ERR474280, ERR474434, ERR474430, ERR474435,
ERR474449, ERR474436, ERR474450, ERR474458,
ERR486105, ERR474461, ERR486111, ERR486181,

ERR502554, and ERR486184. While these were originally
classified as C. sakazakii in NCBI, the low ANI values sug-
gest that they are likely members of another genus. This is
not unexpected given the history of misclassification of
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Cronobacter with the closely related Enterobacter [45].
We further confirmed this by comparing the sequences
encoding the 16S rRNA gene of the 14 genomes with se-
quences in the non-redundant database of NCBI using
BLAST [83]. All 14 sequences are most closely similar to
Enterobacter hormaechei and E. cloacae. Strains that were
highly similar to those of another named species but not
to strains labelled with their original species were reclassi-
fied for downstream analysis. These included DRR015985
assigned from C. dublinensis to C. sakazakii, DRR015912
assigned from C. malonaticus to C. sakazakii, DRR015811
assigned from C. dublinensis to C. malonaticus, and
SRR7367486 assigned from C. malonaticus to C. turicen-
sis. The final dataset included C. sakazakii (n=237), C.
malonaticus (n = 20), C. dublinensis (n = 16), C. turicensis
(n=5), C. muytjensii (n=5), and C. universalis (n=2).
Overall, we used a total of 285 genomes in this study.

Pan-genome and phylogenetic analyses of Cronobacter
Pan-genome and phylogenetic analyses were done as
previously described [84]. To summarize, core and
accessory genes were identified using Roary v.3.12.0 with
default settings [25] and sequences of individual gene
families were aligned using MAFFT [85]. We used the
program micropan [86] implemented in R [87] to calcu-
late the pan-genome’s genomic fluidity (¢) which mea-
sures genome dissimilarity as a function of the degree of
overlap in gene content [33]. The gene sequence align-
ments of each core gene family were concatenated to
give a single core alignment, which was used to generate
a maximum likelihood phylogeny using RAXML v.8.2.11
[88] with a general time reversible nucleotide substitu-
tion model [89], four gamma categories for rate hetero-
geneity, and 100 bootstrap replicates, and visualized
using the Interactive Tree of Life program [90].

Analyzing mutations in core genes

To identify all core SNPs for every pair of genomes, we
used the program snp-dists v.0.6.3 (https://github.com/
tseemann/snp-dists). We compared mean SNP distances
within each of the three largest phylogenetic clusters
(SC 3, 6, 9) as well as between strains from the same
source (food, human, environment). An ANOVA test
implemented in R was performed on each dataset. We
also calculated the ratio of the number of nonsynon-
ymous substitutions per non-synonymous site (dN) to
the number of synonymous substitutions per synonym-
ous site (dS), which can be used as an indicator of select-
ive pressure acting on a protein-coding gene. To
calculate dN/dS (also known as Ka/Ks) of each core
gene, we used the kaks function implemented in the R
package seqinr [91].
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Inferring the population structure of C. sakazakii
Population structure analysis was done as previously de-
scribed [84]. In summary, we used RhierBAPS [34] to
identify distinct genetic clusters of C. sakazakii within the
broader, more heterogeneous population. The previously
generated core genome tree was used as an input in the R
package phytools [92] and the SCs were plotted on it
using the R packages ggtree [93] and ggplot2 [94]. We
used PopPUNK to elucidate the divergence of shared se-
quence and gene content in a population [24]. PopPUNK
compares all possible pairs of genomes by calculating the
proportion of shared k-mers of different lengths to deter-
mine core and accessory distances, which is used to gener-
ate a scatterplot of core and accessory distances which
shows the predicted clustering of strains [24].

Recombination detection

Recombination analysis was done as previously de-
scribed [84]. In summary, we used (1) PHI test imple-
mented in PhiPack v.1.0 (https://www.maths.otago.ac.
nz/~dbryant/software/phimanual.pdf) to determine the
statistical likelihood of recombination being present
in our dataset [56], (2) SplitsTree v.4.14.8 [57] to
identify phylogenetic reticulations, (3) fastGEAR to
detect evidence for gene mosaicism in core and
shared accessory genes [59], and (4) mcorr to calcu-
late the correlation profile, recombination coverage,
mean recombination fragment size and the relative
rate of recombination to mutation [58].

Functional classification of genes

We used PANTHER v.14.1 to analyze functional differ-
ences in gene content among sequence groups [42].
PANTHER uses hierarchical annotations from the Gene
Ontology (GO) Consortium for functional classifications
[95]. We performed comparisons of gene content
grouped by SC and by source against a reference list
containing all the genes in the pan-genome identified by
Roary. We used the GO database v.1.2 and genes were
classified according to biological process, molecular
function complete, and cellular component. The over-
representation tests were performed using Fisher’s Exact
Test with corrections for false discovery rates.

Detecting antibiotic resistance and virulence genes

We used ABRicate v.0.8.13 to identify horizontally
acquired genes that confer antibiotic resistance and genes
that are associated with virulence. ABRicate was used in
conjunction with Resfinder database [96] (updated on Au-
gust 30, 2019) and Virulence Factor Database [97] (up-
dated on August 30, 2019) with default settings. The
results were combined into a matrix and plotted against
the phylogenetic tree of the genus using R and the R pack-
ages ggplot2 [94], ggtree [93], and phytools [92].
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