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Abstract

Targeted covalent inhibitor design is gaining increasing interest and acceptance. A typical covalent 

kinase inhibitor design targets a reactive cysteine; however, this strategy is limited due to the low 

abundance of cysteine and acquired drug resistance from point mutations. Inspired by the recent 

development of lysine-targeted chemical probes, we asked if nucleophilic (reactive) catalytic 

lysines are common based on the published crystal structures of the human kinome. Using a newly 

developed pKa prediction tool based on continuous constant pH molecular dynamics, the catalytic 

lysines of 8 unique kinases from various human kinase groups were retro- and prospectively 

predicted to be nucleophilic, when kinase is in the rare DFG-out/αC-out type of conformation. 

Importantly, other reactive lysines as well as cysteines at various locations were also identified. 

Based on the finding, we proposed a new strategy in which selective type II reversible kinase 

inhibitors are modified to design highly selective, lysine-targeted covalent inhibitors. Traditional 

covalent drugs were discovered serendipitously; the presented tool, which can assess the 

reactivities of any potentially targetable residues, may accelerate the rational discovery of new 

covalent inhibitors. Another significant finding of the work is that lysines and cysteines in kinases 

may adopt neutral and charged states at physiological pH, respectively. This finding may shift the 

current paradigm of computational studies of kinases, which assume standard protonation states.
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INTRODUCTION

Protein kinases are signaling molecules involved in a wide range of human conditions, 

including cancer, and immunological, inflammatory, degenerative, metabolic, 

cardiovascular, and infectious diseases.1 Thus, modulating kinase functions offers broad 

therapeutic opportunities.1,2 Since the first FDA approval of the small-molecule kinase 

inhibitor imatinib (Gleevec) in 2001, 41 small-molecule kinase drugs have been approved 

for the treatment of cancer and other diseases.1,3 With over half of the approvals occurring in 

the past 4 years and over 250 candidate compounds under clinical evaluation,1,3 kinases 

form one of the most actively and successfully pursued drug target families. Despite the 

innovation speed, however, target selectivity and drug resistance remain two major obstacles.
1,4 Towards overcoming these obstacles and improving potency, targeted covalent kinase 

inhibitor (TCKI) design has captured growing interest in recent years.2,5–8 In TCKI design, 

an electrophilic “warhead” is incorporated in a reversible, submicromolar inhibitor to 

covalently bind a nucleophilic residue in a kinase, thereby inactivating the enzyme.6 Over 

the past few years, 5 cysteine-targeted covalent kinase inhibitors have been approved by the 

FDA. Here we present a computational approach to accelerate the discovery of novel TCKIs.

Currently, most TCKIs are directed at a nucleophilic cysteine near the kinase active site.6, 8 

Cysteine is highly nucleophilic, noncatalytic, and usually poorly conserved, which naturally 

introduces target selectivity; however, it is an uncommon amino acid and usually occurs far 

away from the binding site. Thus, the applicability of cysteine-targeted design is limited.9–11 

Moreover, point mutation of the covalently modified cysteine, e.g., C797S in EGFR12 and 

C481S in BTK,13 is emerging as a common resistance mechanism.12 Recently, lysine has 

been investigated as a potential alternative in the development of TCKIs.2, 9, 10 lysine is 

abundant and widely distributed in and around the druggable sites; as such, it provides the 

diversity lacking for cysteine in TCKI design. Furthermore, point mutation cannot occur for 

a functional lysine. However, the lysine-targeted strategy faces different challenges, 

particularly the lower nucleophilicity (hereafter referred to as reactivity) as compared to 

cysteine. The pKa of a typical lysine on the protein surface is around the model (solution) 

pKa value of 10.4.14, 15 Thus, at physiological pH 7.4, lysine is protonated and positively 

charged, not available as a nucleophile. In order for a lysine to become reactive, its pKa 

needs to shift down by 3 pH units or more. This is in contrast to cysteine, which is 

nucleophilic and easily oxidized. With a model pKa of 8.5,14, 15 just 1 pH unit above the 
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physiological pH, cysteine can deprotonate, becoming negatively charged and hyper-

reactive. To tackle the challenge and accelerate the discovery of lysine-targeted covalent 

inhibitors, we tested a state-of-the-art pKa prediction tool to identify reactive lysines as well 

as cysteines in the human kinome (Figure 1a).

The catalytic domain of a kinase consists of a β-strand rich N-lobe and an α-helical C-lobe, 

with the active or ATP-binding extremely conserved Glu, which forms a salt bridge with the 

catalytic lysine on the β3 strand when the kinase is active. Adjacent to the active site are 

three extremely conserved residues, Asp, Phe and Gly, called the DFG motif, which marks 

the beginning of the activation loop (A-loop, Figure 1b). The DFG motif can adopt two 

distinct conformations, DFG-in, where the Asp sidechain points into the ATP-binding site 

and forms a salt bridge with the catalytic lysine, and DFG-out, where the Asp sidechain 

points away but the Phe sidechain points in. An active kinase assumes the DFG-in/αC-in 

(DICI) conformation, while an inactive kinase can take on either a DFG-in/αC-out (DICO) 

or a DFG-out/αC-out (DOCO) conformation,17 the latter of which is rare (see later 

discussion). Kinase inhibitors can be classified in four types based on the binding mode and 

the kinase conformation.18, 19 Type I and II inhibitors bind the ATP-binding site in the 

respective DFG-in and DFG-out conformation,18 while type III and IV inhibitors bind 

outside of the active site and catalytic domain, respectively. A vast majority of the currently 

developed kinase inhibitors are type I.

Recently, Taunton and coworkers developed chemical probes for labeling a broad spectrum 

of kinases.20 Campos and coworkers at GlaxoSmithKline discovered the first selective, 

irreversible inhibitor for PI3Kδ that targets the catalytic lysine.10 By profiling over 9000 

lysines in human cell proteomes, Hacker, Backus, Cravatt, and coworkers identified several 

hundreds of hyper-reactive lysines enriched at functional sites of proteins.21 Inspired by 

these studies, we ask if reactive catalytic lysines are common in the human kinome. Using a 

kinase structure database and the continuous constant pH molecular dynamics (CpHMD) 

simulations,22 we identify reactive catalytic lysines in 8 unique human kinases. Our findings 

allow us to propose a general strategy for designing new lysine-targeted covalent kinase 

inhibitors. Our study also uncovers other reactive lysines as well as cysteines at various 

locations; some of the cysteines have already been targeted in the development of clinical 

and candidate compounds. Finally, we discuss the broader use of our tool and the 

implication of our findings for the mechanistic understanding of kinase conformational 

dynamics.

RESULTS AND DISCUSSION

Narrowing the search space for reactive catalytic lysines in the human kinome.

The KLIFS database (http://klifs.vu-compmedchem.nl)23 contains all published human 

kinase crystal structures (8854 structure models in 4193 unique PDB entries at the time of 

our study). For assessment of lysine reactivities, we use pKa values, i.e., a reactive lysine has 

a pKa significantly downshifted from the model pKa of 10.4 to the physiological pH range. 

Thus, to narrow the search space, we first consider the major physical determinants of a pKa 

shift. Solvent exposure is a major determinant – water stabilizes the charged state, whereas 

hydrophobic interior stabilizes the neutral state. Therefore, buried lysines tend to have lower 
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pKa’s and buried cysteines tend to have higher pKa’s relative to the model values. The 

second major determinant of a pKa shift is electrostatic interaction as well as hydrogen 

bonding. A salt bridge stabilizes the charged lysine, and in a hydrophobic environment, the 

stabilization is enhanced, typically resulting in a pKa upshift for lysine. For cysteine, 

however, a hydrogen bond or a positively charged residue nearby stabilizes the charged state 

and downshifts the pKa.

Now we consider the environment of catalytic lysine in four types of kinase conformation, 

i.e., DICI, DICO, DOCI, and DOCO. In the DICI, DICO, or DOCI conformation, the 

catalytic lysine forms a salt bridge with DFG-Asp or/and αC-Glu and is thereby charged. 

Thus, the catalytic lysine can only become reactive in a DOCO conformation. Indeed, the 

chicken SRC (c-SRC) and EGFR kinases labeled by the chemical probes of Taunton and 

coworkers20 are in such a conformation. Following this reasoning, we searched the KLIFS 

database, which annotates the kinase structures in the aforementioned three types of 

conformation. The search returned 306 DOCO structures, accounting for about 7% of the 

total PDB entries, of which all but 18 are in the ligand-bound form (Figure 1a). The DOCO 

structures cover 58 kinase genes, which is about 11% of the total number (538) of human 

kinase genes. These genes belong to 7 kinase groups, leaving out CK1 as the only major 

group for which no DOCO structure was found. The TK group had the largest number of 

DOCO structures (151), followed by CMGC (71) and TKL (40).

Since DFG-out or αC-out conformation is not defined using the distance between the 

catalytic lysine and DFG-Asp or αC-Glu,23–25 it is possible that the catalytic lysine is 

involved in a salt bridge with DFG-Asp or αC-Glu. To rule out this possibility, we excluded 

the DOCO structures, in which the distance between the catalytic lysine amine nitrogen and 

the nearest carboxylate oxygen of DFG-Asp or αC-Glu is below 4Å. Applying this criterion 

and keeping one structure per kinase gene (the first entry in the database), the set of 306 

DOCO human kinase structures was further reduced to 16 structures (5%), representing 16 

unique genes from 6 kinase groups (Fig. 1a and Table S1). All but one structures were from 

co-crystals, among which 13 contained type II inhibitors and 2 contained type III inhibitors. 

Considering the long history of experimental17 and theoretical26 studies of c-SRC, we added 

a c-SRC structure to the data set. Note, inhibitors in the EGFR (PDB: 5U8L) and c-SRC 

(PDB: 5K9I) structures form a covalent bond with the catalytic lysines.20 Thus, the pKa 

calculations would allow us to test if the lysine reactivity can be retrospectively predicted. 

Additionally, a mutant EGFR in the DOCO conformation without a lysine-targeted inhibitor 

(PDB: 5UG8) was included in the data set. Comparison to the wild-type EGFR calculation 

would allow us to test if our results are reproducible and if mutation perturbs the lysine 

reactivity. With the additional c-SRC and mutant EGFR kinases, our hand-curated data set 

included 18 structures.

Validation of continuous CpHMD for identifying lysines and cysteines with highly 
downshifted pKa’s.

Continuous CpHMD has been established as one of the most accurate27 and most 

validated28 pKa prediction tools. The most recent implementation in Amber18 takes 

advantage of the state-of-the-art GB-Neck2 implicit-solvent model29 and ff14SB force field,
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30 which allowed highly accurate de novo folding of a diverse set of proteins.29 The 

continuous CpHMD in Amber18 was benchmarked for pKa calculations of Asp, Glu and His 

residues in a diverse set of proteins, yielding a root-mean-square error of 0.91 with respect 

to the experimental pKa’s with 2-ns sampling time per pH replica.22 To test the predictive 

power of this tool for identifying highly shifted pKa’s of lysines and cysteines, we 

performed titration simulations of proteins, for which very large pKa downshifts of lysine 

and cysteine have been experimentally measured.

Simulations with 16 replicas occupying a pH range 3.5–11 were performed starting from the 

crystal structures of the V74K mutant of an engineered staphylococcal nuclease (mutant 

SNase, PDB: 3RUZ) and the human muscle creatine kinase (PDB: 1I0E). All sidechains of 

Asp, Glu, His, Cys, and Lys were allowed to titrate. Following our previous benchmark 

study,22 which established the convergence time of continuous CpHMD-based pKa 

calculations, each protein was simulated for 2 ns per replica or a cumulative time of 32 ns. 

The experimental pKa’s of Lys74 in the mutant SNase and Cys283 in creatine kinase are 

7.431 and 5.6,32 representing 3-unit downshifts from the model values of 10.4 and 8.5, 

respectively.14, 15 The calculated pKa’s of Lys74 in the mutant SNase and Cys283 in the 

creatine kinase are 6.8 and 5.5, respectively (Figure 2a and b). Thus, the calculated pKa 

downshifts for Lys74 and Cys283 are close to experiment. However, the former is 

underestimated by 0.6 units. It is worth noting that the calculated large pKa shifts of Lys74 

and Cys283 are unique, as expected. The pKa’s of most lysines in the mutant SNase are 

close to the model values or slightly upshifted, while the pKa’s of all other cysteines in the 

creatine kinase are significantly upshifted due to solvent exclusion (Figure 2a and Table S1).

To further validate the CpHMD tool for predicting downshifted pKa’s of lysines in a largely 

buried environment as the kinase catalytic cleft, we calculated the lysine pKa’s for two 

additional SNase mutants, V99K (PDB: 4HMI) and L125K (PDB: 3C1E). Our calculated 

pKa’s are 5.8 and 5.6, compared to the experimental values of 6.5 and 6.2,31 respectively 

(Table S2). Thus, the CpHMD simulations accurately reproduced the experimental relative 

pKa’s of V74K, V99K, and L125K; however, the absolute pKa’s are overall too low by 0.6 

units. The systematic underestimation of the pKa’s (or overestimation of the pKa downshifts) 

is likely due to the overestimated desolvation penalty of the charged lysine by the GB-Neck2 

model. We will keep the systematic error in mind when discussing the lysine pKa’s for 

kinases. We note, a large-scale benchmark study for lysine pKa calculations and possible 

improvement are not the focus of the current work and will be pursued in the future.

Physical determinants for the lysine and cysteine pKa downshifts.

The CpHMD calculated pKa’s are in a significantly better agreement with experiment, as 

compared to the pKa’s of 9.1 for Lys74 and 10.4 for Cys283 (Table S2) given by the popular 

empirical pKa prediction program Propka (latest version 3.1).33 Consistent with our recent 

findings using the CHARMM-based continuous CpHMD,34, 35 the differences arise form the 

fact that CpHMD captures the pH-dependent conformational dynamics whereas Propka only 

takes into account the crystal structure environment of the titratable sites.36 Analysis of the 

CpHMD trajectories shows that the pKa downshift of Cys283 can be mainly attributed to the 

hydrogen bond formation with the hydroxyl group of Ser285 and the carboxamide group of 
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Asn286, which stabilizes the ionized state of Cys283 (Figure 3a). The hydrogen bond 

occupancies increase with increasing pH and the degree of cysteine deprotonation (Figure 

2b), similar to the correlation between the pH-dependent hydrogen bonding and 

deprotonation of catalytic aspartates in proteases.36 Simulation suggests that the pKa 

downshift of Lys74 in the mutant SNase is almost exclusively due to solvent exclusion – the 

solvent accessible surface area decreases with increasing pH and degree of lysine 

deprotonation (Figure 3c). In contrast to the CpHMD simulations, Propka calculations do 

not account for the pH-dependent changes in the hydrogen bond occupancy and solvent 

exposure. Furthermore, the Propka calculation does not consider the hydrogen bond between 

Cys283 and Asn286, as it is not present in the crystal structure (PDB: 1I0E).

Catalytic lysines are predicted to be reactive in 8 unique human kinases.

Having validated CpHMD for predicting highly downshifted lysine and cysteine pKa’s, we 

applied the same protocol to the data set of 18 kinases to retro- (EGFR and c-SRC) and 

prospectively (other 16 kinases) predict reactive lysines and cysteines (inhibitors were 

removed in the simulations). To facilitate discussion, we consider a lysine or cysteine 

reactive if at least 10% of the population is deprotonated at pH 7.4, which corresponds to a 

pKa at or below 8.4 (reactive pKa). Similarly, a residue with a pKa at or below 7.4 (hyper-

reactive pKa) is considered hyper-reactive. To correct for the systematic underestimation of 

buried lysine pKa’s by 0.6, we use 7.8 and 6.8 to define the reactive and hyper-reactive 

lysines, respectively. We note, these definitions are not strict and can be refined after a more 

comprehensive study in the future. Accordingly, 8 unique human kinases contain a reactive 

catalytic lysine, including EGFR, MET, RIPK1, PDK1, CDK6, NEK2, Aurora, and PEK, 

and 2 of them, RIPK1 and CDK6, have a hyper-reactive catalytic lysine with a pKa below 

6.8 (Table 1). A complete list of the calculated pKa’s of the 18 kinases is given in Table S1. 

Our simulations predicted that CDK6 has the most nucleophilic catalytic lysine, with the 

pKa value shifted as low as 6.1, which means it is predominantly neutral at physiological pH 

and prone to form a chemical bond with an electrophile. Interestingly, the calculated pKa’s 

are 7.3 and 8.1 for the catalytic lysines in EGFR and c-SRC, respectively. While the EGFR 

lysine is reactive according to our definition, the one in c-SRC is on the borderline, with a 

pKa 0.3 units higher than 7.8. Nevertheless, the calculated pKa’s are consistent with the 

experimental finding that both EGFR and c-SRC lysines can be chemically modified.20 As 

to the L858R/T790M mutant EGFR, the calculated pKa of the catalytic lysine is 7.1, similar 

to the wild-type (7.3), although the mutant was not targeted by a chemical probe.37 The 

agreement between the mutant wild-type pKa’s confirms the reproducibility of the CpHMD-

derived pKa’s and suggests that the mutation does not perturb the reactivity of the catalytic 

lysine, which may be a general feature of EGFR in the DOCO conformation.

One question arises as to why only 9 out of the 18 catalytic lysines studied by CpHMD were 

found to be reactive in our simulations. Analysis showed that the significant pKa downshift 

can be solely attributed to desolvation of the conserved lysine in a hydrophobic environment, 

very similar to Lys74 in the V74K SNase (Figure 3c). In the simulations of the other 9 

kinases, however, the lysine either gained more solvent access or it engaged in interactions 

with DFG-Asp or/and αC-Glu. As a result, the pKa’s did not shift below 7.8 (reactive pKa). 

2 kinases, c-SRC and AMPKa2, may be considered borderline-reactive, with the pKa’s of 
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8.1 and 8.3, respectively, which are within 0.5 unit from 7.8. The other 7 kinases, ABL1, 

IRE1α, LOK, LIMK2, ULK3, PAK1, NTRK3, have increasing pKa’s from 8.5 to 9.7. The 

DOCO conformation is found for 58 out of 538 unique human kinase genes (11%) and 

simulations predicted 8 of them to contain reactive catalytic lysines (< 2%). These results 

suggest that a catalytic lysine only becomes reactive when the kinase adopts a very rare 

(high-energy) conformation. If the probability of adopting such a conformation, especially 

when combined with another conformational characteristic, is a feature that can distinguish 

between different kinases, targeting catalytic lysine can be a general approach for selective 

TCKI design. A recent experiment revealed that some inhibitors can significantly stabilize 

the DFG-out state of Aurora kinase.38 Thus, it is likely that the presence of type II inhibitors 

may heighten the lysine reactivities in some kinases, an effect not captured by our apo 

simulations.

Other reactive lysines and reactive cysteines at various locations.

Surprisingly, simulations of the 18 hand-curated kinases suggested that lysines in other 

locations may also be reactive. The conserved lysine at HRD+2 position (Figure 1b), which 

is on the catalytic loop (C-loop) and proximal to the binding site, is reactive in CDK6 and 

PEK. Lys147 of CDK6 is hyper-reactive with a pKa of 6.1, and Lys939 of PEK is reactive 

with a pKa of 7.3 (Table 1).

Simulations also discovered reactive, non-conserved cysteines at various locations, some of 

which are proximal to the binding site and have already been targeted by clinical and 

candidate TCKIs.2, 6 These locations include the roof, e.g., Cys15 on β1 of CDK6, and the 

DFG+2 position, e.g., Cys411 of PAK1 and Cys715 of IRE1α. The agreement between our 

retrospectively predicted reactive cysteines and those discovered in medicinal chemistry2 is 

encouraging. We should also note that Cys781 were predicted to be reactive in both the 

wild-type and mutant EGFR. The identical pKa’s provide another piece of evidence for the 

simulation reproducibility and suggest that the Cys781 environment is not perturbed by the 

mutation L858R/T790M.

We propose a new strategy for lysine-targeted TCKI design.

Currently, the FDA-approved kinase inhibitors do not target the rare DOCO conformation;3 

however, 7% of the crystal structures in the Protein Data Bank (11% of the human kinase 

genes) present such a conformation, mostly bound with a type II reversible inhibitor. Since a 

type II inhibitor occupies the ATP-binding site, we propose a general strategy, in which an 

electrophilic warhead is introduced to a selective type II inhibitor to covalently engage the 

catalytic lysine (Fig 1c). The feasibility of this approach is supported by the recent discovery 

of the first highly selective, lysine-targeted covalent inhibitor for PI3Kδ, whereby a 

selective, type I reversible inhibitor was modified to bond with the catalytic lysine.10 

Interestingly, this lysine has a low reactivity in the apo form due to the interaction with the 

nearby DFG-Asp in the DFG-in conformation (PDB: 6EYZ; calculated pKa>10; data not 

shown) but it becomes nucleophilic in the presence of the inhibitor, likely due to the highly 

electrophilic chemical warhead or the binding-induced solvent exclusion (a detailed study is 

warranted in the future). Our proposed strategy differs from the type I-based TCKI design 

and offers several advantages. The existing selective type II reversible inhibitors can be 
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“repurposed”. The scarcity of the kinase genes (8 or < 2%) that are predicted to have 

reactive catalytic lysines suggests a means to further improve target selectivity. Finally, due 

to the heightened lysine nucleophilicity, the electrophilic warhead can be made less reactive 

to minimize potential toxicity issues.

CONCLUDING DISCUSSION

We have demonstrated that the continuous CpHMD based pKa prediction tool can be used to 

assess the nucleophilicities of lysines and cysteines for TCKI design. Our validation data, 

consisting of proteins with experimentally measured, highly downshifted pKa’s for lysines 

and cysteines as well as kinases which have been targeted by chemical probes, demonstrated 

that reactive lysines and cysteines can be computationally predicted. We then applied the 

tool to retro-and prospectively predict reactive catalytic lysines based on the publicly 

available crystal structures of the human kinome. From a total of 58 unique human kinases, 

which have DOCO structures, we found that 16 display a conformation such that the 

catalytic lysine might be reactive (i.e., not interacting with DFG-Asp or αC-Glu). The 

CpHMD-based pKa calculations showed that 8 unique kinases possess reactive catalytic 

lysines (pKa below 7.8), 2 of which (RIPK1 and CDK6) are hyper-reactive (pKa below 6.8). 

These results suggest that reactive catalytic lysines occur in a very rarely populated 

conformational state. Thus, we proposed a new strategy, in which the selective type II 

inhibitors captured in the DOCO conformation are modified to design lysine-targeted TCKIs 

with increased selectivity.

Traditional covalent inhibitors were discovered through serendipity. Our tool, which 

implements the physics-based methods and analysis, is general and can assess the 

nucleophilicities of cysteines and lysines in any proteins. The present work is a proof-of-

concept of the potential applications to the rational design and discovery of new TCKIs. One 

caveat is that the GB-Neck2 based continuous CpHMD systematically overestimates the 

lysine pKa downshifts by 0.6 units and some of the cysteine pKa calculations were poorly 

converged within the simulation time. We note, the systematic error in the lysine pKa’s was 

accounted for in our prospective predictions and the incomplete convergence of the cysteine 

pKa’s did not affect the conclusions, as those pKa’s were slightly decreasing over time. 

Accuracy improvement and large-scale benchmarking studies for lysine as well as cysteine 

pKa calculations are under way in our group. Future work also includes the validation study 

using recently discovered reactive lysine and cysteine sites in other pharmaceutical targets.
9, 40, 41 The second caveat pertains to the small data set: our simulations only included one 

structure per kinase and DOCO structures, which showed a salt bridge involving the 

catalytic lysine, were excluded. Some reactive lysines may have been missed, as a salt 

bridge observed in the crystal structure is not alway stable in MD simulations.

With the recent implementation of the GPU-accelerated CpHMD method (Harris and Shen, 

unpublished), a kinome-wide comprehensive scanning will be carried out to more 

systematically study and uncover new covalently targetable sites. More importantly, it will 

allow us to extend the work to the proteome level, where computational predictions can be 

tested against the recently discovered hyper-reactive cysteines42, 43 and lysines21 in the 

human proteome. As a preliminary test, we performed simulations to calculated the pKa’s of 
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Cys22 in the MAP3 kinase ZAK (or MLTK) and Lys88 in the adenosine kinase ADK (Fig 

S12). Our simulations gave the pKa’s of 7.2 and 7.5 for Cys22 of ZAK and Lys88 of ADK, 

respectively, consistent with the hyper-reactivities found by the chemical proteomic 

experiments.21, 43, 44 Future work will systematically explore the topic using a much larger 

data set and our most recent GPU-accelerated implementation of the CpHMD tool.

Applications of higher-level methods such as the hybridsolvent34 and all-atom22 continuous 

CpHMD, which can more accurately describe pH-dependent conformational dynamics, can 

help answer detailed questions, for example, how ligand binding and conformational 

dynamics modulate the reactivities of potentially targetable sites. Recent experimental 

advances demonstrated that a large number of functional lysines in the endogenous kinases20 

as well as the human proteome21 can be chemically modified. While our data implies that 

the electrophilic probe attacks lysine in a rarely populated conformational state, it is possible 

that the presence of the probe molecule enhances the lysine reactivity through modification 

of the dielectric environment or stabilization of the rare conformational state. Future studies 

utilizing higher-level methods will provide more detailed mechanistic insights to 

complement and accelerate experimental discoveries. With respect to conformational 

dynamics, a significant finding based on the present results is that lysines and cysteines of 

kinases may adopt neutral and charged states at physiological pH, respectively. This 

information may shift the current paradigm of computational studies of kinases, which 

assume fixed protonation states, e.g., lysines and cysteines are always protonated.26, 45

METHODS and PROTOCOLS

Database search.

The KLIFS database (http://klifs.vucompmedchem.nl)23 was used to curate a data set for 

simulations. First, a search for the DOCO structures within the human kinome structures 

was conducted, which returned the following kinase groups, with the number of unique PDB 

entries given in parentheses: AGC (2), Atypical (0), CAMK (5), CK1 (0), CMGC (77), 

Other (16), RGC (0), STE (8), TK (157), and TKL (41). For AGC, CAMK, Other, and STE, 

which have few DOCO structures, we examined each structure and manually selected those, 

in which the minimum sidechain heavy-atom distances between the catalytic lysine and 

DFG-Asp/αC-Glu are greater than 4 Å. For CMGC, TK, and TKL, which have many 

DOCO PDB entries, we further narrowed down to the kinase genes, and for each gene we 

picked the first PDB entry that met the above distance criterion. Using this protocol, we 

arrived at 16 unique PDB entries representing 16 unique kinase genes from 6 kinase groups 

(Table S1).

Structure preparation.

The above hand-curated data set of 16 human kinase PDB entries was supplemented by the 

PDB entries of a c-SRC (PDB: 5K9I) and a mutant human EGFR (PDB: 5UG8). The first 

kinase chain or model in each PDB entry was selected, and hydrogen atoms, water 

molecules as well as inhibitors were removed. These 18 structures (Table S1) were used to 

search for reactive catalytic lysines. Following our previous work,22 CHARMM46 was used 

to prepare the structures for continuous CpHMD simulations. Lys and Cys residues had one 
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dummy hydrogen, while His, Asp and Glu were prepared with two dummy hydrogens. The 

dummy hydrogens in Asp and Glu were oriented in the syn configuration. The hydrogen 

positions were then relaxed using 10 steps of steepest descent and 10 steps of adopted basis 

Newton-Raphson minimization in the GBSW implicit solvent,47 whereby the heavy atoms 

were harmonically restrained with a force constant of 50 kcal/mol/Å2. The coordinate le was 

then converted to the Amber format using the LEaP facility in Amber18.48

Continuous constant pH molecular dynamics protocol.

The GB-based continuous CpHMD22 simulations were performed using the pmemd 

program in Amber18.48 Proteins were represented by the 14SB force led30 and solvent was 

represented by the GB-Neck2 implicit-solvent model49 with mbondi3 intrinsic Born radii 

and 0.15 M ionic strength. Note, cysteine parameters were not set in the GB-Neck2 model.49 

Following the guidelines given in the GB-Neck2 paper49 and test calculations of the 

solvation free energy of the blocked cysteine model compound (with N terminus acetylated 

and C terminus amidated), we set the scaling parameter (Sx) of sulfur to that of oxygen 

(1.061039) and increased the intrinsic Born radius from the default value of 1.8 to 2.0 Å (the 

desolvation penalty was too small with the radius of 1.8 Å). An extensive validation study of 

cysteine pKa calculations is underway. Prior to the CpHMD runs, energy minimization was 

performed for the protein in the GB solvent, using 2000 steps of steepest descent and 8000 

steps of conjugate gradient method. During minimization, a harmonic restraint with a force 

constant of 100 kcal/mol/Å2 was applied to the heavy atoms.

One set of pH replica-exchange CpHMD simulations was run for each protein. 16 

trajectories were initiated with the same conformation but different pH conditions (pH 3.5 to 

11 with an interval of 0.5 pH unit). Each replica underwent Langevin dynamics at 300 K 

with a collision frequency of 1 ps−1. A 2-fs time step was used with bonds involving 

hydrogen atoms constrained with the SHAKE algorithm.50 pH exchanges between adjacent 

replicas were attempted every 250 steps (0.5 ps) according to the Metropolis criterion. Each 

replica was run for 2 ns, resulting in a cumulative sampling time of 32 ns for each protein. 

All sidechains of Asp, Glu, His, Cys, and Lys were allowed to titrate, with the model pKa’s 

of 3.8, 4.2, 6.5, 8.5, and 10.4, respectively. All settings were identical to our previous work.
22 Unless otherwise noted, the first 200 ps was discarded in all calculations and analysis.

Derivation of model parameters for cysteine and lysine.

Following the protocol in our previous work,22 the parameters in the model potential of 

mean force function, Umodel(λ) = A(λ − B)2, Ace-X-NH2, where X=Lys or Cys, were 

derived. Brie y, the average forces, 〈∂U/∂λ〉, at several λ values between 0 and 1 were 

calculated based on 5-ns GB simulations. An ionic strength of 0.1 M was used, in accord 

with the experimental model titration study.14 Fitting the average forces at different λ to the 

derivative of the model function gave the parameters A and B.

pKa calculations.

The unprotonated fraction (S) of a titratable residue at different pH was calculated using the 

definitions of the protonated (λ < 0.2) and deprotonated (λ > 0.8) states, as in our previous 
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work.22 The pKa was calculated by fitting the S values to the generalized Henderson-

Hasselbalch equation, S = 1/(1 + 10
n(pKa − pH)

), where n is the Hill coefficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of reactive lysines (and cysteines) in the human kinome.
a) Kinome tree representation of kinases (generated with KinMap16). The kinase groups are 

labeled; blue dots represent the kinases with predicted reactive lysines. Above the kinome 

tree, approximate proportions are given: unique PDB entries for the human kinome (4193), 

kinase genes with DOCO structures (306), DOCO structures, in which the catalytic lysine is 

not involved in any salt bridge (16), and structures with identified reactive catalytic lysine 

(8). Table 1 also contains a mutant EGFR and a c-SRC as validation cases. The complete list 

of kinases studied by CpHMD is given in Table S1. b) Retro- and prospectively predicted 

locations of reactive lysines (blue) and cysteines (orange: targeted in existing covalent 

inhibitors; yellow: prospectively predicted in this work) mapped on the EGFR structure 

(PDB: 5U8L). The catalytic lysine, αC-Glu, and DFG-Asp are shown in the stick model. c) 
Predicted lysine and cysteine pKa’s of PEK (PDB: 4X7N). d) A zoomed-in view shows the 

proximity of the type II reversible inhibitor (orange) and the catalytic lysine (blue) in PEK.
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Figure 2. Simulations reproduced highly downshifted pKa’s of cysteine and lysine.
a) Simulated titration curves for Cys283 in creatine kinase (magenta) and Lys74 in the 

V74K mutant SNase (blue). In the insets, the calculated pKa’s of all cysteines (Cys283 in 

magenta) in creatine kinase and all lysines (Lys74 in blue) in the mutant SNase are given. 

For clarity, pKa’s above 11 are shown as 11 (complete pKa’s are given in Table S3). b) 
Structures of creatine kinase (PDB: 1I0E) and the V74K mutant SNase (PDB: 3RUZ). 

Cys283 and Lys74 are highlighted; their calculated and experimental31, 32 pKa’s (in 

parentheses) are given.
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Figure 3. pH-dependent hydrogen bonding and solvent exposure.
a) Zoomed-in view of the hydrogen bonds between Cys283 and Ser285/Asn286 in creatine 

kinase (PDB: 1I0E). The hydroxyl of Ser285 and amide of Asn286 are the hydrogen bond 

donors, while the thiol of Cys283 is the hydrogen bond acceptor. b) Occupancies of the 

Cys283…Ser285 (red) and Cys283…Asn286 (blue) hydrogen bonds at different pH. To 

dene hydrogen bonds, a donor-acceptor heavy-atom distance of 3.5 Å and an angle of 30° 

were used. c) Solvent accessible surface area (SASA) of Lys74 in V74K SNase at different 

pH.
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