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Abstract

Neutrophils are phagocytic innate immune cells essential for killing bacteria via activation of a 

wide variety of effector responses and generation of large amounts of reactive oxygen species 

(ROS). Majority of the ROS in neutrophils is generated by activation of the superoxide-generating 

enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Independent of their 

anti-microbial function, NADPH oxidase-derived ROS have emerged as key regulators of host 

immune responses and neutrophilic inflammation. Data from patients with inherited defects in the 

NADPH oxidase subunit alleles that ablate its enzyme function as well as mouse models 

demonstrate profound dysregulation of host inflammatory responses, neutrophil hyperactivation 

and tissue damage in response to microbial ligands or tissue trauma. A large body of literature now 

demonstrates how oxidants function as essential signaling molecules that are essential for the 

regulation of neutrophil responses during priming, degranulation, neutrophil extracellular trap 

formation, and apoptosis, independent of their role in microbial killing. In this review we 

summarize how NADPH oxidase-derived oxidants modulate neutrophil function in a cell intrinsic 

manner and regulate host inflammatory responses. In addition, we summarize studies that have 

elucidated possible roles of oxidants in neutrophilic responses within the oral mucosa and 

periodontal disease.
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1 | INTRODUCTION

Reactive oxygen species (ROS) collectively refer to a large group of highly reactive 

derivatives of oxygen generated as a consequence of metabolic processes or during host 

stress response. Although associated with oxidative damage, when produced at low 

regulated levels, oxidants are essential for redox modulation of cellular pathways, immune 

effector function, cell signaling and anti-microbial responses. The majority of ROS 

generated in a cell is by the activation of the nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidases or NOX enzyme complexes. NOX enzyme family members NOX1, 

NOX2, NOX3, NOX4, NOX5 and the dual oxidase (DUOX) enzymes DUOX1, and DUOX2 

are membrane associated hetero-oligomeric complexes that are dedicated to generation of 

ROS by using oxygen as its substrate. NOX enzymes are expressed in a cell specific or 

tissue specific manner and are rapidly activated in response to external stressors to generate 

large amounts of ROS. NOX2 or gp91phox is the main catalytic subunit of the leukocyte 

NADPH oxidase complex. It is highly expressed in phagocytes (neutrophils, monocytes, 

macrophages, dendritic cells) and at much lower levels in lymphocytes, endothelial cells and 

colonic epithelial cells.1,2 NOX2 derived oxidants modulate multiple cellular processes 

independent of their anti-microbial function. For instance, NADPH oxidase activation is 

essential for antigen presentation in B cells3, T cell receptor stimulation4 and subset 

polarization.5,6 In addition, Nox2 has also been detected in colonic epithelial cells where its 

capacity to produce superoxide (O2
−) in response to microbial stimulations may facilitate the 

attachment of commensals such as Escherichia coli to the colonic mucus layer.7 Epithelial 

cell-derived O2
− within the gut has been implicated to modulate the composition of the gut 

microbiome, by altering gene transcription and crosstalk between bacteria. It should be 

noted that a homolog of Nox2, Noxl is expressed in the epithelial cells in the colon and may 

functionally overlap with Nox2 in the responses of these cells to the gut microbiome.8,9 

These findings indicate that oxidants play diverse roles in the regulation of host responses. 

NOX2 has been extensively studied over the last 40–50 years for its role in the activation of 

the phagocyte oxidative burst (Phox), also known as the respiratory burst during 

phagocytosis; however, recent data from our lab and others now demonstrate a critical role 

for NOX2-derived ROS in the modulation of neutrophil responses during inflammation. In 

this review, we will specifically focus on the newly appreciated roles of NOX2 or the 

leukocyte NADPH oxidase in the regulation of neutrophil effector functions in the context of 

inflammation and inflammatory disorders.

Neutrophils are the most abundant leukocytes in human blood that are crucial for host innate 

immune responses during infection and inflammation. In response to soluble or particulate 

stimuli, neutrophils activate a battery of effector responses including the activation of 

NADPH oxidase to produce large quantities of ROS. Oxidants generated are crucial for 

pathogen elimination, and can further activate or modulate other effector responses in 

neutrophils such as priming, degranulation, apoptosis and formation of neutrophil 

extracellular traps (NET). Neutrophils are functionally and phenotypically heterogeneous 

cells that influence the outcome in multiple chronic inflammatory diseases such as arthritis, 

dermatitis, and periodontitis, thus playing a key role in immune regulation.10,11 Here we 

present mechanistic insights derived from published literate on how NADPH oxidase 
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derived oxidants regulate neutrophil effector responses outside of their role in microbial 

killing. Excessive ROS generation by neutrophils is often associated with oxidative stress 

and chronic inflammation, however this view is now being challenged from observations in 

patients and mouse models where complete loss of NADPH oxidase activity was associated 

with hyperinflammation. We have summarized recent published data from our laboratory 

and others that supports the somehow counter-intuitive role of NADPH oxidase in 

dampening host inflammation and redox regulation of host inflammatory pathways.

2 | COMPOSITION, ASSEMBLY AND ACTIVATION OF THE NADPH 

OXIDASE COMPLEX

The NADPH oxidase complex is comprised of 2 membrane bound subunits and three 

cytosolic regulatory subunits, all encoded by distinct genes. The phagocyte oxidase or phox 
subunits are referred to by their molecular mass or gene names and assemble together to 

form an active complex that transfers NADPH-derived electrons to its substrate O2. The 

membrane-restricted flavocytochromeb558 is a homodimer formed by two integral 

membrane restricted proteins, the glycosylated gp91phox (NOX2 or CYBB), and the non-

glycosylated p22phox (CYBA) subunits. The gp91phox subunit is the main redox center of the 

complex, and is responsible for the electron transferase activity of the complex. The 

cytosolic flavin adenine dinucleotide (FAD) domain of gp91phox receives two electrons from 

NADPH that are sequentially transferred along two internal heme moieties within the 

membrane-spanning gp91phox core. The p22phox subunit is an obligate binding partner of 

gp91phox and is essential for the stability of the heterodimer. It also provides docking sites 

critical for the assembly of the regulatory subunits of the oxidase that translocate from the 

cytosol.12 In resting neutrophils, the majority of the flavocytochromeb558 stores are localized 

within the specific (secondary) granules and secretory vesicles. Neutrophil activation or 

priming causes granule exocytosis delivering the flavocytochromeb558 to the plasma and 

phagosomal membranes.13

Activation of the enzyme complex is tightly regulated by a series of protein-protein and lipid 

binding interactions that mediate the translocation of the cytosolic subunits of NADPH 

oxidase to the plasma or phagosomal membrane. Concurrent events lead to Rac activation. 

Rac belongs to the Rho family of GTPases and is an obligate binding partner of the NADPH 

oxidase enzyme complex. The cytosolic subunits p47phox(Neutrophil Cytosolic Factor 1 

[NCF1]), p67phox (NCF2), and p40phox (NCF4), form a tripartite complex in the cytosol of 

quiescent neutrophils (Figure 1). In resting cells, p47phox is present in an inactive or auto-

inhibitory conformation. Upon phagocytosis or receptor ligation, downstream kinases such 

as protein kinase C (PKC) isoforms, protein kinase A (PKA), phosphoinositide 3-kinase 

(PI3K) and mitogen activated protein kinases (MAPKs) ERK1/2 and p38 mediate p47phox 

phosphorylation.14,15 Phosphorylation induced conformational changes in p47phox exposes 

its Src-homology (SH) domain that interacts with Proline residues on p22phox.16 p47phox 

also contains a PX (Phox homology) domains that bind to the transiently generated 

phosphoinositides within the membrane. This interaction allows for the retention of the 

subunit on the membrane.15
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Activation and membrane translocation of p47phox also brings p67phox and p40phox to the 

membrane. p67phox has an internal activation domain that regulates the transfer of NADPH-

derived electrons to the flavin domain of gp91phox.17 p67phox interacts with GTP-bound Rac, 

an essential component of the NADPH oxidase holoenzyme. Concurrent to the activation of 

NADPH oxidase cytosolic subunits, Rac-GDP is converted to its active Rac-GTP form by 

guanine nucleotide exchange factors (GEFs). Rac-GTP translocates to the membrane and 

binds to gp91phox and p67phox.18‘22 p47phox and p40phox act as adaptor proteins that 

positively regulate enzyme assembly on the plasma membrane. p40phox plays a specialized 

role in regulating NADPH oxidase activation. It binds to the phosphatidylinositol 3-

phosphate (PI(3)P) generated in the membrane via its PX domain. Matute et al reported a 

patient with missense mutations in the PI3P binding domain of p40phox had selective defects 

in phagosomal ROS generation in neutrophils, while the plasma membrane levels were 

unaffected.23,24 Thus, p40phox positively regulates NADPH oxidase function and is essential 

for high-level O2
− generation within phagosomes.

Upon complete assembly, the NADPH oxidase transfers NADPH derived-electrons to 

molecular O2 generating O2
−(Figure 1). Large amounts of O2

− are generated by human 

neutrophils. For instance, 7–10 nmol min−1 10−6 cells of O2
− are produced on stimulation 

with phorbol 12-myristate 13-acetate (PMA) as measured by ferric cyto-chrome C assays. 

Other factors contributing to sustained O2
− production include a quick turnover of the 

enzyme complex and high affinity for its substrate O2. The Km for oxygen (NADPH oxidase 

substrate) is ~10, equivalent to ~7 mm Hg pO2. Thus, the NADPH oxidase complex can 

continue to produce O2
− in tissues with low oxygen tension such as the gingival cavity.20,25

Excessive ROS generation or prolonged activation of the enzyme complex can cause 

oxidative damage and prolong inflammation. Thus, the activity of NADPH is tightly 

regulated and triggered only in response to stimuli via complex signaling pathways. Apart 

from the kinases that mediate subunit phosphorylation and membrane phospholipid 

generation, activation of voltage gated proton channels, chloride channels and accompanying 

calcium fluxes also regulate NADPH oxidase activity (reviewed by Nunes et al18). The 

absolute amount of ROS generated is also dependent on the priming status and complexing 

of activating receptors on neutrophils. Further, neutrophils also contain “deactivation 

pathways” that lead to disassembly of the NADPH oxidase and terminate O2
− generation 

(reviewed by Decoursey et al26).

3 | NADPH OXIDASE IN OXIDATIVE KILLING OF MICROBES

Neutrophils are phagocytic cells whose primary function is to defend the host against 

bacterial and fungal infections. Inherited defects that adversely affect neutrophil numbers or 

their effector functions are associated with higher susceptibility to recurrent infections 

indicating that neutrophils are indeed key in the early responses to an infection. To facilitate 

the recognition of microbial ligands, and their phagocytosis, neutrophils express a large 

arsenal of receptors. Ligation or activation of Toll like receptors (TLRs), Fc gamma 

receptors (FcR), G-protein coupled receptors (GPCRs), C-type lectin receptors and integrins 

on neutrophils potently activates NADPH oxidase, generating large amounts of oxidants.
27,28 Separately, antimicrobial granule proteins (lactoferrin, myeloperoxidase, defensins, 
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proteases, lysozyme, calprotectin, etc) are rapidly mobilized into phagosomes or into the 

extracellular environment that aid in microbial killing. Conventionally this has been viewed 

as a non-oxidative mechanism of killing. However, now it is increasingly apparent that the 

oxidative (ROS generation) and non-oxidative mechanisms synergize and work in concert to 

kill bacteria. We refer the readers to excellent reviews by Nauseef et al29 and Uriarte et al,30 

that discuss the synergy and interdependence of these processes.

Although large amounts of O2
− are produced during phagocytosis, O2

− anions have low 

antibacterial activity and are short lived (microseconds). They either dismutate 

spontaneously or are enzymatically converted to hydrogen peroxide (H2O2) by superoxide 

dismutase. H2O2 is further converted to other forms of ROS with potent anti-microbial 

activity by the myeloperoxidase-hydrogen peroxide-halide system that converts H2O2 to 

hypochlorous acid on reaction with chloride ions (Cl−). Myeloperoxidase (MPO) released 

from neutrophil primary/azurophilic granules into the phagosomes is critical for this process. 

Neutrophils isolated from patients with MPO deficiency are less effective in killing bacteria, 

demonstrating a synergy between oxidative and non-oxidative killing pathways.31 

Separately, H2O2 can also be oxidized by iron to produce hydroxyl radicals (OH−) via 

Fenton chemistry that is highly toxic to bacteria.27,32 The antimicrobial potential for ROS 

stems from its ability to cause irreversible damage to bacterial DNA, proteins, and lipids that 

eventually kills the bacteria. To prolong their survival, several pathogenic bacteria actively 

produce toxins or effector proteins to prevent the translocation of NADPH oxidase subunits 

to phagosomes and restrict NADPH oxidase assembly on the phagosome. Pathogens such as 

Francisella tularensis, Anaplasma phagocytophilum, and Helicobacter pylori have developed 

strategies to subvert killing by neutrophils. Virulence mechanisms employed by these 

pathogens are listed in Table 1.

The critical role of NADPH oxidase in host antimicrobial responses was evident from 

chronic granulomatous disease (CGD), an immunodeficiency affecting ~1 out of 200 000 

individuals in the US. X-linked (CYBB) or autosomal recessive mutations in NADPH 

oxidase genes (CYBA, NCF1, NCF2, and NCF4) that ablate enzyme activity cause CGD.
23,24,33–35 CGD patients suffer from life-threatening bacterial and fungal infections resulting 

in high mortality and morbidity. Over-representation of certain bacterial infections caused by 

catalase positive microorganisms such as Staphylococcus aureus, Pseudomonas, 
Burkholderia cepacia as well as fungal species such as Aspergillus are common. Despite 

prophylactic use of antibiotics and antifungals, the average life span of CGD patients is short 

(four decades) and associated with significant morbidity. Thus, the oxidants generated by 

NADPH oxidase are critical mediators of host anti-microbial defense.

4 | NADPH OXIDASE IN NEUTROPHIL PRIMING AND DEGRANULATION

Neutrophil priming or pre-activation refers to the broad range of phenotypic and molecular 

changes that poise neutrophils in a state of heightened sensitivity or “readiness” to respond 

to subsequent secondary stimulation. Circulating neutrophils exist in a relatively quiescent 

state. Their activation is dynamically regulated and pro-gresses from a quiescent state to an 

intermediate “primed” state as they transmigrate to the site of infection or injury and 

encounter low levels of inflammatory cytokines (TNF-α, GM-CSF, IL-1β), chemoattractants 
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(C5a, fMLF PAF, LTB4) or TLR agonists (LPS, flagellin, lipopeptides). A comprehensive 

list of neutrophil priming agents can be found in excellent reviews by Miralda et al36 and El-

Benna et al.37

Priming augments the microbicidal capacity of neutrophils by enhancing O2
− production, 

degranulation responses, inflammatory mediator production, and phagocytic capacity.36–38 

However, priming alone does not cause preassembly of the NADPH oxidase complex. 

Priming agents can induce partial phosphorylation of NADPH oxidase cytosolic subunits 

with partial exocytosis of secretory vesicles and secondary granules that contain ~60%−70% 

flavocytochromeb558 to the plasma membrane. GM-CSF and TNF-α induce partial 

phosphorylation of p47phox at the Ser345 residue via activation of ERK1/2 and p38 MAPKs. 

Site-directed mutagenesis experiments demonstrated that phosphorylation of Ser345 on p38 

is critical for neutrophil priming.39,40 The TNF-α-induced increase of gp91phox at the 

plasma membrane is dependent on granule exocytosis.41 Endotoxin induced priming 

responses elicited by low doses of lipopolysaccharides (LPS) induce the redistribution of 

flavocytochromeb558 from secondary granules to the plasma membrane42 and also into the 

recycling endosomal compartments. Thus changes in the location and/or phosphorylation of 

NADPH oxidase subunits upon priming leads to the generation of tonic or low basal levels 

of intracellular ROS critical in regulating the magnitude of neutrophil degranulation 

responses to secondary stimulation.43,44

Neutrophils contain four different types of granules. The primary (azurophilic) granules 

contain histotoxic enzymes, including elastase, MPO, and antimicrobial enzymes, cathepsins 

and defensins. The secondary and tertiary granules contain lactoferrin and matrix 

metalloprotease 9 (also known as gelatinase B), respec-tively. The secretory vesicles in 

human neutrophils contain human serum albumin, adhesion molecules and receptors such as 

CD11b and formyl peptide receptor (FPR1). Degranulation is a hierarchical process that is 

mediated by tightly regulated pathways.45 While exocytosis of tertiary granules and 

secretory vesicles can occur readily, exocytosis of azurophilic granules requires neutrophil 

priming, MAPK activation and low-level ROS generation.46,47 Potera et al suggested that 

NADPH oxidase-derived ROS are essential for preventing excessive degranulation 

responses. Further, neutrophils isolated from CGD patients that lack NADPH oxidase 

activity had significantly elevated elastase release from primary granules under both, 

unstimulated and TNF-α primed conditions.46 CGD neutrophils also have enhanced basal 

levels of activation markers like CDiib.47 These data indicate that NADPH oxidase-derived 

ROS are necessary to provide a negative feedback loop and prevent excessive degranulation 

that might lead to tissue damage. Alternatively, hyperactivation of other activation markers 

may reflect an attempt to compensate for the defect in ROS-mediated microbial killing due 

to the lack of NADPH oxidase activity.

While priming can facilitate the microbicidal potential of neutrophils, it can sustain or 

amplify neutrophil responses, thereby exacerbating chronic inflammatory disorders. Primed 

neutrophils have been observed in blood isolated from patients with systemic insults such as 

acute lung injury (ALI), trauma and hemorrhagic shock36 as well as from patients with 

chronic diseases such as inflammatory bowel disease,48 arthritis49 and periodontitis.50,51 
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Thus, understanding the molecular basis of how oxidants govern neutrophil priming 

responses is essential.

5 | NADPH OXIDASE IN NET FORMATION

NETosis refers to the extrusion of decondensed chromatin that is in-terlaced with neutrophil 

granular proteins and mitochondrial mate-rial from neutrophils. NETs contain nuclear DNA, 

are proteolytically active, and form a mesh like structure to trap bacteria in vitro and in vivo. 

NETs have emerged as an important arm of innate immune anti-microbial responses since 

their first description by Brinkmann et al.52 However, the molecular pathways leading to 

NET formation are diverse and NET formation can occur via a NADPH oxidase dependent 

or independent manner.

A diverse range of stimuli such as bacterial and fungal pathogens, calcium ionophores, 

inflammatory cytokines, PMA and immune complexes can all induce NETosis in vitro. In 

the NADPH oxidase dependent pathway of NET generation, O2
− is converted to H2O2 

which is the substrate for MPO. Thus, ROS mediated MPO activation and azurophilic 

granule mobilization causes the release of neutrophil elastase into the cytosol. Once in the 

cytosol, neutrophil elastase cleaves F-actin to break down plasma membrane integrity and 

also translocates to the nucleus to cleave histones promoting chromatin decondensation and 

subsequent extrusion.53 Chromatin decondensation is also promoted by the activation of 

peptidylarginine deiminase 4, an enzyme that citrullinates histones H3.54 CGD neutrophils 

fail to form NETs in response to various stimuli.55,56 The role of ROS in NET formation has 

also been controversial due to discrepancies in comparing healthy neutrophils treated with 

ROS scavengers to neutrophils isolated from CGD patients. Separately, the requirement for 

NADPH oxidase-derived ROS can vary depending on the nature of the activating stimuli. 

While the NADPH oxidase was dispensable for NET formation in response to Candida 
albicans, CGD neutrophils produced significantly less NETs in response to Aspergillus 
fumigatus, another fungal pathogen associated with life-threaten-ing infections and mortality 

in CGD patients.

6 | NADPH OXIDASE IN NEUTROPHIL LIFESPAN

Neutrophils are the most abundant immune cell in the blood and are recruited in large 

numbers to inflammatory sites where their collective histotoxic potential can prolong 

inflammation. Thus, timely regulation of neutrophil apoptosis is essential for resolution of 

inflammation and prevention of the release of its cytotoxic cargo into the tissue environment. 

Neutrophil apoptosis occurs via highly conserved programmed cell death pathways. The 

extrinsic pathway is triggered via ligation and oligomerization of death receptors (Fas, 

TRAIL, TNF-α receptors) that lead to the formation of a death inducing signaling complex 

and subsequent caspase activation. The intrinsic pathway is induced by incompletely 

characterized factors that precipitate in mitochondrial outer membrane permeabilization and 

the release of pro-apoptotic proteins (Bcl2 family members) into the cytosol. This leads to 

activation of executioner caspases.57–59
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In neutrophils apoptosis is “potentiated” via the activation of the NADPH oxidase and ROS 

generation. Phagocytosis and consequent NADPH oxidase activation by bacteria trigger a 

third apoptosis pathway, known as the phagocytosis induced cell death (PICD) pathway.
60–66 Activation of the NADPH oxidase is positively regulated by the numbers of bacteria 

phagocytosed (multiplicity of infection),63 as well the complexing of NADPH oxidase 

activating receptors.66 Certain pathogens actively subvert NADPH oxidase activity sub-

verting PICD to survive in neutrophils (Table 1). CGD neutrophils lacking NADPH oxidase 

function are unable to undergo PICD.67 When injected with heat-killed S. aureus, oxidase 

null mice exhibited defective apoptosis in vivo leading to impaired recognition and 

subsequent clearance.68 Delayed neutrophil apoptosis can dysregulate resolution as 

neutrophils in inflammed tissues can actively sustain inflammation via prolonged production 

and release of inflammatory mediators.

7 | NADPH OXIDASE IN EFFEROCYTOSIS OF APOPTOTIC NEUTROPHILS

Efferocytosis refers to the ingestion of apoptotic cells by professional phagocytes and other 

non-phagocytic cells. Prompt removal of apoptotic cells is essential to prevent the loss of 

cellular integrity and the leakage of cellular contents. Dying cells advertise their presence by 

the production of several secreted “find me” signals and simultaneously undergo molecular 

changes that generate “eat me” signals essential for uptake. Up-regulation of 

phosphatidylserine (PS) in the outer leaflet of the plasma membrane of apoptotic cells 

provides a key apoptosis associated ligand. PS receptors (TIM4, BAI1, TAM) then regulate 

the uptake of PS expressing cells and their subsequent clearance.69,70 Recent studies 

demonstrated that oxidation of PS at the fatty acyl chains transforms it to a more potent 

agonist of PS receptors such as CD36.71,72 The NADPH oxidase is involved in both PS 

oxidation and externalization that promote the recognition of apoptotic neutrophil and 

eventual clearance by macrophages.72,73 NADPH oxidase inhibitors that delayed lyso-PS 

generation delayed the uptake of apoptotic neutrophils in vitro. In vivo studies using 

gp91phox−/− mice demonstrated that lower levels of lyso-PS correlated with dysregulated 

clearance and prolonged inflammation in gp91phox−/− mice during zymosan-induced 

peritonitis.73

We recently demonstrated that NADPH oxidase was also involved in the efferocytic 

clearance of ingested apoptotic neutrophils by mouse peritoneal exudate macrophages 

(PEMs). ROS generation positively regulated efferosomal acidification and proteolysis of 

ingested apoptotic neutrophils. PEMs from gp91phox−/− mice that lack the capacity to 

generate ROS, exhibited significant delays in the clearance of ingested apoptotic cells. Cross 

presentation of apoptotic cells associated antigens to CD8 T cells was enhanced leading to 

CD8 T cell clonal expansion.74 Ingestion of apoptotic neutrophils is also an important 

resolution signal and reprograms macrophages from a pro-inflammatory (M1) phenotype to 

an anti-inflammatory or pro-resolving (M2) and augments the generation of pro-resolving 

mediators. Impaired efferocytosis in gp91phox−/− mice correlated with skewing of 

macrophages to the M1 phenotype and reprogramming defects that enhanced inflammation.
75,76 Monocyte derived-macrophages from CGD patients produced significantly lower levels 

of anti-inflammatory mediators, prostaglandin D2 (PGD2) and TGF-B on efferocytosis.77 

Thus, the NADPH oxidase is essential not only for the proper recognition and digestion of 
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apoptotic neutrophils, but also plays an essential role in reprogramming efferocytosing 

macrophages to promote resolution of inflammation. CGD patients are markedly 

compromised in their ability to produce the anti-in-flammatory mediators PGD2 and TGF-β 
during the phagocytosis of apoptotic cells.

8 | NADPH OXIDASE MODULATES ACUTE AND CHRONIC 

INFLAMMATORY RESPONSES IN VIVO

Excessive ROS generation has been associated with oxidative stress in multiple chronic 

inflammatory disorders such as periodontitis, cardiovascular disease, neurodegenerative 

disorders and inflammatory diseases.1 However these associations are based on correlative 

data linking oxidative stress biomarkers with disease and it is unclear whether the presence 

of oxidative stress is a cause or consequence of low-grade inflammation associated with 

these disorders. More di-rect approaches using deletion of NADPH oxidase genes in mouse 

models that entirely ablates NADPH oxidase derived ROS as well as data from CGD 

patients all paradoxically showed worse, often profound inflammation in the case of oxidase 

deficiency (Table 2). For instance, CGD patients are highly susceptible to sterile 

inflammatory complications, such as granulomatous inflammation in the genitourinary and 

gastrointestinal tract, and discoid mucocutaneous skin lesions. Further, mice lacking 

NADPH oxidase activity (due to deletion of Cybb [encoding gp91phox]) exhibited hyper-

inflammatory responses characterized by elevated levels of pro-inflammatory cytokines and 

excessive neutrophilic recruitment in multiple models of sterile or microbe-elicited 

challenge.74,78‘80 Interestingly, hyperinflammation in these mice was observed even in the 

absence of active infection. In vivo challenge with heat killed A. fumigatus hyphae,81 LPS,82 

Dectin-1 agonists,83 zymosan75,84 and even necrotic cells,79 all resulted in exuberant 

neutrophilic inflammation characterized by enhanced levels of pro-inflammatory cytokines, 

neutrophil and macrophage infiltration and delayed resolution (summarized in Table 2). We 

recently demonstrated excessive mobilization of neutrophils from the bone marrow reserves 

in Cybb−/− mice in a model of sterile peritoneal injury. Excessive neutrophil mobilization 

augmented tissue accrual of neutrophils and significantly delayed resolution of inflammation 

in Cybb−/− mice compared to wildtype mice.79 ROS deficiency also predisposes to 

autoimmune disorders. Oxidase null mice developed worse disease in models of collagen-

induced arthritis,85,86 mannan-induced psoriasis85 and developed lupus-like disease with 

glomerular-nephritis.87–89 These data indicate that oxidants in fact are essential for 

suppressing excessive activation of host inflammatory responses triggered by endogenous 

and microbial stimulation.

Periodontal diseases collectively refer to a broad range of inflammatory conditions that 

affect the supporting structures of the teeth (gingiva, alveolar bone, and periodontal 

ligament). Neutrophil dysfunction, hyperactivation, and hyper-recruitment have all been 

associated with worse periodontal disease, pointing to a key role of neutrophils in gingival 

homeostasis.11 Interestingly, contrary to the protective role of NADPH oxidase in limiting 

host inflammation, some studies ascribe excessive ROS generation by neutrophils in 

response to periodontal bacteria as a significant contributing factor to the pathophysiology of 

periodontitis.50,90,91 Whether excessive ROS generation by neutrophils in this case is a 
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cause or consequence of active inflammation associated with periodontitis is unclear. 

Proinflammatory cytokines such as TNF-α are often elevated in the gingival crevicular fluid 

and serum of patients with localized aggressive or chronic forms of periodontitis.92–94 TNF-

α induces phosphorylation and membrane translocation of cytosolic regulatory subunits of 

the oxidase, resulting in the preassembly of active NADPH oxidase enzyme complex on 

endosomal membranes. Thus, neutrophils isolated from peritonitis patients with elevated 

circulating levels of cytokines are likely to have been “primed” in vivo, which accounts for 

an augmented oxidative burst on secondary in vitro challenge with other agonists as 

compared to neutrophils isolated from healthy individuals.18,43

Others report that inhibiting ROS by the use of ROS inhibitors such as N-acetylcysteine 

(NAC) ameliorates ROS mediated cytotoxicity, and inflammatory pathways relevant to 

gingival inflammation in vitro.95 However, it should be noted that ROS inhibitors, such as 

NAC, can independently and non-specifically inhibit inflammatory pathways, complicating 

interpretation.96 Thus, systematic studies using gene-targeted approaches to specifically 

delineate the role of NADPH oxidase-derived ROS in periodontal diseases as well as other 

chronic inflammatory disorders are needed to determine how ROS modulates host 

inflammatory response.

9 | CONCLUSIONS

Our understanding of the function of the NADPH oxidase has greatly evolved from it being 

simply an antimicrobial effector to a master regulator of host inflammatory pathways. 

Besides its role in the regulation of neutrophil effector responses (Figure 2), NADPH 

oxidase activation is also essential for antigen presenta-tion, autophagy, chemotaxis, and 

redox signaling in other immune cells. The global role played by the NADPH oxidase in the 

modulation of host inflammatory responses is also supported by genome wide association 

studies that link single nucleotide polymorphisms and hypomorphic NADPH oxidase 

subunit alleles with various chronic inflammatory and autoimmune disorders such as 

arthritis,97 lupus,98–100 and inflammatory bowel disease.101,102 We along with others 

demonstrated that oxidants were in fact essential for regulating both the duration and 

magnitude of host immune responses in multiple murine models. Thus although excessive 

ROS production might indeed cause oxidative stress, low or tonic levels of ROS are essential 

to regulate host inflammatory pathways and prevent chronic inflammation. These functions 

of ROS are independent of its anti-microbial role and we are only beginning to un-derstand 

the complexities through the use of total or conditional oxidase null mice.
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FIGURE 1. 
NADPH oxidase structure and assembly. The membrane-restricted heterodimer of NADPH 

oxidase is comprised of gp91phox and p22phox subunits. This heterodimer is known as 

flavocytochromeb558. In an inactive state, the cytosolic subunits p67phox, p47phox, and 

p40phox remain in the cytosol in a self-inhibitory confirmation. On activation, cellular 

kinases induce the phosphorylation of cytosolic subunits, releasing the inhibitory 

confirmation. p67phox, p47phox, and p40phox translocate to the membrane along with Rac-

GTP and bind to the flavocytochromeb558 forming an active enzyme complex. NADPH-

derived electrons are transferred to the substrate molecular oxygen (O2) generating 

superoxide (O2
−) on the other side of the membrane.
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FIGURE 2. 
NADPH oxidase derived ROS differentially modulate neutrophil effector responses. 

NADPH oxidase deficient (oxidase null) neutrophils are deficient in killing of catalase 

positive microorganisms and Aspergillus species. NET production is also compromised in 

response to select stimuli. ROS deficiency enhances degranulation, cytokine and chemokine 

generation that might lead to persistent inflammation by recruitment of other immune cells 

and/or their differential polarization. NADPH, nicotinamide adenine dinucleotide phosphate; 

NET, neutrophil extracellular traps; ROS, reactive oxygen species
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