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Abstract

Neutrophils are phagocytic innate immune cells essential for killing bacteria via activation of a
wide variety of effector responses and generation of large amounts of reactive oxygen species
(ROS). Majority of the ROS in neutrophils is generated by activation of the superoxide-generating
enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Independent of their
anti-microbial function, NADPH oxidase-derived ROS have emerged as key regulators of host
immune responses and neutrophilic inflammation. Data from patients with inherited defects in the
NADPH oxidase subunit alleles that ablate its enzyme function as well as mouse models
demonstrate profound dysregulation of host inflammatory responses, neutrophil hyperactivation
and tissue damage in response to microbial ligands or tissue trauma. A large body of literature now
demonstrates how oxidants function as essential signaling molecules that are essential for the
regulation of neutrophil responses during priming, degranulation, neutrophil extracellular trap
formation, and apoptosis, independent of their role in microbial killing. In this review we
summarize how NADPH oxidase-derived oxidants modulate neutrophil function in a cell intrinsic
manner and regulate host inflammatory responses. In addition, we summarize studies that have
elucidated possible roles of oxidants in neutrophilic responses within the oral mucosa and
periodontal disease.
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INTRODUCTION

Reactive oxygen species (ROS) collectively refer to a large group of highly reactive
derivatives of oxygen generated as a consequence of metabolic processes or during host
stress response. Although associated with oxidative damage, when produced at low
regulated levels, oxidants are essential for redox modulation of cellular pathways, immune
effector function, cell signaling and anti-microbial responses. The majority of ROS
generated in a cell is by the activation of the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases or NOX enzyme complexes. NOX enzyme family members NOX1,
NOX2, NOX3, NOX4, NOX5 and the dual oxidase (DUOX) enzymes DUOX1, and DUOX2
are membrane associated hetero-oligomeric complexes that are dedicated to generation of
ROS by using oxygen as its substrate. NOX enzymes are expressed in a cell specific or
tissue specific manner and are rapidly activated in response to external stressors to generate
large amounts of ROS. NOX2 or gp91779X js the main catalytic subunit of the leukocyte
NADPH oxidase complex. It is highly expressed in phagocytes (neutrophils, monocytes,
macrophages, dendritic cells) and at much lower levels in lymphocytes, endothelial cells and
colonic epithelial cells.1:2 NOX2 derived oxidants modulate multiple cellular processes
independent of their anti-microbial function. For instance, NADPH oxidase activation is
essential for antigen presentation in B cells3, T cell receptor stimulation? and subset
polarization.>6 In addition, Nox2 has also been detected in colonic epithelial cells where its
capacity to produce superoxide (O,7) in response to microbial stimulations may facilitate the
attachment of commensals such as Escherichia colito the colonic mucus layer.’ Epithelial
cell-derived O,™ within the gut has been implicated to modulate the composition of the gut
microbiome, by altering gene transcription and crosstalk between bacteria. It should be
noted that a homolog of Nox2, Noxl is expressed in the epithelial cells in the colon and may
functionally overlap with Nox2 in the responses of these cells to the gut microbiome.8-2
These findings indicate that oxidants play diverse roles in the regulation of host responses.
NOX2 has been extensively studied over the last 40-50 years for its role in the activation of
the phagocyte oxidative burst (Phox), also known as the respiratory burst during
phagocytosis; however, recent data from our lab and others now demonstrate a critical role
for NOX2-derived ROS in the modulation of neutrophil responses during inflammation. In
this review, we will specifically focus on the newly appreciated roles of NOX2 or the
leukocyte NADPH oxidase in the regulation of neutrophil effector functions in the context of
inflammation and inflammatory disorders.

Neutrophils are the most abundant leukocytes in human blood that are crucial for host innate
immune responses during infection and inflammation. In response to soluble or particulate
stimuli, neutrophils activate a battery of effector responses including the activation of
NADPH oxidase to produce large quantities of ROS. Oxidants generated are crucial for
pathogen elimination, and can further activate or modulate other effector responses in
neutrophils such as priming, degranulation, apoptosis and formation of neutrophil
extracellular traps (NET). Neutrophils are functionally and phenotypically heterogeneous
cells that influence the outcome in multiple chronic inflammatory diseases such as arthritis,
dermatitis, and periodontitis, thus playing a key role in immune regulation.1%11 Here we
present mechanistic insights derived from published literate on how NADPH oxidase
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derived oxidants regulate neutrophil effector responses outside of their role in microbial
killing. Excessive ROS generation by neutrophils is often associated with oxidative stress
and chronic inflammation, however this view is now being challenged from observations in
patients and mouse models where complete loss of NADPH oxidase activity was associated
with hyperinflammation. We have summarized recent published data from our laboratory
and others that supports the somehow counter-intuitive role of NADPH oxidase in
dampening host inflammation and redox regulation of host inflammatory pathways.

COMPOSITION, ASSEMBLY AND ACTIVATION OF THE NADPH

OXIDASE COMPLEX

The NADPH oxidase complex is comprised of 2 membrane bound subunits and three
cytosolic regulatory subunits, all encoded by distinct genes. The phagocyte oxidase or pfox
subunits are referred to by their molecular mass or gene names and assemble together to
form an active complex that transfers NADPH-derived electrons to its substrate O,. The
membrane-restricted flavocytochromessgis a homodimer formed by two integral
membrane restricted proteins, the glycosylated gp91279X (NOX2 or CYBB), and the non-
glycosylated p22P79X (CYBA) subunits. The gp91279X subunit is the main redox center of the
complex, and is responsible for the electron transferase activity of the complex. The
cytosolic flavin adenine dinucleotide (FAD) domain of gp9127/9% receives two electrons from
NADPH that are sequentially transferred along two internal heme moieties within the
membrane-spanning gp91779X core. The p22P/'9X subunit is an obligate binding partner of
gp91PM1ox and is essential for the stability of the heterodimer. It also provides docking sites
critical for the assembly of the regulatory subunits of the oxidase that translocate from the
cytosol.12 In resting neutrophils, the majority of the flavocytochrome 554 stores are localized
within the specific (secondary) granules and secretory vesicles. Neutrophil activation or
priming causes granule exocytosis delivering the flavocytochromeyssgto the plasma and
phagosomal membranes.13

Activation of the enzyme complex is tightly regulated by a series of protein-protein and lipid
binding interactions that mediate the translocation of the cytosolic subunits of NADPH
oxidase to the plasma or phagosomal membrane. Concurrent events lead to Rac activation.
Rac belongs to the Rho family of GTPases and is an obligate binding partner of the NADPH
oxidase enzyme complex. The cytosolic subunits p47°77°X(Neutrophil Cytosolic Factor 1
[NCF1]), p67P19% (NCF2), and p40P70X (NCF4), form a tripartite complex in the cytosol of
quiescent neutrophils (Figure 1). In resting cells, pA7P%X is present in an inactive or auto-
inhibitory conformation. Upon phagocytosis or receptor ligation, downstream kinases such
as protein kinase C (PKC) isoforms, protein kinase A (PKA), phosphoinositide 3-kinase
(P13K) and mitogen activated protein kinases (MAPKSs) ERK1/2 and p38 mediate p472/0x
phosphorylation.14:15 Phosphorylation induced conformational changes in p47#7/19% exposes
its Src-homology (SH) domain that interacts with Proline residues on p22#/10x 16 pa7hox
also contains a PX (Phox homology) domains that bind to the transiently generated
phosphoinositides within the membrane. This interaction allows for the retention of the
subunit on the membrane.1®
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Activation and membrane translocation of p477/19% also brings p67°79X and p40P°X to the
membrane. p677°% has an internal activation domain that regulates the transfer of NADPH-
derived electrons to the flavin domain of gp91779X 17 pe7P10X interacts with GTP-bound Rac,
an essential component of the NADPH oxidase holoenzyme. Concurrent to the activation of
NADPH oxidase cytosolic subunits, Rac-GDP is converted to its active Rac-GTP form by
guanine nucleotide exchange factors (GEFs). Rac-GTP translocates to the membrane and
binds to gp9127/19X and p67P/10x 1822 n47PM0X and pa0P19X act as adaptor proteins that
positively regulate enzyme assembly on the plasma membrane. p40P79X plays a specialized
role in regulating NADPH oxidase activation. It binds to the phosphatidylinositol 3-
phosphate (PI(3)P) generated in the membrane via its PX domain. Matute et al reported a
patient with missense mutations in the PI3P binding domain of p40”/9X had selective defects
in phagosomal ROS generation in neutrophils, while the plasma membrane levels were
unaffected.23.24 Thus, p40P/9 positively regulates NADPH oxidase function and is essential
for high-level O,™ generation within phagosomes.

Upon complete assembly, the NADPH oxidase transfers NADPH derived-electrons to
molecular O, generating O, (Figure 1). Large amounts of O, are generated by human
neutrophils. For instance, 7-10 nmol min~1 1076 cells of O, are produced on stimulation
with phorbol 12-myristate 13-acetate (PMA) as measured by ferric cyto-chrome Cassays.
Other factors contributing to sustained O,~ production include a quick turnover of the
enzyme complex and high affinity for its substrate O,. The K}, for oxygen (NADPH oxidase
substrate) is ~10, equivalent to ~7 mm Hg pO,. Thus, the NADPH oxidase complex can
continue to produce O~ in tissues with low oxygen tension such as the gingival cavity.20:25

Excessive ROS generation or prolonged activation of the enzyme complex can cause
oxidative damage and prolong inflammation. Thus, the activity of NADPH is tightly
regulated and triggered only in response to stimuli via complex signaling pathways. Apart
from the kinases that mediate subunit phosphorylation and membrane phospholipid
generation, activation of voltage gated proton channels, chloride channels and accompanying
calcium fluxes also regulate NADPH oxidase activity (reviewed by Nunes et al!8). The
absolute amount of ROS generated is also dependent on the priming status and complexing
of activating receptors on neutrophils. Further, neutrophils also contain “deactivation
pathways” that lead to disassembly of the NADPH oxidase and terminate O, generation
(reviewed by Decoursey et al6).

NADPH OXIDASE IN OXIDATIVE KILLING OF MICROBES

Neutrophils are phagocytic cells whose primary function is to defend the host against
bacterial and fungal infections. Inherited defects that adversely affect neutrophil numbers or
their effector functions are associated with higher susceptibility to recurrent infections
indicating that neutrophils are indeed key in the early responses to an infection. To facilitate
the recognition of microbial ligands, and their phagocytosis, neutrophils express a large
arsenal of receptors. Ligation or activation of Toll like receptors (TLRs), Fc gamma
receptors (FCR), G-protein coupled receptors (GPCRs), C-type lectin receptors and integrins
on neutrophils potently activates NADPH oxidase, generating large amounts of oxidants.
21,28 geparately, antimicrobial granule proteins (lactoferrin, myeloperoxidase, defensins,
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proteases, lysozyme, calprotectin, etc) are rapidly mobilized into phagosomes or into the
extracellular environment that aid in microbial killing. Conventionally this has been viewed
as a non-oxidative mechanism of killing. However, now it is increasingly apparent that the
oxidative (ROS generation) and non-oxidative mechanisms synergize and work in concert to
kill bacteria. We refer the readers to excellent reviews by Nauseef et al2® and Uriarte et al, 30
that discuss the synergy and interdependence of these processes.

Although large amounts of O, are produced during phagocytosis, O,~ anions have low
antibacterial activity and are short lived (microseconds). They either dismutate
spontaneously or are enzymatically converted to hydrogen peroxide (H,05) by superoxide
dismutase. H,O, is further converted to other forms of ROS with potent anti-microbial
activity by the myeloperoxidase-hydrogen peroxide-halide system that converts H,O5 to
hypochlorous acid on reaction with chloride ions (CI7). Myeloperoxidase (MPO) released
from neutrophil primary/azurophilic granules into the phagosomes is critical for this process.
Neutrophils isolated from patients with MPO deficiency are less effective in killing bacteria,
demonstrating a synergy between oxidative and non-oxidative killing pathways.3!
Separately, H,O, can also be oxidized by iron to produce hydroxyl radicals (OH™) via
Fenton chemistry that is highly toxic to bacteria.2”:32 The antimicrobial potential for ROS
stems from its ability to cause irreversible damage to bacterial DNA, proteins, and lipids that
eventually kills the bacteria. To prolong their survival, several pathogenic bacteria actively
produce toxins or effector proteins to prevent the translocation of NADPH oxidase subunits
to phagosomes and restrict NADPH oxidase assembly on the phagosome. Pathogens such as
Francisella tularensis, Anaplasma phagocytophilum, and Helicobacter pylorihave developed
strategies to subvert killing by neutrophils. Virulence mechanisms employed by these
pathogens are listed in Table 1.

The critical role of NADPH oxidase in host antimicrobial responses was evident from
chronic granulomatous disease (CGD), an immunodeficiency affecting ~1 out of 200 000
individuals in the US. X-linked (CYBB) or autosomal recessive mutations in NADPH
oxidase genes (CYBA, NCF1, NCF2, and NCF4) that ablate enzyme activity cause CGD.
23,24,33-35 CGD patients suffer from life-threatening bacterial and fungal infections resulting
in high mortality and morbidity. Over-representation of certain bacterial infections caused by
catalase positive microorganisms such as Staphylococcus aureus, Pseudomonas,
Burkholderia cepacia as well as fungal species such as Aspergillus are common. Despite
prophylactic use of antibiotics and antifungals, the average life span of CGD patients is short
(four decades) and associated with significant morbidity. Thus, the oxidants generated by
NADPH oxidase are critical mediators of host anti-microbial defense.

NADPH OXIDASE IN NEUTROPHIL PRIMING AND DEGRANULATION

Neutrophil priming or pre-activation refers to the broad range of phenotypic and molecular
changes that poise neutrophils in a state of heightened sensitivity or “readiness” to respond
to subsequent secondary stimulation. Circulating neutrophils exist in a relatively quiescent
state. Their activation is dynamically regulated and pro-gresses from a quiescent state to an
intermediate “primed” state as they transmigrate to the site of infection or injury and
encounter low levels of inflammatory cytokines (TNF-a, GM-CSF, IL-1pB), chemoattractants
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(Cbha, fMLF PAF, LTB4) or TLR agonists (LPS, flagellin, lipopeptides). A comprehensive
list of neutrophil priming agents can be found in excellent reviews by Miralda et al¢ and EI-
Benna et al.37

Priming augments the microbicidal capacity of neutrophils by enhancing O, production,
degranulation responses, inflammatory mediator production, and phagocytic capacity.36-38
However, priming alone does not cause preassembly of the NADPH oxidase complex.
Priming agents can induce partial phosphorylation of NADPH oxidase cytosolic subunits
with partial exocytosis of secretory vesicles and secondary granules that contain ~60%—-70%
flavocytochromes55to the plasma membrane. GM-CSF and TNF-a induce partial
phosphorylation of p47P79X at the Ser345 residue via activation of ERK1/2 and p38 MAPKs.
Site-directed mutagenesis experiments demonstrated that phosphorylation of Ser345 on p38
is critical for neutrophil priming.3940 The TNF-a-induced increase of gp91779X at the
plasma membrane is dependent on granule exocytosis.*! Endotoxin induced priming
responses elicited by low doses of lipopolysaccharides (LPS) induce the redistribution of
flavocytochrome 555 from secondary granules to the plasma membrane#? and also into the
recycling endosomal compartments. Thus changes in the location and/or phosphorylation of
NADPH oxidase subunits upon priming leads to the generation of tonic or low basal levels
of intracellular ROS critical in regulating the magnitude of neutrophil degranulation
responses to secondary stimulation.4344

Neutrophils contain four different types of granules. The primary (azurophilic) granules
contain histotoxic enzymes, including elastase, MPO, and antimicrobial enzymes, cathepsins
and defensins. The secondary and tertiary granules contain lactoferrin and matrix
metalloprotease 9 (also known as gelatinase B), respec-tively. The secretory vesicles in
human neutrophils contain human serum albumin, adhesion molecules and receptors such as
CD11b and formyl peptide receptor (FPR1). Degranulation is a hierarchical process that is
mediated by tightly regulated pathways.*> While exocytosis of tertiary granules and
secretory vesicles can occur readily, exocytosis of azurophilic granules requires neutrophil
priming, MAPK activation and low-level ROS generation.#647 Potera et al suggested that
NADPH oxidase-derived ROS are essential for preventing excessive degranulation
responses. Further, neutrophils isolated from CGD patients that lack NADPH oxidase
activity had significantly elevated elastase release from primary granules under both,
unstimulated and TNF-a. primed conditions.#6 CGD neutrophils also have enhanced basal
levels of activation markers like CDiib.4” These data indicate that NADPH oxidase-derived
ROS are necessary to provide a negative feedback loop and prevent excessive degranulation
that might lead to tissue damage. Alternatively, hyperactivation of other activation markers
may reflect an attempt to compensate for the defect in ROS-mediated microbial killing due
to the lack of NADPH oxidase activity.

While priming can facilitate the microbicidal potential of neutrophils, it can sustain or
amplify neutrophil responses, thereby exacerbating chronic inflammatory disorders. Primed
neutrophils have been observed in blood isolated from patients with systemic insults such as
acute lung injury (ALI), trauma and hemorrhagic shock3® as well as from patients with
chronic diseases such as inflammatory bowel disease,*8 arthritis*® and periodontitis.>0:51
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Thus, understanding the molecular basis of how oxidants govern neutrophil priming
responses is essential.

5| NADPH OXIDASE IN NET FORMATION

NETosis refers to the extrusion of decondensed chromatin that is in-terlaced with neutrophil
granular proteins and mitochondrial mate-rial from neutrophils. NETs contain nuclear DNA,
are proteolytically active, and form a mesh like structure to trap bacteria in vitro and in vivo.
NETSs have emerged as an important arm of innate immune anti-microbial responses since
their first description by Brinkmann et al.>2 However, the molecular pathways leading to
NET formation are diverse and NET formation can occur via a NADPH oxidase dependent
or independent manner.

A diverse range of stimuli such as bacterial and fungal pathogens, calcium ionophores,
inflammatory cytokines, PMA and immune complexes can all induce NETosis in vitro. In
the NADPH oxidase dependent pathway of NET generation, O~ is converted to H,0-
which is the substrate for MPO. Thus, ROS mediated MPO activation and azurophilic
granule mobilization causes the release of neutrophil elastase into the cytosol. Once in the
cytosol, neutrophil elastase cleaves F-actin to break down plasma membrane integrity and
also translocates to the nucleus to cleave histones promoting chromatin decondensation and
subsequent extrusion.>3 Chromatin decondensation is also promoted by the activation of
peptidylarginine deiminase 4, an enzyme that citrullinates histones H3.>4 CGD neutrophils
fail to form NETS in response to various stimuli.>>® The role of ROS in NET formation has
also been controversial due to discrepancies in comparing healthy neutrophils treated with
ROS scavengers to neutrophils isolated from CGD patients. Separately, the requirement for
NADPH oxidase-derived ROS can vary depending on the nature of the activating stimuli.
While the NADPH oxidase was dispensable for NET formation in response to Candida
albicans, CGD neutrophils produced significantly less NETSs in response to Aspergillus
fumigatus, another fungal pathogen associated with life-threaten-ing infections and mortality
in CGD patients.

6| NADPH OXIDASE IN NEUTROPHIL LIFESPAN

Neutrophils are the most abundant immune cell in the blood and are recruited in large
numbers to inflammatory sites where their collective histotoxic potential can prolong
inflammation. Thus, timely regulation of neutrophil apoptosis is essential for resolution of
inflammation and prevention of the release of its cytotoxic cargo into the tissue environment.
Neutrophil apoptosis occurs via highly conserved programmed cell death pathways. The
extrinsic pathway is triggered via ligation and oligomerization of death receptors (Fas,
TRAIL, TNF-a receptors) that lead to the formation of a death inducing signaling complex
and subsequent caspase activation. The intrinsic pathway is induced by incompletely
characterized factors that precipitate in mitochondrial outer membrane permeabilization and
the release of pro-apoptotic proteins (Bcl2 family members) into the cytosol. This leads to
activation of executioner caspases.>’~>9
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In neutrophils apoptosis is “potentiated” via the activation of the NADPH oxidase and ROS
generation. Phagocytosis and consequent NADPH oxidase activation by bacteria trigger a
third apoptosis pathway, known as the phagocytosis induced cell death (PICD) pathway.
60-66 Activation of the NADPH oxidase is positively regulated by the numbers of bacteria
phagocytosed (multiplicity of infection),63 as well the complexing of NADPH oxidase
activating receptors.%6 Certain pathogens actively subvert NADPH oxidase activity sub-
verting PICD to survive in neutrophils (Table 1). CGD neutrophils lacking NADPH oxidase
function are unable to undergo PICD.87 When injected with heat-killed S. aureus, oxidase
null mice exhibited defective apoptosis in vivo leading to impaired recognition and
subsequent clearance.® Delayed neutrophil apoptosis can dysregulate resolution as
neutrophils in inflammed tissues can actively sustain inflammation via prolonged production
and release of inflammatory mediators.

NADPH OXIDASE IN EFFEROCYTOSIS OF APOPTOTIC NEUTROPHILS

Efferocytosis refers to the ingestion of apoptotic cells by professional phagocytes and other
non-phagocytic cells. Prompt removal of apoptotic cells is essential to prevent the loss of
cellular integrity and the leakage of cellular contents. Dying cells advertise their presence by
the production of several secreted “find me” signals and simultaneously undergo molecular
changes that generate “eat me” signals essential for uptake. Up-regulation of
phosphatidylserine (PS) in the outer leaflet of the plasma membrane of apoptotic cells
provides a key apoptosis associated ligand. PS receptors (TIM4, BAI1, TAM) then regulate
the uptake of PS expressing cells and their subsequent clearance.5%.70 Recent studies
demonstrated that oxidation of PS at the fatty acyl chains transforms it to a more potent
agonist of PS receptors such as CD36.71:72 The NADPH oxidase is involved in both PS
oxidation and externalization that promote the recognition of apoptotic neutrophil and
eventual clearance by macrophages.’2/3 NADPH oxidase inhibitors that delayed lyso-PS
generation delayed the uptake of apoptotic neutrophils in vitro. In vivo studies using
gp9179%=I~ mice demonstrated that lower levels of lyso-PS correlated with dysregulated
clearance and prolonged inflammation in gp91#/9%~/~ mice during zymosan-induced
peritonitis.’3

We recently demonstrated that NADPH oxidase was also involved in the efferocytic
clearance of ingested apoptotic neutrophils by mouse peritoneal exudate macrophages
(PEMs). ROS generation positively regulated efferosomal acidification and proteolysis of
ingested apoptotic neutrophils. PEMs from gp91279%~/~ mice that lack the capacity to
generate ROS, exhibited significant delays in the clearance of ingested apoptotic cells. Cross
presentation of apoptotic cells associated antigens to CD8 T cells was enhanced leading to
CD8 T cell clonal expansion.” Ingestion of apoptotic neutrophils is also an important
resolution signal and reprograms macrophages from a pro-inflammatory (M1) phenotype to
an anti-inflammatory or pro-resolving (M2) and augments the generation of pro-resolving
mediators. Impaired efferocytosis in gp9177°X~/~ mice correlated with skewing of
macrophages to the M1 phenotype and reprogramming defects that enhanced inflammation.
75,76 Monocyte derived-macrophages from CGD patients produced significantly lower levels
of anti-inflammatory mediators, prostaglandin D2 (PGD2) and TGF-B on efferocytosis.”’
Thus, the NADPH oxidase is essential not only for the proper recognition and digestion of
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apoptotic neutrophils, but also plays an essential role in reprogramming efferocytosing
macrophages to promote resolution of inflammation. CGD patients are markedly
compromised in their ability to produce the anti-in-flammatory mediators PGD2 and TGF-$
during the phagocytosis of apoptotic cells.

NADPH OXIDASE MODULATES ACUTE AND CHRONIC

INFLAMMATORY RESPONSES IN VIVO

Excessive ROS generation has been associated with oxidative stress in multiple chronic
inflammatory disorders such as periodontitis, cardiovascular disease, neurodegenerative
disorders and inflammatory diseases.? However these associations are based on correlative
data linking oxidative stress biomarkers with disease and it is unclear whether the presence
of oxidative stress is a cause or consequence of low-grade inflammation associated with
these disorders. More di-rect approaches using deletion of NADPH oxidase genes in mouse
models that entirely ablates NADPH oxidase derived ROS as well as data from CGD
patients all paradoxically showed worse, often profound inflammation in the case of oxidase
deficiency (Table 2). For instance, CGD patients are highly susceptible to sterile
inflammatory complications, such as granulomatous inflammation in the genitourinary and
gastrointestinal tract, and discoid mucocutaneous skin lesions. Further, mice lacking
NADPH oxidase activity (due to deletion of Cybb [encoding gp91779%]) exhibited hyper-
inflammatory responses characterized by elevated levels of pro-inflammatory cytokines and
excessive neutrophilic recruitment in multiple models of sterile or microbe-elicited
challenge.”478:80 |nterestingly, hyperinflammation in these mice was observed even in the
absence of active infection. In vivo challenge with heat killed A. fumigatus hyphae,81 LPS 82
Dectin-1 agonists,83 zymosan’>84 and even necrotic cells,”® all resulted in exuberant
neutrophilic inflammation characterized by enhanced levels of pro-inflammatory cytokines,
neutrophil and macrophage infiltration and delayed resolution (summarized in Table 2). We
recently demonstrated excessive mobilization of neutrophils from the bone marrow reserves
in Cybb'~ mice in a model of sterile peritoneal injury. Excessive neutrophil mobilization
augmented tissue accrual of neutrophils and significantly delayed resolution of inflammation
in Cybb~ mice compared to wildtype mice.”® ROS deficiency also predisposes to
autoimmune disorders. Oxidase null mice developed worse disease in models of collagen-
induced arthritis,886 mannan-induced psoriasis8® and developed lupus-like disease with
glomerular-nephritis.87-89 These data indicate that oxidants in fact are essential for
suppressing excessive activation of host inflammatory responses triggered by endogenous
and microbial stimulation.

Periodontal diseases collectively refer to a broad range of inflammatory conditions that
affect the supporting structures of the teeth (gingiva, alveolar bone, and periodontal
ligament). Neutrophil dysfunction, hyperactivation, and hyper-recruitment have all been
associated with worse periodontal disease, pointing to a key role of neutrophils in gingival
homeostasis.1! Interestingly, contrary to the protective role of NADPH oxidase in limiting
host inflammation, some studies ascribe excessive ROS generation by neutrophils in
response to periodontal bacteria as a significant contributing factor to the pathophysiology of
periodontitis.>%:90.91 Whether excessive ROS generation by neutrophils in this case is a
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cause or consequence of active inflammation associated with periodontitis is unclear.
Proinflammatory cytokines such as TNF-a are often elevated in the gingival crevicular fluid
and serum of patients with localized aggressive or chronic forms of periodontitis.92-%4 TNF-
a induces phosphorylation and membrane translocation of cytosolic regulatory subunits of
the oxidase, resulting in the preassembly of active NADPH oxidase enzyme complex on
endosomal membranes. Thus, neutrophils isolated from peritonitis patients with elevated
circulating levels of cytokines are likely to have been “primed” in vivo, which accounts for
an augmented oxidative burst on secondary in vitro challenge with other agonists as
compared to neutrophils isolated from healthy individuals.18:43

Others report that inhibiting ROS by the use of ROS inhibitors such as N-acetylcysteine
(NAC) ameliorates ROS mediated cytotoxicity, and inflammatory pathways relevant to
gingival inflammation in vitro.%5 However, it should be noted that ROS inhibitors, such as
NAC, can independently and non-specifically inhibit inflammatory pathways, complicating
interpretation.® Thus, systematic studies using gene-targeted approaches to specifically
delineate the role of NADPH oxidase-derived ROS in periodontal diseases as well as other
chronic inflammatory disorders are needed to determine how ROS modulates host
inflammatory response.

CONCLUSIONS

Our understanding of the function of the NADPH oxidase has greatly evolved from it being
simply an antimicrobial effector to a master regulator of host inflammatory pathways.
Besides its role in the regulation of neutrophil effector responses (Figure 2), NADPH
oxidase activation is also essential for antigen presenta-tion, autophagy, chemotaxis, and
redox signaling in other immune cells. The global role played by the NADPH oxidase in the
modulation of host inflammatory responses is also supported by genome wide association
studies that link single nucleotide polymorphisms and hypomorphic NADPH oxidase
subunit alleles with various chronic inflammatory and autoimmune disorders such as
arthritis, %7 lupus,?8-100 and inflammatory bowel disease.101:102 We along with others
demonstrated that oxidants were in fact essential for regulating both the duration and
magnitude of host immune responses in multiple murine models. Thus although excessive
ROS production might indeed cause oxidative stress, low or tonic levels of ROS are essential
to regulate host inflammatory pathways and prevent chronic inflammation. These functions
of ROS are independent of its anti-microbial role and we are only beginning to un-derstand
the complexities through the use of total or conditional oxidase null mice.
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Cytosol

GDP ( Rac
FIGURE 1.

NADPH oxidase structure and assembly. The membrane-restricted heterodimer of NADPH
oxidase is comprised of gp91779X and p22P°X subunits. This heterodimer is known as
flavocytochromepssg. In an inactive state, the cytosolic subunits p672/19X, p47PhoX and
p40P19X remain in the cytosol in a self-inhibitory confirmation. On activation, cellular
kinases induce the phosphorylation of cytosolic subunits, releasing the inhibitory
confirmation. p67/719X, p47PhoX and p40PM19X translocate to the membrane along with Rac-
GTP and bind to the flavocytochromeyssg forming an active enzyme complex. NADPH-
derived electrons are transferred to the substrate molecular oxygen (O,) generating
superoxide (O57) on the other side of the membrane.
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FIGURE 2.
NADPH oxidase derived ROS differentially modulate neutrophil effector responses.

NADPH oxidase deficient (oxidase null) neutrophils are deficient in killing of catalase
positive microorganisms and Aspergillus species. NET production is also compromised in
response to select stimuli. ROS deficiency enhances degranulation, cytokine and chemokine
generation that might lead to persistent inflammation by recruitment of other immune cells
and/or their differential polarization. NADPH, nicotinamide adenine dinucleotide phosphate;
NET, neutrophil extracellular traps; ROS, reactive oxygen species
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