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Abstract

Human brain development is optimized to learn from environmental cues. The protracted 

development of the cortex and its connections with subcortical targets has been argued to permit 

more opportunity for acquiring complex behaviors. This paper uses the example of amygdala-

medial prefrontal cortex circuitry development to illustrate a principle of human development - 

namely, that the extension of the brain’s developmental timeline allows for the (species-expected) 

collaboration between child and parent in co-construction of the human brain. The neurobiology 

underlying affective learning capitalizes on this protracted timeline to develop a rich affective 

repertoire in adulthood. Humans are afforded this luxuriously slow development in part by the 

extended period of caregiving provided by parents, and parents aid in scaffolding the process of 

maturation during childhood. Just as adequate caregiving is a potent effector of brain development, 

so is adverse caregiving, which is the largest environmental risk factor for adult mental illness. 

There are large individual differences in neurobiological outcomes following caregiving adversity, 

indicating that these pathways are probabilistic, rather than deterministic, and prolonged plasticity 

in human brain development may also allow for subsequent amelioration by positive experiences. 

The extant research indicates that the development of mental health cannot be considered without 

consideration of children in the context of their families.
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Decades of research have demonstrated parents’ critical role in the healthy development of 

complex cognitive and affective behaviors (1–6). Caregiving is a potent effector of human 

development, and therefore the reach of maltreatment on behavioral and brain development 

can be long and significant. Early caregiving adversities, including abuse (physical, sexual, 

and emotional), neglect (emotional, failure to provide, and lack of supervision), and 

exposure to violence in the home, have been associated with altered neurodevelopment (7–

9). The current paper discusses how characteristics of human brain development might foster 

the endurance of these links.
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The Neotenous Brain.

The link between adverse caregiving and brain development is not unique to humans, and 

animal models have established that the link is causal (described below). However, humans 

do stand out, perhaps more than any other species, as a result of their neotenous brain 

development (see Figure 1). Originally coined to describe the retention of juvenile physical 

traits into adulthood (e.g., eruption of teeth, physical features) (10), neotenous development 

(or ‘juvenilization’) might describe human brain development as well, particularly for 

complex process like cognition and emotion. For example, the slow developing prefrontal 

cortex has demonstrated synaptic reorganization (overproduction and synapse elimination) 

until the third decade of life (11), well beyond what has been observed in the developmental 

equivalent in other mammals. Similarly, mRNA expression in the prefrontal cortex is 

developmentally delayed in humans relative to other primate species (12) indicating that 

neoteny is observed at the transcriptome level. Neoteny at the behavioral level (e.g., delayed 

cognition, extended play behaviors) has been described as adaptive in that it permits 

repeated, slow, and thus, enhanced learning opportunities (13). Scholars have speculated that 

there is value to this prolonged process, such that it allows for the “unprecedented 

opportunity for acquisition of the highest level of cognitive abilities (13).” At the same time, 

this characteristic of human development, which produces cognitive and affective 

complexity, can also increase the risk for poor outcomes following early adverse 

experiences.

Collectively, these papers argue that humans, more than other species, depend on learning 

from a very complex environment to produce rich behavioral repertoires, and a delayed 

onset of adult phenotypes provides more opportunities for learning these repertoires and 

developing strategies appropriate to the given environment. This prolonged development is 

comprised of multiple sensitive periods (14, 15), which are developmental moments when 

the environment has an especially potent and enduring impact on developing neurobiology. 

Moreover, the brain develops in a hierarchical fashion, where the structure and function of 

earlier developing regions exert maturational consequences on the structure and function of 

later developing regions. Referred to as ‘developmental cascades’ (16), such an organization 

implies that earlier occurring changes to the brain would have an impact not only on the 

neurobiology undergoing its sensitive period, but also on the downstream targets that receive 

connections from these regions (14, 17). Lesion work in non-human primates has illustrated 

this hierarchical organization; for example, neonatal lesions of the earlier developing 

amygdala and surrounding temporal lobe causes aberrant development of the prefrontal 

cortex (18); in other words, the prefrontal cortex might exhibit altered development despite 

the fact that is was never directly perturbed by the environment, by virtue of the fact that it is 

a developmental target of the earlier developing regions. Notably, the same lesions 

performed in adulthood did not produce these effects. These developmental principles of 

hierarchical development, sensitive periods, and prolonged development are critical tools for 

understanding the role of early experiences on adult functioning.
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Amygdala-mPFC Development: Neoteny, Plasticity, and Learning.

Human amygdala-medial prefrontal cortex (mPFC) circuitry is central to mature emotional 

behaviors including learning, attention, modulation, and prediction (19–22). We focus on 

this circuitry to examine principles of neoteny and development as they relate to early 

caregiving adversity. While several other circuits have shown correlations with early 

adversity, including hippocampus, amygdala, striatum, cerebellum, and cortex (e.g., 23–25), 

as well as alterations to the connections between these regions, the current paper is 

motivated to focus on amygdala-mPFC circuitry by several of its characteristics. First, 

amygdala-mPFC circuitry constitutes the foundation for behaviors associated with emotion 

regulation in adulthood (19), behaviors which are commonly affected by early life stress. 

Secondly, the amygdala is rich with stress hormone receptors, especially early in life, and it 

exhibits membrane potential characteristics early in development that make it highly reactive 

to stressors (26, 27). Thirdly, amygdala-mPFC circuitry is highly sensitive to environmental 

influences during development, as has been demonstrated by a resting-state functional 

magnetic resonance imaging twin study performed during childhood (28). Additionally, the 

hierarchical relationship between the amygdala and the mPFC provide fodder for a deeper 

discussion of principles of developmental cascades.

Findings from Rodents.

Evidence from several sources shows that the structural and functional connections between 

the amygdala and the mPFC develop very slowly across mammalian species. Using tracing 

methods, rodent studies have shown that fibers originating in basolateral amygdala that 

project to regions of the mPFC (including the anterior cingulate, paralimbic cortex, and 

infralimbic cortex) exhibit a continued increase in density, spine formation, and change in 

topography continuing into the late postweanling/juvenile periods, perhaps even extending 

into adulthood (29, 30), thus occurring much later than projections to other regions (e.g., 

thalamus, nucleus accumbens) (31). In adulthood, amygdala-mPFC connections the are 

strongly bidirectional, and the development of reciprocal connections from mPFC to 

amygdala are late occurring; initial amygdala-to-mPFC growth spurts are later followed by 

even later-occurring mPFC-to-amygdala connection development (32). By combining 

anatomical tracings with opto-genetic interrogation, it has been shown that early bursts of 

growth in infancy are subsequently followed by an additional burst observed in the late 

juvenile/early adolescent period (33). This trajectory for structural development is paralleled 

by an initial burst in inhibitory post-synaptic potentials (relative to excitatory) in the late 

infancy period, and a second burst of inhibitory tone in the late juvenile period. This juvenile 

period has also been shown to be the time when the dendritic trees within amygdala and 

mPFC exhibit their largest growth (34). Consistent with this structural growth pattern, 

GABA-ergic transmission in the amygdala shows continued maturation until the end of the 

juvenile period (35). These data suggest that the excitatory/inhibitory balance of this 

pathway shows a protracted development, with an increasing shift towards top-down 

inhibition that does not mature until adolescence. The timing of mPFC-to-amygdala synapse 

formation (i.e., the juvenile period (postnatal day 30), which is roughly right after weaning 

yet prior to puberty (36)) coincides with a normative decline in emotionality (37, 38) and the 

largest developmental increase in spontaneous synaptic activity of the amygdala (33). This 
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finding is consistent with the hypothesis that strong activity in the amygdala instigates 

connection formation with the mPFC (17). Taken together, the rodent work has shown 

amygdala-mPFC circuitry constructs itself first in a bottom-up fashion (i.e., amygdala-to-

mPFC); then strong excitatory activity from the amygdala temporally correlates with the 

beginning of the reciprocal top-down inhibitory connections that continue to strengthen into 

adulthood.

Findings from Humans.

Studies in humans suggest an analogous, albeit further protracted, late development of 

amygdala-mPFC connectivity, occurring across childhood and adolescence (Figure 1). For 

example, diffusion tensor imaging techniques have shown that fronto-temporal tracts, like 

the cingulum and uncinate fasciculus, mature later than other tracts, requiring 25 years to 

reach 90% of their development . By comparison, other large tracts, like those that connect 

occipital to temporal cortex reach 90% of their development already by 11 years old (39). 

Correlated activity between the amygdala and mPFC, or functional connectivity, parallels 

these fronto-temporal structural tracts (40). Functional connectivity can be measured during 

resting state (i.e., intrinsic connectivity) or during task (i.e., stimulus-elicited). Resting state 

studies performed during human development have shown that amygdala-mPFC functional 

connectivity continues to show developmental changes until early adulthood. Resting-state 

functional connectivity between the amygdala and mPFC is present during infancy (41), 

although it exhibits non-linear changes (increases in the first year, followed by decreases in 

the second year)(42). These early developments are followed by continued change 

throughout the next two decades, with some studies showing continued increases in 

connectivity from childhood through adulthood (43, 44) and others showing decreases 

across this period (45).

Amygdala-mPFC resting-state functional connectivity is developmentally predicted by 

stimulus-elicited functional connectivity recorded earlier during childhood (46), suggesting 

that the nature of early environmentally-stimulated coactivation of the amygdala and mPFC 

during childhood might have an enduring influence on the nature of its intrinsic connectivity 

later in maturity (17). This interpretation is consistent with findings from a behavioral-

genetics study showing that individual differences in amygdala-mPFC intrinsic functional 

connectivity during development are best explained by environmental influences (28). 

Stimulus-elicited, or task-based, functional connectivity studies have also shown age-related 

changes in amygdala-mPFC connectivity throughout the first 3 decades of life (47–51), 

though these connectivity patterns vary as a function of the task. Many of these studies have 

shown that the nature of the relationship between the amygdala and mPFC differs in 

childhood relative to points thereafter (52, 53), and is unlikely to include “top-down” 

regulatory connections.

As was found in rodent models, the developmentally late onset of the regulatory connections 

between the mPFC and the amygdala temporally parallel elevated amygdala reactivity that 

attenuates with increasing age (47, 49, 50, 54, 55), which is consistent with the hypothesis 

that the juvenile-like lability of the amygdala is an important instigator for the formation of 

connections with the mPFC (17). Again similar to rodent findings, in the human these events 
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occur during late childhood into adolescence. Behaviorally, these neurobiological transitions 

are paralleled by the young child exhibiting high emotional reactivity and elevated levels of 

developmentally-normative fears (47, 56–58), and at later ages (e.g., adolescence and 

adulthood), these behaviors attenuate when structural and functional connections with the 

mPFC correspond with better regulation of the amygdala (22, 59). Taken together, studies in 

humans show patterns of amygdala-mPFC development that are highly consistent with those 

patterns identified in the rodent - namely, human development shows strong amygdala 

activity and emotionality early in life, followed by adult-like amygdala-mPFC connections 

and associated declines in emotionality at older ages - albeit occurring at a much more 

protracted rate.

The Ecology of the Developing Child.

The neurodevelopmental pattern of amygdala-mPFC circuitry described thus far, in many 

ways, mirror the ecology of the developing child (60). During a time when parents or other 

caregivers are routinely available to guide children’s exploration, it may be ontogenetically 

unnecessary (and even inefficient) to mature this system early, since the role of the amygdala 

and its connections with the mPFC is to facilitate independent exploration of the 

environment (judging the safety and danger of encountered stimuli) and adult-like learning. 

That is, the parent provides significant, and perhaps sufficient, information about the 

affective environment and will continue to serve this role until physical independence from 

the parent becomes routine.

Parental modulation of early emotional learning.

Evidence for this claim comes from both rodent and human studies. In rodents, it has been 

shown that the dam’s presence promotes her offspring’s preference for cues associated with 

the dam, regardless if the stimulation is pleasurable or aversive (61). In the context of 

aversive cues, the dam buffers stress responsive systems (e.g., the amygdala) to 

paradoxically promote preference learning for her cues, and this process is the basis for 

attachment learning in rodents. Young children have also been shown to behaviorally prefer 

an aversive conditioned stimulus if acquisition occurred in the presence of their parent (62). 

These findings suggest a mechanism by which children learn to prefer and attach to parental 

cues, regardless of warmth or maltreatment (63, 64) and suggest that early emotional 

learning systems are constructed to allow for modification by the parent.

The normative presence of parents and caregivers is a powerful effector of development, 

providing a social scaffolding for the developing child. Thus, parental presence may also be 

scaffolding amygdala-mPFC circuitry. Providing support for this position, parental stimuli 

can produce a momentary adult-like amygdala-mPFC connectivity pattern in children, a 

modulation that coincides with a decrease in amygdala activity (65). However, at the 

transition between childhood and adolescence, this circuitry changes and begins to show 

adult-like ‘regulatory’ connectivity patterns, regardless of parental cue presence or absence. 

During adolescence, parental presence may be less necessary (and also less effective) in 

modulating this circuitry, which has now become more adult-like (47). However, there may 
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still be times in adolescence when the parent retains their ‘buffering’ effects, for example 

under conditions of risky-decision making (66).

Normative Variation in Parenting Behavior: Sensitivity and Security.

Parental care has been shown to correlate with the nature of amygdala-mPFC circuitry 

structure and function across a number of studies. For example, studies have shown that 

attachment styles, when measured in adulthood, are correlated with concurrent amygdala 

function (67, 68); moreover, when attachment is measured in infancy, these classifications 

have predicted amygdala structural differences when measured years later in childhood (e.g., 

10 years old)(69) and even into adulthood (70, 71). Attachment security is thought to reflect 

parenting quality received (72), and these enduring associations between attachment style 

and amygdala development may reflect the discrete, routinized parenting behaviors 

experienced during childhood (73). Indeed, parenting quality itself has been correlated with 

amygdala and prefrontal cortex development. For example, parental sensitivity during 

infancy has been associated with smaller amygdala volumes (74); when measured during 

childhood, parental sensitivity has been shown to moderate age-related increases in 

amygdala-mPFC resting-state connectivity, with the suggestion that low sensitivity 

accelerates development of functional connections (75). In fact, early parenting behavior has 

predicted amygdala-mPFC circuit development across a span of years (76–79). If the links 

between parental care and amygdala-mPFC development are not only predictive, but also 

causal in humans as they have been shown to be in rodent models, these pathways not only 

increase the risk for internalizing problems (80, 81), but also for peer relationships (82) and 

future parenting behaviors (83). Taken together, these findings support the hypothesis that 

sensitive parenting and the associated security established in offspring are effective in 

influencing the nature of amygdala-mPFC circuitry function in maturity.

Caregiving Adversity.

Characterizing the link between individual differences in normative caregiving and 

amygdala-mPFC circuitry development provides important insights into the profound impact 

that caregiving adversities have on emotional development and psychopathology risk, as 

well as the mechanisms by which these experiences exert their effects. Mental health is 

dependent on adequate caregiving (4, 84), and indeed adverse caregiving is associated with 

increased odds for mental health problems (85–87) including externalizing and internalizing 

disorders that can emerge in adolescence (88), and mood, anxiety, and personality disorders 

that can last into old age (89). Although these mental health outcomes generally involve 

difficulties in emotion regulation, the specific diagnoses may reveal themselves in sex-

specific ways (especially after puberty) (90), in part because of gonadal differences that 

emerge during this time (91), differences in amygdala development between boys and girls 

(92, 93), and perhaps differences in the types of maltreatment that girls may experience from 

boys (94). Caregiving adversity is a highly-potent stressor for the central nervous system, 

occurring during the brain’s most vulnerable period. This vulnerability is conferred by the 

numerous sensitive periods occurring throughout the first two decades of life that render 

neurobiological systems more or less amenable to environmental pressures in a time-specific 

manner (91, 95, 96), the cellular properties of the developing amygdala that increase its 
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sensitivity and reactivity to stress, and the hierarchical nature of brain development, which 

can engender cascading effects of early life stress onto later developing circuits.

Findings from the non-human animal literature.

A large animal literature has established a causal role for adverse caregiving (e.g., abuse, 

maternal separation, exposure to maternal distress) in prematurely activating amygdala (97, 

98), promoting earlier growth and myelination of amygdala cells (99, 100), amplifying 

amygdala excitability (101), increasing synaptic density in layer II of the infralimbic cortex 

(102), instantiating earlier use of mature extinction (103) and contextual fear conditioning 

(in male rodents) (104), and later reducing adolescent plasticity in mPFC and connectivity 

between amygdala and mPFC (105–107). These accelerations have been described as 

ontogenetic adaptations (108–110). Ontogenetic adaptations can only occur with the 

biological premise of developmental plasticity. In the context of developmental plasticity, 

activity-based processes might promote maturation of these affective circuits (as has been 

shown in other domains) (109, 111). Accelerating the development of amygdala-mPFC 

circuitry may be beneficial for young animals who have received cues of danger or 

abandonment in that the young animal is able to navigate stressors and threats independently 

to some degree (but presumably, not nearly as effectively as the adult can). That is, cues 

from the environment signaling inadequate caregiving may motivate a change in 

developmental strategies. However, accelerated development might, at the same time, 

truncate growth processes, thereby attenuating developmental plasticity (104), which could 

have deleterious consequences on later functions that depend on learning and slow growth 

during early sensitive periods.

Findings from the human literature.

The neotenous development of the human brain renders it vulnerable to psychosocial 

adversities for a prolonged period. That is, because we retain plasticity for an extended 

period, there is a wide window during which early life stressors can take hold. Whether early 

life stress produces accelerations in human brain development, or not, is not yet clear. 

However, there are emerging findings across studies suggestive of accelerated development. 

In addition to the more “mature-like” findings described above in instances of insensitive 

caregiving (within the normative range), extreme caregiving neglect, in the form of 

institutional caregiving, as well as exposure to violence (to self or other) has been associated 

with patterns of task-based amygdala-mPFC connectivity that more closely resemble adult 

patterns than child patterns (112, 113). Additionally, in the context of more normative family 

stressors, childhood adversity is associated with augmentation of prefrontal-subcortical 

circuits (114). Prenatal maternal depression has also been associated with patterns of 

amygdala-mPFC resting state connectivity in infants that have been interpreted as 

accelerations (115). Despite these initial findings, it is too early to firmly conclude that early 

psychosocial adversity accelerates human amygdala-mPFC development, and current 

findings require replication and expansion. However, if this hypothesis continues to receive 

support, it would call to mind Waddington’s epigenetic landscape metaphor (116), 

presenting multiple pathways (some more desirable than others) of development, that lead to 

the adult form. Accelerated development may be a preferred path under conditions of early 
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stress, but are less desirable in the long run, perhaps because of increased risk for mental 

health problems.

The mechanistic pathways by which early life stress operates in humans have not yet been 

identified with certainty, but the large number of studies identifying correlations between 

adverse caregiving and altered amygdala-mPFC development is noteworthy. For example, 

while the amygdala in infancy does not typically seem to increase activity for emotional 

stimuli (117, 118), the amygdala can be recruited in infants exposed to domestic violence 

(119). Growing up with parental psychopathology, exposure to domestic violence, severe 

neglect, including institutional care in infancy, and/or physical/sexual abuse has been 

associated with alterations in amygdala development and connections between the amygdala 

and mPFC (112, 120–128). Although there is consistency across studies in that amygdala 

and mPFC commonly emerge as neurobiological targets of adversity, there are 

inconsistencies across studies in terms of the nature of the effects, particularly with regard to 

volume. These discrepancies may result from the unique aspects of the maltreatment 

experiences under investigation (e.g., threat versus deprivation of a stimulus(7); emotional/

psychological harm versus physical harm, etc.). There is some promising evidence that 

different subtypes of maltreatment may target different developmental outcomes (129, 130). 

However, there are also adversity-related phenotypes that transcend subtype (e.g., 131, 132), 

suggesting that some behavioral domains exhibit developmental equifinality - that is, 

disparate adverse experiences nonetheless leading to the same final common pathway (133). 

At the same time, it is difficult to draw conclusions about the source of discrepancies 

because the importance of age is not always fully recognized; it is possible that effects of 

caregiving adversity change as a function of age at test or as a function of age of adversity 

exposure (9, 131). For example, studies that have observed larger amygdala volumes 

following early life adversity tend to examine children (120, 134), whereas those that 

identify smaller amygdala volumes tend to include adolescents (132, 135). One hypothesis 

by Teicher et al. (2016) (8) predicts that early life stress produces initial enlargements of 

amygdala volume, which then sensitize it to subsequent stressors, resulting in a volume 

reduction later in life. Thus, developmental changes in neurobiology should be considered 

seriously in studies of early adversity (e.g., 136) because findings in childhood may differ 

from those observed in adolescence and adulthood.

Heterogeneity and resilience following early adversity.

Despite these many findings linking caregiving adversities to altered amygdala-mPFC circuit 

development, there are large individual differences in brain development. The mental health 

outcomes associated with amygdala-mPFC development also exhibit significant 

heterogeneity (137), and many youth exhibit psychological resilience despite exposure to 

adversity. This heterogeneity evokes notions of developmental multifinality, which describes 

divergent developmental pathways for two individuals who begin with similar risk (133). 

Nonetheless, the sources of these individual differences require much more research. We do 

not yet know for certain why these individual differences exist or how to predict them. Intra-

individual factors may play a role. For example, normative genetic variations have been 

linked with individual differences in behavioral outcomes (e.g., 138, 139). Likewise, intra-

individual behaviors have also been studied; working memory skills have been shown to 
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moderate the link between early institutional care and mental health outcomes (e.g., 

attention deficit hyperactivity disorder; separation anxiety symptoms)(140, 141), as have 

affective processing biases (142). Earlier interventions (i.e., therapy, placement in families) 

tend to be associated with better affective health for children and adolescents (143–147).

Heterogeneity and intervention following early adversity.

Another source of individual differences may be positive, strength promoting experiences 

that compete with adverse ones to ameliorate developmental outcomes after adverse 

experiences. For example, interventions targeting parental nurturance, sensitivity, and 

threatening behaviors have been shown to causally reduce child problem behavior in high-

risk samples (148). This finding is particularly important since parents can be powerful 

buffers of stress in childhood (149). This positive effect of the parent is especially important 

to consider in the context of adverse environments, and it has been shown that parental 

presence can buffer the fear-potentiated startle of children exposed to high levels of violence 

(150). If human brain development is neotenous, retaining plasticity for a long time, then it 

might logically extend that positive experiences, even after adversity exposure, might confer 

additional benefits at older ages (see Figure 1, moments a,b,c). Consistent with this 

prediction, children and adolescents with a prior history of institutional care show steeper 

declines in anxiety symptoms in the future if they exhibited a dampening response to 

(adoptive) parental cues (“buffering”) at the initial time of testing (80). Whether or not 

children and adolescents exhibit this amygdala dampening in response to their parent is 

associated with the security they report feeling towards their (adoptive) parent at initial 

testing. Likewise, greater feelings of security correlate with lower internalizing problems 

following early institutional care (142), but not in youth with a typical caregiving 

background (whose scores were near floor levels). This finding suggests that while strong 

families are always important for emotional development, their effects may be especially 

visible following early adversity.

Conclusion

Human brain development is optimized to learn from environmental cues. However, this 

optimization also places infants and children at risk if exposed to adverse caregiving. The 

link between early caregiving adversity and poor mental health is not deterministic, as there 

is significant heterogeneity in outcome, and outcomes can change with ameliorative 

experiences. Nonetheless, the risk is significant. Additionally, while abusive and neglectful 

caregiving are potent stressors for the developing child, so is the separation of the child from 

his/her parent. This separation is traumatic, because children form attachments to their 

parents, even in the context of maltreatment. Therefore, the implications of this research for 

mental health include using developmentally-informed approaches to understand pathways 

of emotional development following early adversity, viewing stable caregiving as a basic 

need during development, and understanding that supporting children’s emotional 

development means supporting their families as well.
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Figure 1. 
Neotenous brain development permits increased opportunity to receive caregiver input. 

Altricial development (bottom two panels), unlike that of precocial species (top panel), 

requires caregiver input, which satisfies a species-expectation that the caregiving 

environment will scaffold the offspring’s developing neurobiology during periods of high 

developmental plasticity (green) before circuitry begins to take on adult characteristics 

(blue). Here, the example of amygdala-medial prefrontal cortex (mPFC) circuit development 

is used to illustrate how an expansion, and therefore protraction, of developmental processes 
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enables significant influence from the caregiving environment on developing neurobiology 

in the case of the human (bottom panel). Dotted lines are meant to represent putative 

sensitive periods for the amygdala and its connections with mPFC. Interventions (e.g., 

changes in parenting, therapy) may have differential efficacy depending on when they occur 

(i.e., moments a,b,c), motivating the development and use of age-specific approaches. Note: 

‘Developmental Time’ on x-axis is intended to be equated across the three species-types 

(top, middle, and bottom).
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