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Abstract

Broadband ultrasound attenuation (BUA) in cancellous bone is useful for prediction of 

osteoporotic fracture risk, but its causes are not well understood. In order to investigate attenuation 

mechanisms, nine cancellous-bone-mimicking phantoms containing nylon filaments (simulating 

bone trabeculae) embedded within soft-tissue-mimicking fluid (simulating marrow) were 

interrogated. The measurements of frequency-dependent attenuation coefficient had three 

separable components: 1) a linear (with frequency) component attributable to absorption in the 

soft-tissue-mimicking fluid, 2) a quasi-linear (with frequency) component, which may include 

absorption in and longitudinal-shear mode conversion by the nylon filaments, and 3) a nonlinear 

(with frequency) component, which may be attributable to longitudinal-longitudinal scattering by 

the nylon filaments. The slope of total linear (with frequency) attenuation coefficient (sum of 

components #1 and #2) versus frequency was found to increase linearly with volume fraction, 

consistent with reported measurements on cancellous bone. Backscatter coefficient measurements 

in the nine phantoms supported the claim that the nonlinear (with frequency) component of 

attenuation coefficient (component #3) was closely associated with longitudinal-longitudinal 

scattering. This work represents the first experimental separation of these three components of 

attenuation in cancellous bone-mimicking phantoms.
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I. INTRODUCTION

Prospective clinical trials [1–8], retrospective clinical trials [9–19], and pre-clinical 

experiments [20–57] have established that broadband ultrasound attenuation (BUA) (the 

slope of attenuation coefficient vs. frequency) and speed of sound (SOS) in calcaneus are 

effective for prediction of osteoporotic fracture risk. However, the mechanisms responsible 

for BUA in cancellous bone are not well understood. BUA is the combined result of 

absorption and scattering [58–94]. Cancellous bone contains approximately cylindrically-

shaped scatterers (trabeculae) and plate-like structures arrayed in a mesh. See Figure 1. The 

spaces between the trabeculae are filled with marrow (in vivo) or water (in vitro).
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2D simulation studies in human cancellous calcaneus suggest that scattering is greater in 

magnitude than absorption between 300 and 900 kHz [46, 83]. 3D simulation studies in 

human cancellous femur suggest that 1) absorption is greater than scattering at low 

frequencies but is less than scattering at high frequencies (with equality achieved around 600 

kHz) and 2) longitudinal-shear (LS) mode conversion may be a significant source of 

attenuation [79, 84, 85, 95, 96]. The 3D studies therefore suggest that absorption is probably 

the largest component of clinical (300–700 kHz) BUA. 3D simulation studies also suggest 

the presence of a significant scattering mechanism that varies approximately linearly with 

frequency [95]. These 2D and 3D simulation studies appear to include LS mode conversion 

as a form of scattering. If shear waves are rapidly absorbed as they propagate (as has been 

suggested [97, 104]), LS mode conversion could alternatively be regarded as effectively an 

absorptive mechanism, with ultrasonic energy briefly taking the form of a transient shear 

wave prior to absorption. (See Discussion section.)

In the diagnostic frequency range (300 – 700 kHz), attenuation coefficient in cancellous 

bone is approximately proportional to frequency to the first power [20–57] while 

longitudinal-longitudinal (LL) backscatter coefficient is approximately proportional to 

frequency to the third power [60, 61, 64]. If LL total scattering (i.e., the integral of LL 

scattering over all angles) also varies substantially nonlinearly with frequency, then LL 

scattering could only represent a minor contribution to attenuation coefficient in the 

diagnostic frequency range [60, 64, 68]. (Evidence for nonlinear total scattering is provided 

by the Faran Cylinder model, which predicts that total LL scattering, like LL backscatter, 

varies approximately as frequency to the third power [60]).

Experiments on graphite-fiber-in-gelatin phantoms may help elucidate mechanisms of 

attenuation in cancellous bone. Graphite-fiber-in-gelatin phantoms [97] resemble cancellous 

bone somewhat in that they contain a mixture of hard scatterers (graphite fibers) embedded 

in a fluid (gelatin). Measurements of attenuation coefficient in graphite-fiber-in-gelatin 

phantoms [97] have shown that the combination of absorption within the fluid (gelatin) and 

LS mode conversion from the graphite fibers produces a quasi-linear frequency dependence 

of attenuation when ultrasound propagates parallel to the fibers and a slightly higher than 

linear frequency dependence of attenuation when ultrasound propagates perpendicular to the 

fibers (consistent with theoretical predications [98]). See Ref. 97, Figure 8.

The objective of the work described below was to experimentally separate three components 

of attenuation in cancellous-bone-mimicking phantoms: 1) a linear (with frequency) 

component attributable to absorption in the soft-tissue-mimicking fluid, 2) a quasi-linear 

(with frequency) component, which may include absorption in and LS mode conversion by 

the nylon filaments, and 3) a nonlinear (with frequency) component, which may be closely 

associated with LL scattering from the nylon filaments.

II. METHODS

A. Phantoms

Nine phantoms containing nylon wires (simulating trabeculae) in proprietary soft tissue-

mimicking material (simulating marrow) (CIRS Inc., Norfolk, VA) were interrogated. Two 
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reference phantoms containing only soft tissue-mimicking material were also interrogated. 

Table 1 shows the phantom properties. Two different kinds of nylon wire (designated below 

by their colors “green” and “clear” in Table 1) were used. Two batches of proprietary soft 

tissue-mimicking material (“CIRS #1” and “CIRS #2”) were used. Three of the phantoms 

used nylon filaments with diameter equal to 152 μm, which is reasonably close to the mean 

trabecular thickness in human calcananeus, 127 μm [102]. Figure 2 shows the phantom 

containing green nylon wires along with its reference phantom.

B. Ultrasonic Methods

The phantoms containing clear nylon filaments were interrogated in through-transmission 

mode in a water tank using 3 pairs of coaxially-aligned Panametrics (Waltham, MA) focused 

transducers. See Table 2. The phantom containing green nylon filaments was only 

interrogated at 2.25 MHz. The propagation path between transducers was twice the focal 

length. Attenuation coefficient and group velocity were measured as described previously 

[63].

In order to investigate the contribution of LL scattering to attenuation coefficient, the 

phantoms containing clear nylon filaments were also interrogated in pulse-echo mode in a 

water tank using a 2.25 MHz center frequency transducer. The phantom was placed at the 

focal plane of the transducer. A reference-phantom method was used to compensate for 

transducer electro-mechanical properties and diffraction so that backscatter coefficient could 

be computed [60].

A Panametrics 5800 pulser/receiver was used. Received radio frequency (RF) signals were 

digitized (8 bit, 10 MHz) using a LeCroy (Chestnut Ridge, NY) 9310C Dual 400 MHz 

oscilloscope and stored on computer (via GPIB) for off-line analysis.

Frequency-dependent attenuation coefficients, α(f), were decomposed into 3 components.

α f = αFL f + αL2 f + αNL f

where αFL(f), the linear (with frequency) absorption in the soft-tissue-mimicking fluid, was 

measured directly in the reference phantoms (i.e., phantoms without nylon filaments). The 

attenuation above and beyond that due to absorption in the soft-tissue-mimicking fluid was 

decomposed into linear and nonlinear components, αL2(f) and αNL(f). αL2(f) was measured 

by performing a least-squares linear regression fit to measured α(f) in the low-frequency 

linear regime and then subtracting αFL(f). αNL(f) was then computed from αNL(f) = α(f) – 

αFL(f) - αL2(f). Attenuation slope was defined as the sum of the slopes of linear regressions 

to αFL(f) vs. frequency and αL2(f) vs. frequency.

The low frequency range for the linear fit was usually the clinical range of 300 – 700 kHz. 

See Table 2. For phantoms containing clear nylon filaments with diameters 330 and 356 μm, 

however, the upper limit was reduced to 500 kHz because their nonlinear (with frequency) 

attenuation components became prominent at lower frequencies. For the phantom containing 

green nylon filaments, the range was 500 – 800 kHz, which corresponded to the low end of 

the usable frequency band obtainable with the 2.25 MHz center frequency transducer.
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III. RESULTS

Figure 3 shows measurements of attenuation coefficient vs. frequency for the phantom 

containing green nylon filaments (*’s) and its reference phantom (i.e., phantom without 

nylon filaments) (o’s). The attenuation coefficient for the reference phantom appeared to be 

approximately linear with frequency up to at least 3 MHz. The slope of the linear least-

squares regression fit to the reference phantom attenuation coefficient data vs. frequency was 

0.7 ± 0.1 dB/cmMHz (mean ± standard error). The slope of the linear least-squares 

regression fit to the attenuation coefficient data from the phantom containing green nylon 

filaments over the range from 0.5 to 0.8 MHz was 2.3 ± 0.2 dB/cmMHz, or about three 

times the value for its reference phantom (see dashed line in Fig. 3). Therefore, there seems 

to have been a substantial quasi-linear (with frequency) attenuation mechanism operating in 

the phantom containing green nylon filaments, in addition to the linear (with frequency) 

attenuation attributable to absorption in the proprietary soft-tissue mimicking material. The 

group velocities were 1555 ± 5 m/s (phantom containing green nylon filaments) and 1545 

± 1 m/s (reference phantom).

Figure 4 shows results for 5 phantoms containing 10-mm-long clear nylon filaments. The 

left panel shows measurements of total attenuation coefficient vs. frequency. The dotted 

lines correspond to frequency dependent attenuation coefficients measured from the 

reference phantom (i.e. phantom without nylon filaments). The dashed lines correspond to 

linear fits of attenuation coefficient vs. frequency at low frequencies. It can be seen that there 

was a substantial quasi-linear (with frequency) component of attenuation above and beyond 

the attenuation due to the soft-tissue-mimicking fluid (dotted line), especially for the 

phantoms with filaments with diameters of 229, 330, and 356 μm. The middle column of 

Figure 4 shows the nonlinear component of attenuation coefficient, αNL(f), which is the 

difference between α(f) (left panel) and the low-frequency linear fit to α(f) (left panel, 

dashed line). The right column of Figure 4 shows measurements of backscatter coefficient, 

η(f). Comparison of the middle and right columns of Figure 4 shows that for each filament 

diameter, the frequencies of rapid onset of αNL(f) and η(f) are very similar, suggesting that 

LL scattering may be a significant source of αNL(f).

Figure 5 shows attenuation slope plotted vs. volume fraction for the phantoms containing 

clear nylon filaments. A least-squares linear regression fit is also shown. The correlation 

coefficient to the least-squares fit was r = 0.96. The 95% confidence interval for r was (0.82, 

0.99).

IV. DISCUSSION

This work represents the first experimental separation of three distinct components of 

attenuation in cancellous bone-mimicking phantoms. The rate of change of the total linear 

(with frequency) attenuation coefficient, αFL(f) + αL2(f), with frequency was found to 

increase linearly with volume fraction, consistent with previous measurements on cancellous 

bone.
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Figures 3 and 4 show that some phantoms exhibited a substantial quasi-linear (with 

frequency) component of attenuation above and beyond the absorption in the soft-tissue-

mimicking fluid. This quasi-linear (with frequency) excess attenuation may include 

absorption in and LS mode conversion by the nylon filaments. The latter source of quasi-

linear (with frequency) attenuation is consistent with 1) 3D simulations that consider only 

non-absorptive mechanisms [95], and 2) measurements on graphite-fiber-in-gelatin 

phantoms that include absorption within the fluid (gelatin) and LS mode conversion from the 

graphite fibers [97].

Differences between the cancellous-bone-mimicking phantoms interrogated here and 

cancellous bone should be acknowledged:

First, the longitudinal sound speed in nylon (2600 m/s) is somewhat lower than that for 

mineralized bone material (2800 – 4000 m/s, near 500 kHz) [100] (but still far greater than 

that for water or marrow—near 1500 m/s). However, nylon may still be a reasonable 

material to simulate trabeculae for this application because previous studies have shown that 

phantoms consisting of parallel nylon wires in water exhibit similar dependences of LL 

scattering [77] and phase velocity [101] on frequency and scatterer thickness as cancellous 

bone.

Second, the cancellous bone phantom investigated here lacked cross-links that can connect 

nearby trabeculae in cancellous bone. However, again, the parallel-nylon-wire phantoms 

mentioned in the previous paragraph also lacked cross-links but still exhibited similar 

acoustic properties to cancellous bone [77, 101].

Third, while scatterers were essentially randomly oriented in the phantom, they tend to align 

along preferred directions in cancellous bone. However, the phantom may still be a useful 

model for this application because attenuation due to LS mode conversion tends to be quasi-

linear with frequency regardless of whether ultrasound propagates parallel or perpendicular 

to the scatterers, according to theory [98] and measurements on phantoms containing 

graphite fibers in gelatin [97].

Fourth, nylon wires may have lower absorption than trabeculae. However, as stated earlier, 

this may not be a serious limitation because simulations that ignore absorption are able to 

reproduce experimental results for trabecular bone [79].

The present study is more relevant to cancellous bone than the previously-mentioned 

graphite-fiber-in-gelatin study [97] (which was intended to model soft tissue, not bone) in 

terms of scatterer diameter (152 – 356 vs. 8 μm), scatterer length (10 – 12 mm vs. 100μm), 

and volume fraction (1.8 – 9.9% vs. unspecified). (The mean trabecular thickness in human 

calcaneus is 127 μm [102]. Volume fractions in human calcaneus range from 3% to 14% 

[103]) Another advantage of the present study over the previous study [97] is that LL 

backscattering was measured independently of attenuation in order to investigate the effects 

of LL scattering on frequency-dependent attenuation.

Although shear waves may arise from mode conversion at scatterer interfaces, they may be 

extremely transient. For example, shear attenuation coefficients in bovine cancellous bone 
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have been estimated to be approximately 17 dB/mm (at 1 MHz) [104], implying that shear 

wave power is reduced by approximately 98% for each mm of propagation. Similarly, shear 

waves generated from graphite particles suspended in gelatin have been described as 

“evanescent” [97]. Therefore, the relative roles of absorption and scattering in cancellous 

bone will depend on the relative roles of absorption and scattering of mode-converted shear 

waves. If the rapid attenuation of mode-converted shear waves is primarily due to 

absorption, then absorption would be the dominant loss mechanism, albeit with the caveat 

that the ultrasonic energy briefly takes the form of a very short-lived shear wave prior to 

absorption.
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Figure 1. 
Micro Computed Tomogram of calcaneus. Some trabeculae appear to terminate as they 

move into and out of the imaging plane. Image acquired by Andres Laib, Scanco Medical 

AG, Brüttisellen, Switzerland.

Wear Page 13

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Phantoms. Both phantoms contained soft-tissue-mimicking material. The phantom on the 

right also contained green nylon filaments to simulate trabeculae.
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Figure 3. 
Attenuation coefficient vs. frequency in the phantom containing green nylon filaments (*) 

and in the reference (i.e. without nylon filaments) phantom (o). The dashed line corresponds 

to a linear regression fit at low frequencies.
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Figure 4. 
Results for the 5 phantoms containing 10 mm clear nylon filaments. The left panel shows 

measurements of attenuation coefficient vs. frequency. The dotted lines correspond to 

frequency-dependent attenuation coefficients measured from the reference phantom (i.e., 

phantom without nylon filaments). The dashed lines correspond to linear fits of attenuation 

coefficient vs. frequency at low frequencies. The middle panel shows the nonlinear 

component of attenuation coefficient, αNL(f), which is the difference between α(f) (left 

panel) and the low-frequency linear fit to α(f) (left panel, dashed line). The right panel 

shows measurements of backscatter coefficient, η(f).
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Figure 5. 
Attenuation slope plotted vs. volume fraction for the phantoms containing clear nylon 

filaments. A least-squares linear regression fit is also shown.
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Table 1.

Properties of phantoms.

Nylon Fluid Filler Diameter (μm) Length (mm) Scatter Number 
Density (# per cc)

Volume Fraction 
(%)

Frequency Range for Linear Fit 
(MHz)

- CIRS #1 - - - - 0.5 – 0.8

Green CIRS #1 203 12 100 3.9 0.5 – 0.8

- CIRS #2 - - - - 0.3 – 0.7

Clear CIRS #2 152 10 100 1.8 0.3 – 0.7

Clear CIRS #2 203 10 100 3.2 0.3 – 0.7

Clear CIRS #2 229 10 100 4.1 0.3 – 0.7

Clear CIRS #2 330 10 100 8.5 0.3 – 0.5

Clear CIRS #2 356 10 100 9.9 0.3 – 0.5

Clear CIRS #2 152 12 100 2.2 0.3 – 0.7

Clear CIRS #2 229 12 100 3.3 0.3 – 0.7

Clear CIRS #2 152 12 200 4.4 0.3 – 0.7
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Table 2.

Transducers.

Transducer Center Frequency (MHz) Diameter (mm) Focal Length (mm)

V391 0.5 29 53

V302 1 25 51

V305 2.25 19 51
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