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Abstract

The mammalian gut harbors a vast community of microorganisms — termed the microbiota — 

whose composition and dynamics are considered to be critical drivers of host health. These factors 

depend, in part, upon the manner in which microbes interact with one another. Microbes are 

known to engage in a myriad of different ways, ranging from unprovoked aggression to actively 

feeding each other. However, the relative extent to which these different interactions occur 

between microbes within the gut is unclear. In this minireview we assess our current knowledge of 

microbe–microbe interactions within the mammalian gut microbiota, and the array of methods 

used to uncover them. In particular, we highlight the discrepancies between different 

methodologies: some studies have revealed rich networks of cross-feeding interactions between 

microbes, whereas others suggest that microbes are more typically locked in conflict and actively 

cooperate only rarely. We argue that to reconcile these contradictions we must recognize that 

interactions between members of the microbiota can vary across condition, space, and time — and 

that only through embracing this dynamism will we be able to comprehensively understand the 

ecology of our gut communities.

Introduction

The mammalian intestine harbors a vast community of microbes, collectively known as the 

gut microbiota [1], that plays a critical role in host health [2]. The composition of the 

mammalian microbiota demonstrates both remarkable dynamism and striking stability: on 

the one hand, diversifying after the initial colonization that follows birth and fluctuating in 

response to diet and disease, yet maintaining core taxa over periods of years [3]. 

Determining the forces that shape our gut communities is fundamental to our understanding 

of the functioning of the human microbiota and will also offer a window into many of the 

ecological and evolutionary forces that shape microbial communities more broadly. Central 

to this goal is establishing an understanding of the ecology of our microbiota. How does 

each organism survive in the gut, what niche does it occupy, and how does it interact with 

those around it? Specifically, with which other organisms does each compete, which 
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organisms do they each rely upon, and how do these interactions change with environmental 

conditions? Box 1 and Figure 1 each introduce common ecological terms that describe the 

nature of interactions between organisms and how they are applied in the context of 

microbial ecology.

Determining how species interact with one another is a challenge in any diverse ecosystem. 

The behavior of any given species results from the integration of its interactions with all 

other community members and the environment — rendering it hard to disentangle the 

nature of any individual interaction. Moreover, unlike in macro-ecological communities, 

rarely can we directly observe microbes in situ within their mammalian hosts (although 

some non-mammalian hosts offer the exciting opportunity to do so [4]). Quantifying 

microbial interactions within the mammalian microbiome is, therefore, a formidable task.

Methods for measuring interactions within host-associated microbiomes can broadly be 

classified into those used to study members within their natural environment (that is, within 

their host) and those that characterize members within a controlled experimental setting 

(Figure 2). However, different approaches often give contrasting results. Some 

computational models have predicted the possibility of rich cross-feeding networks within 

the mammalian microbiome, with numerous microbes supplementing one another’s growth 

[5]; yet some in vitro experiments have suggested that the human microbiota is dominated 

by competition [6]. What then is the overarching picture of interactions within the 

mammalian microbiome, and moreover, what drives these differences between methods? To 

what extent are differences driven by technical biases, and to what extent do they tell us 

about the biology of the microbiota itself? In this minireview we discuss the diverse methods 

for quantifying interactions between microbes within the gut and assess what each can tell 

us about the ecology of the mammalian microbiota. Crucially though, we also highlight that 

interactions between members of the microbiota can vary across condition, space, and 

potentially evolutionary time — and that only through embracing this dynamism will we be 

able to comprehensively understand microbe–microbe interactions within the gut.

Learning from the Community In Vivo

The physical and chemical environment of the mammalian gut is likely to influence the 

manner in which microbes interact. As such, the ideal context to quantify microbiota 

interactions is within the host itself. As the microbiota cannot easily be observed directly, 

most approaches rely on analyzing proxies of gut composition. The most common approach 

by far is to amplify variable regions in the genes encoding ribosomal RNA to assign taxa 

within stool samples. More recently, advances in metagenomics have enabled us to 

determine the composition of the microbiota down to the resolution of individual strains [3]. 

What, though, can these data tell us about how members of the microbiota interact?

A common approach to quantifying inter-microbial interactions is to use these genomic data 

to build correlation networks — identifying species that occur together more often than 

expected by chance. A number of methods have been developed specifically for generating 

co-occurrence networks from microbiome data where species abundances are often 

described in relative terms, confounding traditional correlation analyses [7]. Although these 
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methods identify members of the microbiota that frequently co-occur, and are thus likely to 

interact ecologically, they cannot determine how these microbes interact with one another 

(Box 1). If two microbes positively correlate, it may be tempting to conclude that they 

facilitate one another. However, this correlation might equally result from the two occupying 

a similar niche, in which common environmental conditions are selecting for increased 

abundances of both members. In the latter case, we would expect niche overlap to drive 

strong competition between the microbes in question [8].

Nonetheless, although correlation analysis alone is insufficient to infer ecological 

interactions, it can inform targeted experiments that test ecological interactions 

mechanistically. For example, by identifying taxa correlated with recovery from diarrhea 

following Vibrio cholera infection, a consortium of species predicted to directly inhibit V. 
cholera was determined. This consortium was then refined further to identify a specific 

inhibitory species, Ruminococcus obeum, which bacterial-genetic approaches revealed 

represses V. cholera via quorum sensing factors [9].

To robustly infer microbial interactions from community data alone, however, we must look 

beyond co-occurrence to how taxa change in response to one another. This requires data 

tracking the same microbiota (in the same host) over time to determine how individual taxa 

change between timepoints, as well as statistical tools to infer whether these changes are 

influenced by the presence of other taxa. A number of methods exist to achieve this, 

typically based on fitting microbiota next-generational sequencing time-series data with a 

generalized Lotka-Volterra model [10–12]. This simple mathematical model describes how 

the growth rate of any given taxon is affected by interactions with other members of a 

microbial community. Parameterizing this model enables us to infer directed relationships 

between microbes — for example, species A increases the growth rate of species B. When 

combined with machine-learning tools that disentangle true signals of interactions from false 

positives, this approach can build an entire interaction network of how each taxon’s growth 

rate is affected by each other member of the community.

Several studies have used this statistical approach to characterize the interaction networks of 

mouse [10] or human [11,13] gut-microbiome communities, determining all possible 

pairwise interactions between common taxa. In each case communities appeared to be 

dominated by competition and exploitation. For example, in the developing mouse 

microbiome, of 136 possible microbial interactions no mutualistic pairs were identified, 

whereas only four were identified as commensal [11] (Box 1). However, these methods are 

still in their infancy and are vulnerable to mistakes if dynamics are driven by unmeasured 

external factors (for example, antibiotics) [14]. Therefore, they are best treated as hypothesis 

generators from which the strongest predicted interactions can then be validated 

experimentally. For example, this approach was used to identify microbes that inhibit the 

pathogen Clostridium difficile in humans; one of the strongest inhibitory links identified (via 

Clostridium scindens) was confirmed and the mechanism of inhibition elucidated using in 
vivo and in vitro mouse models [13].

The above methods have relied on simply observing interactions in natural communities. 

Further insight can be gained from actively manipulating communities in vivo. One such 
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approach is to add new members to natural communities and determine both how these new 

members behave and how they affect the existing microbiota. This approach revealed that 

Bacteroides species confer colonization resistance — whereby an invading strain cannot 

colonize the host if conspecifics are already present — implying strong within-species 

competition [15]. A simpler approach still is to manipulate small artificial communities in 
vivo. For example, mice mono-colonized with Bacteroides thetaiotaomicron supported 

higher burdens of the pathogens Salmonella enterica serovar Typhimurium and C. difficile 
than did germ-free mice colonized with these pathogens alone, leading to hypotheses that 

both pathogens benefited from the presence of this member of the gut microbiota. Tracking 

changes in gene expression, as well as metabolite production and consumption, revealed that 

the positive interactions between B. thetaiotaomicron and the pathogens were mediated by 

two distinct types of cross-feeding: via monosaccharides liberated by the cleaving of host 

glycans [16] or by fermentation of waste products [17]. Studying reduced-complexity 

communities in vivo in this manner has also revealed that B. thetaiotaomicron cross-feeds 

the common sulfur-reducing bacterium Desulfovibrio piger [18] and facilitates colonization 

by another common gut bacterium Faecalibacterium prausnitzii [19].

Learning from Reductionism In Vitro

Complementing these in vivo studies are ‘bottom-up’ approaches in which inter-microbial 

interactions are determined from examining individuals or pairs of species within controlled 

environments. These methods range from classic in vitro screens for interference 

competition (Box 1) to newer approaches harnessing metabolomics and computational 

modelling to infer interaction networks.

The most reductionist approach is to characterize individual members of the microbiota and 

subsequently infer how they may interact with other community members. This is often 

achieved using a combination of phenotypic screens — assaying individuals in vitro to 

determine the presence of a trait (for example, ability to utilize a particular nutrient) — and 

bioinformatic screens that identify homologous genes in one organism associated with 

specific interaction mechanisms in another.

These approaches have identified a vast array of mechanisms for interference competition 

within the microbiota [20]. A classic example is the type VI secretion system — a molecular 

apparatus used by Gram-negative bacteria to deliver a toxic payload to another bacterium, or 

in some cases a host organism [20]. Early work used phenotypic screens of mutant libraries 

growing on target cells to reveal both the presence of, and the genes associated with, the type 

VI secretion system machinery in several species [21,22]. Later, bioinformatics screens 

uncovered homologous type VI secretion system genes in more than half of the 

Bacteroidales strains within human microbiota samples [23,24]. Subsequent functional 

analyses confirmed the role of these genes in intraspecies competition within the gut [25,26].

Reductionist methods have also predicted large amounts of exploitative competition (Box 1) 

within the microbiota. Typically this has been achieved by identifying cases in which pairs 

of microbes each possess the ability to digest a specific polysaccharide — implying that they 

will compete for this nutrient [27]. For example, in vitro characterization revealed that many 
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members of the Bacteroides genus share the machinery for digesting a range of dietary and 

host glycans [28], predicting a resource competition that was subsequently validated in vivo 
[29]. However, it is crucial to identify not only whether a microbe utilizes a nutrient, but also 

how. Some dietary glycans are digested extracellularly, providing breakdown products that 

benefit not only the focal strain but also others in the surrounding area. This is in contrast to 

‘selfish’ mechanisms whereby glycan utilization is privatized [30–33]. Very rarely, such as 

in the case of Bacteroides ovatus, microbes have even been found to engage in non-essential 

costly ‘public’ polysaccharide digestion in order to help other species — displaying true, 

evolved interspecies cooperation [31] (Box 1).

An alternative to studying individual strains in isolation is to directly assess interactions 

between pairs of species in a simplified environment, either experimentally or 

computationally. Experimental approaches typically involve either directly growing species 

together or culturing species in one another’s supernatant. Meanwhile, computational 

approaches to inferring interactions have typically relied on metabolic-network modelling. 

Here annotated genomes are used to construct networks of all the metabolic reactions within 

a given set of microbes. These networks are then combined alongside information about 

metabolic constraints to simulate the flow of metabolites within and between each of the 

species using flux balance analyses [5,34]. In doing so, one can identify potential 

competition for nutrients or metabolite cross-feeding. Regardless of the specific method, 

these approaches give a more direct quantification of interactions than do techniques that 

rely on characterizing individual strains or analyzing natural communities in vivo. However, 

the downside is that these approaches quickly become unfeasible for natural communities — 

a community with 100 species contains over 5000 pairs. As such, these approaches are 

typically applied to small synthetic consortia of microbes designed to capture the dominant 

taxa within mammalian microbiomes.

Experimental assessments of interactions suggest that the mammalian microbiota is 

dominated by competitive and exploitative interactions [6,35,36]. For example, directly 

coculturing a 12-species synthetic community determined that competitive and ammensal 

(Box 1) interactions together comprised 68% of all interactions, with cooperative and 

commensal interactions representing around 5% [6]. By contrast, computational approaches 

have produced mixed results regarding the nature of interactions within the microbiome 

[5,34]. A metabolic network model of an 11-species synthetic community predicted 

mutualism and commensalism to be rare, together representing approximately 10% of all 

interactions [34]. However, a more extensive model containing 773 members of the human 

microbiome identified commensalism as the second most dominant interaction type after 

exploitation, suggesting that a rich network of beneficial cross-feeding exists within the 

microbiota [5]. Importantly, however, the almost 300,000 interactions classified in this study 

were not filtered for whether the taxa in question were known to commonly co-occur. When 

interaction pairs were classified based upon whether the focal species commonly co-

occurred, microbiota members were on average more competitive against species with 

whom they commonly co-occurred compared to species with which they rarely associated 

[27].
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Interactions within the Microbiota — Discrepancies and Dynamism

Taken together, what can we conclude about interactions within the mammalian gut 

microbiome? Longitudinal community data, pairwise cultivation, and the presence of a 

diverse array of molecular weaponry suggest that the microbiota is dominated by 

exploitation and competition. This is perhaps unsurprising — theory suggests that 

communities dominated by cooperation are likely to be unstable on both ecological and 

evolutionary timescales [37,38]. However, reduced complexity ecosystems in vivo and 

metabolic models have each demonstrated rich potential for beneficial cross-feeding 

between microbes. What then drives these discrepancies?

Technical Drivers of Discrepancies

The intrinsic technical biases and blind-spots of any approach will, inevitably, influence the 

conclusions we draw about microbiota ecology. Supernatant-based growth experiments and 

metabolic modeling will fail to capture contact-dependent interference competition — 

leading to an overrepresentation of positive interactions. Conversely, co-culturing organisms 

in batch cultures may drive competition for nutrients that would never be in demand in vivo, 

rendering microbes more competitive in vitro than they would be within their host. More 

broadly, most methods for inferring interactions require strong simplifications and 

assumptions about the underlying environment in which communities reside, and any ex-
vivo approach will inevitably remove many of the physical and chemical complexities of the 

gut environment. For example, both in vitro approaches and metabolic modelling require 

defined growth media; however, this media will itself influence the interactions that occur 

[5,34]. Microbes cannot compete for nutrients that are not there; nor can they cross-feed if 

the necessary substrates are missing. Meanwhile, though in vivo systems capture 

communities in their natural settings, unmeasured variability between hosts may confound 

any attempts to infer microbial interactions [14]. Another important consideration is that 

top-down approaches may be unable to capture interactions between strains, due to 

limitations in sequencing resolution or depth.

Biological Drivers of Discrepancies — Dynamism in Interactions

More fundamentally however, these technical limitations highlight a key principle of 

microbial ecology in the gut: that the balance between competition and cooperation is both 

dynamic and context dependent. Although we are trying to define static interactions, in 

reality, the chemical, social, and physical environment will all dynamically influence how a 

microbe interacts with others at any given time.

Microbes change their gene expression depending on context, potentially altering how they 

interact with the environment around them. For example, many members of the gut 

microbiota regulate their nutrient utilization depending on environmental availability. The 

Bacteroides demonstrate hierarchies of glycan preference [39,40], shifting their nutrient 

utilization over time and potentially reducing competition for some nutrients while 

increasing competition for others [40–42]. Meanwhile, model systems have demonstrated 

how changing nutrient availability can reverse interactions entirely; for example, from 
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obligate mutualism at low nutrients to competition when nutrients are abundant [43]. 

Similarly, many mechanisms of bacterial warfare are under tight regulation [20,44,45]. The 

type VI secretion system, for example, is deployed very differently across species. The 

pathogen Pseudomonas aeruginosa exhibits a ‘tit-for-tat’ behavior, increasing the rate at 

which it fires its weaponry when it is attacked by other cells [44]. In contrast, Serratia 
marcescens employs its type VI system pre-emptively, firing regardless of whether it has 

already been attacked [45]. More fundamentally, this dynamism in gene expression also 

highlights a key limitation of any method that focuses on inferring pairwise interactions 

between species: that it will fail to capture higher-order interactions — whereby the 

presence of one species may alter how others interact.

Physical forces too can influence microbial interactions. Although the extent of spatial 

organization in the mammalian gut is relatively unknown, certain microbes are differentially 

distributed [46]. Such community structure may weaken interactions if it prevents cells from 

encountering one another, whereas in a spatially limited environment strong competition for 

space may outweigh any beneficial effects of cross-feeding [37].

Thus far we have focused solely on microbe–microbe interactions, agnostic of the presence 

of the host. However, the gut epithelium provides many of the nutrients for which species 

compete, potentially providing a means for hosts to manipulate microbial interactions [37]. 

Moreover, there is increasing evidence of microbe–host–microbe interactions, whereby one 

microbial species influences another, via inducing a host response. For example, certain 

strains of S. enterica employ virulence factors that induce epithelial inflammation in the gut, 

and the production of new electron acceptors by the host that can only be used by S. 
enterica. This environmental change enables S. enterica to respire in the gut, providing it 

with a growth advantage against other bacteria and enabling it to outcompete the resident 

microbiota [47]. Determining the role of the host in regulating interactions among members 

of the microbiota will be critical to fully understanding microbe–microbe interactions in the 

gut.

Outlook

If we wish to manipulate our microbiota we must account for the ecology of our gut 

communities. A probiotic will only be successful if it can, at minimum, colonize its host — 

and this colonization ability will depend critically upon how the probiotic competes or 

cooperates with the natural microbiota. Although we are beginning to elucidate the forces 

that shape microbial communities, we are still far from fully disentangling how microbes 

interact within the mammalian gut.

To comprehensively understand microbial interactions within the complex gut microbiota we 

must appreciate that they are dynamic and context-dependent. Progress will be made here if 

in vivo studies can begin to account for the unseen factors that shape interactions — for 

example, by mapping the micro-niches that exist in the gut and accounting for chemical and 

physical variation within a host. Reductionist approaches will benefit from better theoretical 

frameworks in order to map upwards and understand how individual interactions integrate to 

drive broader community dynamics.
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Finally, although in-roads are being made towards disentangling bacterial interactions within 

the microbiota, far less is currently known of how fungi or viruses contribute to microbiota 

dynamics [48]. Elucidating the within- and cross-kingdom interactions that occur in the 

mammalian gut is essential if we wish to fully understand the ecology of our microbiota.

More fundamentally, here we have focused on how microbes affect one another on 

ecological timescales. To fully understand our gut communities, however, we must also seek 

to understand how microbes influence each other on evolutionary timescales. How will these 

selective forces shape the ecological interactions between microbes — and vice versa? 

Understanding this eco-evolutionary interplay will undoubtedly be a formidable task but will 

be pivotal in building our understanding of the microbial communities that live inside us.
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Box 1.

An ecologist’s guide to microbe–microbe interactions in the host gut.

Positive interactions: cooperation, commensalism, and cross-feeding

Positive interactions between microbial species range from commensal — wherein one 

species derives a benefit from another that is itself unaffected — to true cooperation — 

where one species has evolved specifically to increase the fitness of another. Cooperation 

may or may not be reciprocal; though if there is a cost to one species, which there tends 

to be, indirect fitness benefits must be received in return, in order for the cooperation to 

be evolutionarily stable. Positive interactions within the microbiome are typically cases 

of cross-feeding or syntrophy — commensal interactions in which one species grows on 

waste products produced by another. Very few examples of true interspecies cooperation 

have been identified within the gut microbiome, perhaps unsurprising given cooperation 

is often both ecologically and evolutionarily unstable [37,38].

Negative interactions: competition, ammensalism, exploitation, and interference

Negative interactions may be symmetric (−/− competition) or one-sided (-/0 

ammensalism), though often both are loosely referred to as competition, which itself falls 

into two categories. Exploitative competition is an indirect interaction wherein two 

species compete for a common resource, reducing one another’s fitness as a consequence. 

In contrast, interference competition typically involves one species directly affecting the 

fitness of another. In the mammalian microbiome, exploitative competition commonly 

occurs over shared nutrients; however, microbes may also compete for space. Meanwhile, 

a range of weapons for interference competition between microbes have been identified, 

ranging from type VI secretion systems and bacteriocins, to mechanisms that induce host 

immune responses that in turn inhibit other microbes.

Asymmetric interactions: exploitation, predation and parasitism

Asymmetric interactions (+/−, confusingly also often termed exploitation) are those in 

which one species gains a fitness benefit at a cost to another. In macro-ecology this is 

often classified as predation or parasitism but conceptualizing such interactions for 

microbes can be challenging. The predatory bacterium Bdellovibrio bacteriovorus 
actively feeds on other bacteria [49], whereas parasitic bacteriophages multiply inside 

and often eventually kill their bacterial hosts [48]. However, in the gut microbiome 

asymmetric interactions are more likely to manifest when one species receives a growth 

boost from another (for example, via cross-feeding) and in response alters the 

environment in a manner that harms its partner, for example through producing a toxic 

waste product or changing the environmental pH [50].
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Figure 1. Types of interactions by fitness effect and mechanism.
Pairwise interactions between species are defined based on the effect each microbe has on 

the other’s fitness, and on the mechanism by which that effect is achieved. Interactions in 

which one microbe is negatively affected and the other is either unaffected (-/0) or harmed 

(−/−) are defined as ammensal or competitive, respectively. When these interactions are 

mediated by competition for a nutrient they are termed exploitation, and interference refers 

to when the interaction is direct (for example, type VI killing). Interactions can also be 

asymmetric, when one species gains a fitness benefit at the expense of another (+/−). 

Positive interactions within the gut are typically either defined as cross-feeding when 

microbes grow on by-products, such as fermentation products, amino acids or digested 

sugars produced by others, or cooperation when one microbe has evolved an adaptation 

specifically to increase the fitness of another. These interactions can either be reciprocal 

(+/+) or not, in which case they are termed commensalism (+/0).
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Figure 2. Bottom-up and top-down approaches to infer microbe–microbe interactions within the 
gut microbiome.
Approaches to inferring microbe–microbe interactions within the mammalian microbiome 

can largely be divided into those that build an understanding from bottom-up reductionism 

(left), and those that attempt to learn interactions from top-down community data (right). 

Experimental reductionism (top left) often involves directly growing species together or 

culturing microbes in one another’s supernatant in order to assess the effects they have on 

one another’s growth. Reductionist computational methods (bottom left) can parse a given 

microbe’s genome to identify mechanisms for specific interactions (for example, microbial 

weapons) or apply metabolic-flux modeling to predict how species may compete for 

nutrients or cross-feed one another. By contrast, top-down approaches include 

experimentally perturbing an existing microbiota community in a defined manner (for 
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example, by introducing a new species) and determining how members of the resident 

microbial community respond (top right); or, tracking an individual’s microbiota 

composition over time or across different conditions, and then using statistical tools to infer 

likely interactions between microbial taxa (bottom right).
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