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Background. During pregnancy, the Zika flavivirus (ZIKV) infects human placentas, inducing defects in the developing fetus. 
The flavivirus nonstructural protein 1 (NS1) alters glycosaminoglycans on the endothelium, causing hyperpermeability in vitro and 
vascular leakage in vivo in a tissue-dependent manner. The contribution of ZIKV NS1 to placental dysfunction during ZIKV infec-
tion remains unknown.

Methods. We examined the effect of ZIKV NS1 on expression and release of heparan sulfate (HS), hyaluronic acid (HA), and 
sialic acid on human trophoblast cell lines and anchoring villous explants from first-trimester placentas infected with ZIKV ex vivo. 
We measured changes in permeability in trophoblasts and stromal cores using a dextran-based fluorescence assay and changes in HA 
receptor expression using immunofluorescent microscopy.

Results. ZIKV NS1 in the presence and absence of ZIKV increased the permeability of anchoring villous explants. ZIKV NS1 
induced shedding of HA and HS and altered expression of CD44 and lymphatic endothelial cell HA receptor-1, HA receptors on 
stromal fibroblasts and Hofbauer macrophages in villous cores. Hyaluronidase was also stimulated in NS1-treated trophoblasts.

Conclusions. These findings suggest that ZIKV NS1 contributes to placental dysfunction via modulation of glycosaminoglycans 
on trophoblasts and chorionic villi, resulting in increased permeability of human placentas.

Keywords. Zika virus NS1; heparan sulfate; cytotrophoblast; Hofbauer cells; hyaluronic acid.

Zika virus (ZIKV) is a mosquito-borne flavivirus (Flaviviridae 
family) that in 2015–2016 caused massive epidemics in the 
Americas. ZIKV infection during pregnancy is associated with 
Zika congenital syndrome and with other neurological compli-
cations, such as Guillain-Barré syndrome, in adults [1, 2]. Our 
previous studies reported patterns of infection and elucidated 
routes by which ZIKV penetrates the placenta, leading to virus 
transmission [3, 4]. In the developing human placenta, a subset 
of specialized epithelial cells, cytotrophoblasts (CTBs), fuse, 
forming a layer of multinucleated syncytiotrophoblasts (STBs) 
that overlays CTBs, forming a barrier that covers chorionic villi. 
Syncytiotrophoblasts facilitate transport of substances from 
maternal blood to the fetal circulation and production of inter-
feron lambda that prevents infection of the placental surface [5, 
6]. Cytotrophoblasts also proliferate, forming cell columns that 

anchor the placenta to the uterine wall and branch into villi that 
increase the surface for nutrient exchange [6]. We reported that 
proliferating CTBs in proximal cell columns and Hofbauer cells 
in villous cores, as well as primary umbilical vein endothelial 
cells, stromal fibroblasts, and amniotic epithelial cells isolated 
from fetal membranes, are targets for ZIKV replication, sug-
gesting both placental and paraplacental routes of virus trans-
mission [3, 4].

Flavivirus nonstructural protein 1 (NS1) plays a critical role 
in pathogenesis by increasing the permeability of endothelial 
cell monolayers in vitro as well as causing vascular leakage in 
vivo [7]. This hyperpermeability is mediated in part by disrup-
tion of the endothelial glycocalyx—a network of glycosamino-
glycans (GAGs), proteoglycans, and sialic acid (Sia) expressed 
on the surface of human endothelial cells [8–10]. More impor-
tant, increased circulating levels of these GAGs correlate with 
severe dengue disease in humans [11, 12]. However, the effect 
of ZIKV NS1 on the integrity of the placental barrier has not 
been addressed.

Glycosaminoglycans are polymers of unbranched re-
peating disaccharide units and are abundant in the extra-
cellular matrix (ECM). The GAG family is composed of 5 
members—hyaluronic acid (HA), heparan sulphate (HS), 
chondroitin sulphate (CS), dermatan sulphate, and keratan 
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sulphate—and their presence in all vertebrate tissues impli-
cates their diverse importance and functions. Hyaluronic 
acid, the largest member of the GAG family, functions in phys-
iological processes, including ovulation, fertilization, and in-
flammation. Heparan sulphate acts as an attachment factor 
for growth factors, chemokines, and complement compo-
nents during normal physiological and immune functions, 
as well as for numerous viruses [13–15]. Sialic acid consti-
tutes a family of monosaccharides with a nine-carbon back-
bone, typically found on terminating branches of N-glycans, 
O-glycans, and glycosphingolipids (gangliosides), and occa-
sionally capping side chains of glycosylphosphatidylinositol 
anchors [16]. Given their location, ubiquitous distribution, 
and hydrophilicity, GAGs and Sia can modulate a wide va-
riety of physiological functions, and modification of their 
density and integrity may lead to pathology [17].

Human placentas express a variety of GAGs, including an 
abundance of HA [18, 19]. Hyaluronic acid, a nonsulfated 
GAG, is a major component of the ECM and can serve as a 
ligand for cell surface receptors to stimulate cellular activi-
ties, most notably through its major receptor, CD44. CD44 
is a transmembrane glycoprotein receptor that binds to HA 
and regulates cellular activities, such as proliferation, mi-
gration, and apoptosis, by triggering downstream signaling 
cascades [20]. In addition, lymphatic endothelial cells have 
a specific HA receptor, lymphatic endothelial cell HA re-
ceptor 1 (LYVE-1), that is also expressed by Hofbauer cells 
(macrophages in villus cores [21, 22]) and that mediates 
uptake of HA and promotes HA-mediated rolling of leuko-
cytes [23].

In this study, we examined the effect of soluble NS1 from 
ZIKV and the related West Nile virus (WNV) on the expres-
sion of HS, HA, and Sia, 3 main components of the ECM in cell 
monolayers and tissues. In addition, we examined (1) the bar-
rier function of human trophoblast monolayers in vitro using 
transepithelial electrical resistance (TEER) and (2) chorionic 
villous explants ex vivo from human placentas at different ges-
tational ages (GAs) using a dextran-fluorescence-based assay. 
The integrity of ECM components and intercellular junction 
proteins and the expression of CD44 and LYVE-1, 2 main HA 
receptors, was examined by immunofluorescence assay (IFA), 
and the levels of soluble HA, HS, and Sia were quantified by 
enzyme-linked immunosorbent assay (ELISA). Finally, we 
examined the role of soluble ZIKV NS1 in explants exposed to 
preparations of ZIKV (unpurified vs purified) that contained 
different amounts of soluble NS1.

MATERIALS AND METHODS

Ethics Statement

Collection of human tissue samples for this study was ap-
proved by the Institutional Review Board of the University of 
California, San Francisco (Supplemental Methods).

Cell Lines and Virus

For in vitro experiments, we used 2 human placental trophoblast-
derived cell lines: JAR and JEG-3 cells (Supplemental Methods). 
ZIKV strain Nica 2–16 was isolated from a ZIKV-infected pa-
tient in Nicaragua in 2016 [3].

Recombinant Nonstructural Protein 1

Recombinant NS1 proteins from ZIKV (Suriname Z1106033) 
and WNV (NY99) were produced in HEK293 cells by the 
Native Antigen Company (Oxfordshire, United Kingdom) and 
were certified to be endotoxin-free and more than 95% pure 
(see Supplemental Methods).

Epithelial Permeability Assay

The effect of recombinant flavivirus NS1 proteins on epithelial 
permeability was evaluated by measuring the TEER of JAR cell 
monolayers grown on a 24-well Transwell polycarbonate mem-
brane system (Transwell permeable support, 0.4  μm, 6.5  mm 
insert; Corning Inc.) (Supplemental Methods).

Fluorescence Permeability Assay in Chorionic Villous Explants Ex Vivo

The effect of soluble NS1 proteins on the barrier function 
of human chorionic villi was evaluated using a dextran-
fluorescence permeability assay in chorionic villi isolated 
from human placentas (7–14 weeks GA) (Supplemental 
Methods) [3, 8]. In addition, the effect of ZIKV on the per-
meability of anchoring villous explants was evaluated on 
individual explants infected with unpurified or purified 
preparations of ZIKV Nica 2–16 in 250  µL DMEM/F12 
medium, with or without exogenous ZIKV NS1 (5  µg/mL) 
(Supplemental Methods).

Fluorescence Microscopy for Visualization of Glycosaminoglycans and 

Intercellular Junction Proteins

For imaging experiments, JAR and JEG-3 cells were grown on 
coverslips coated with collagen (500  μg/mL; Sigma) and im-
aged on a Zeiss LSM 710 Axio Observer inverted fluorescence 
microscope equipped with a 34-channel spectral detector. The 
integrity of GAG components and intercellular junction com-
plexes was examined by IFA and confocal microscopy analysis 
(Supplemental Methods).

Chorionic Villous Explant Embedding and Immunohistochemical Staining

After fixation and LI-COR imaging, explants were photo-
graphed on a Leica M125 stereoscope equipped with a Leica 
MC170-HD digital camera, frozen, embedded in gelatin, and 
sectioned (5 µm) as previously described [3, 4] (Supplemental 
Methods).

Glycosaminoglycan and Sialic Acid Enzyme-Linked Immunosorbent Assays

Levels of soluble HA (R&D Systems), HS (LSBio), and Sia 
(Abcam) were measured from culture supernatants using 
ELISA assays following the manufacturer’s instructions.
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Nonstructural Protein 1 Capture Enzyme-Linked Immunosorbent Assay

The levels of soluble NS1 in the ZIKV preparations were deter-
mined using an in-house capture ELISA as previously described 
[24] (Supplemental Methods).

Statistical Analyses

Prism version 5.0 (GraphPad) was used for data analysis. 
Comparisons between 2 or >2 groups of data were performed 
by t test (nonparametric Mann-Whitney test) and ordinary 
one-way analysis of variance (ANOVA), respectively. Two-way 
ANOVA was used for multiple comparisons between groups. 
A P value of <.05 was considered statistically significant.

RESULTS

ZIKA NS1 modulates the integrity of GAGs on human trophoblast cell lines, 

inducing shedding and increasing permeability

In this study, we examine the effect of ZIKV NS1 and WNV 
NS1 on the integrity/expression of 2 GAGs, HS and HA, and 
the monosaccharide Sia on human trophoblast-derived cell 
lines (JAR, JEG-3). Analyses by IFA showed reduced staining 
for HS (~80%), Sia (~60%), and HA (~40%) on JAR cells 24 
hours posttreatment (hpt) with ZIKV NS1 compared with un-
treated cells (Figure 1Ai–iii and B). Nonstructural protein from 
the closely related WNV flavivirus did not affect the expression 
of these components nearly as dramatically (Figure 1Ai–iii and 
B). A  similar phenotype was detected on JEG-3 cells (Figure 
1B, Supplementary Figure S1A–C) [25]. Significantly increased 
levels of HS, HA, and Sia were detected in the supernatant of 
JAR and JEG-3 monolayers treated with ZIKV NS1 compared 
with WNV NS1 and untreated cells (Figure 1Ci–iii). In addition, 
we assessed the cellular barrier function of trophoblasts treated 
with ZIKV or WNV NS1 proteins by measuring TEER [26]. We 
found that ZIKV NS1 (5 μg/mL) and tumor necrosis factor-α 
(10 ng/mL), an immunomodulatory and vasoactive molecule, 
significantly increased the permeability of JAR monolayers 
compared with treatment with WNV NS1 (5 μg/mL), which in-
duced much smaller changes in TEER (Figure 2A). This barrier 
dysfunction correlated with altered distribution of ZO-1 (tight 
junction protein) and E-cadherin (adherens junction protein) 
on JAR cells treated with ZIKV NS1 (Figure 2Ci–iii) but not 
WNV NS1 (Figure 2Di–iii) or untreated cells (Figure 2Bi–iii). 
These results suggest that ZIKV NS1 alters the expression of 
GAGs on human trophoblasts, inducing their shedding into the 
extracellular milieu, and changes the distribution of key inter-
cellular junction proteins, together leading to increased perme-
ability and altered barrier function.

Exogenous ZIKV NS1 increases the permeability of and release of GAGs 

from human anchoring villous explants

We recently showed that soluble NS1 from ZIKV increases per-
meability of human umbilical vein endothelial cells in vitro [7]. 

To determine whether NS1 permeabilizes differentiating an-
choring villi, we tested the permeability of villous explants dis-
sected from placentas of 7 to 14 weeks GA to Alexa-680-labeled 
dextran after exposure to recombinant ZIKV and WNV NS1 
proteins (Figure 3A, Supplementary Figure S2). Treatment with 
ZIKV NS1 (5  µg/mL) led to consistently significantly greater 
mean permeability than untreated explants or treatment with 
WNV NS1 at the same concentration (Figure 3B). In some ex-
plants, the permeability after treatment with WNV NS1 was 
higher than untreated explants; however, no significant in-
creases were observed (Figure 3B). It is noteworthy to mention 
that greater permeability was seen in villous explants exposed to 
ZIKV NS1 but not WNV NS1 at GAs 7 and 9 weeks, compared 
to 10 and 14 weeks (P = .0009; P = .0154). In addition, treatment 
of chorionic villous explants with ZIKV NS1 led to increased 
levels of soluble HS and HA compared with untreated explants 
and WNV NS1-treated explants (Figure 3Ci and ii). In contrast, 
levels of Sia were not affected in any of the experimental con-
ditions (Figure 3Ciii). Together, these data suggest that ZIKV 
NS1 increases the permeability of anchoring villi in early ges-
tation and modulates shedding of HS and HA from chorionic 
villi, leading to hyperpermeability ex vivo.

ZIKA in the presence of soluble ZIKV NS1 causes hyperpermeability of an-

choring villous explants, degradation of HA, and increased levels of CD44 

on villous stromal cells

Next, we compared the effects of ZIKV NS1 on the permeability 
of anchoring villous explants in the presence of ZIKV using an 
isolate from the Americas (Nica 2–16) [3] (Figure 4A). Nica 
2–16 was grown in C6/36 cells (Aedes albopictus), and the cell-
free supernatant was used directly to infect chorionic villous ex-
plants (unpurified ZIKV). As shown above, NS1 alone altered 
the permeability of anchoring villi (Figure 3A and B). Because 
NS1 is secreted by flavivirus-infected cells, we used a purified 
preparation of ZIKV (purified ZIKV) to determine the effect 
of the soluble NS1 in unpurified virus preparations on villus 
permeability. We first measured the levels of free NS1 in both 
preparations and found that the unpurified stock of ZIKV con-
tained significantly higher levels of soluble NS1 (2823 ± 245 µg/
mL) than the purified virus (583 ± 154 µg/mL) (Supplementary 
Figure S3). Permeability experiments on villous explants 
showed consistent differences in permeability of villi exposed to 
unpurified and purified ZIKV (P < .0085) (Figure 4B, red bars). 
Furthermore, explants exposed to purified ZIKV in the pres-
ence of exogenous ZIKV NS1 also led to consistently greater 
permeability than exposure to purified ZIKV alone (P < .0331) 
(Figure 4B). The mean permeability measured for villous ex-
plants treated with purified ZIKV was similar to the levels in 
control (untreated and uninfected) explants (Figure 4B).

Based on the ability of ZIKV NS1 to modulate the expres-
sion of GAGs on trophoblast cells, we examined release of 
HA from anchoring villous explants infected in the presence 
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or absence of free NS1 in the medium and compared these 
values to the permeability measurements of the same ex-
plants (Figure 4Bi–iii, orange bars). As with the permea-
bility values, the levels of HA released into the medium were 

higher in villous explants infected with unpurified ZIKV 
and explants infected with purified ZIKV in the presence of 
exogenous ZIKV NS1 than in either control untreated/un-
infected explants or explants infected with purified ZIKV 
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Figure 1. Zika virus (ZIKV) NS1 induces shedding of gycosaminoglycans (GAGs) from human trophoblast cells. (A) Immunofluorescence staining of (i) heparan sulfate [HS], 
(ii) sialic acid [Sia], and (iii) hyaluronic acid [HA] in confluent monolayers of JAR cells cultured on collagen-treated glass cover slips after 24 hours of treatment with ZIKV NS1 
Suriname (5 µg/mL) or West Nile virus (WNV) NS1 (5 µg/mL). Images are representative of 4 independent experiments run in duplicate. Magnification, x20. Scale bar = 10 µM. 
(B) Mean fluorescence Intensity analyses of GAG expression on JAR monolayers after ZIKV or WNV NS1 treatment as described above. Each bar shows the mean ± standard 
error (SE) of 4 independent experiments processed in duplicate. The percentage of GAG expression on JAR and JEG cells treated with NS1 was normalized to the control 
untreated cells taken as 100%. (C) Enzyme linked immunosorbent assay quantification of soluble (i) HS, (ii) HA, and (iii) Sia in the supernatants obtained from JAR and JEG-3 
cells 24 hours posttreatement with ZIKV (open squares) or WNV NS1 (open triangles) proteins (5 µg/mL). Untreated cells (open circles). Data were derived from 4 independent 
experiments and were analyzed by nonparametric Mann-Whitney analysis. *, P < .05. Magnification, x20. Scale bar = 10 µM. ns, not significant.
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alone. Because increased levels of released HA could mod-
ulate cellular receptors CD44 and LYVE-1 [23, 27], we 
next examined their expression by immunofluorescence in 
sections of anchoring villi treated with unpurified ZIKV or 
purified ZIKV ± exogenous ZIKV NS1 as described above. 
We found consistent and substantial changes in staining for 
CD44 and LYVE-1 on stromal fibroblasts in cores of villi in-
fected with unpurified ZIKV compared with purified ZIKV 
(Figure 4Ci–v). We also noted that exposure of explants to 
purified ZIKV in the presence of exogenous ZIKV NS1 also 
resulted in increased levels of CD44 on stromal fibroblasts 
and decreased levels of LYVE-1 on Hofbauer cells in villous 

cores compared with uninfected villi or those infected with 
purified ZIKV without exogenous NS1 (Figure 4Di–v). 
These results suggest that ZIKV NS1 induces release of HA, 
resulting in increased expression of CD44 and reduced ex-
pression of LYVE-1 in villous cores.

ZIKV NS1 Increases the Expression of Human Hyaluronidases on 

Trophoblasts

Shedding of HA occurs mainly via internalization or deg-
radation by hyaluronidases (HYALs) into oligosaccharides 
[28]. Hence, we examined the expression of human HYALs, 
a group of enzymes involved in degradation of HA, 24 hpt 
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of trophoblasts with NS1 from ZIKV and WNV. We found 
that ZIKV NS1 stimulated the expression of HYAL on both 
JAR and JEG-3 cells at 24 hpt (Figure 5A). Notably, HYAL 

expression on ZIKV NS1-treated cells was significantly 
higher than untreated and WNV NS1-treated monolayers 
and correlated with reduced HA staining (Figure 5A and 
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B). These results indicate that ZIKV NS1 upregulates the 

expression of HYALs that could increase HA shedding 

from trophoblasts.

DISCUSSION

In previous studies, we and others described the poten-
tial routes of ZIKV transmission from mother to fetus using 
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in the presence or absence of ZIKV NS1 (5 µg/mL) at 2 days postinfection. Raw mean fluorescence intensity (MFI) values were normalized to the cross-sectional area of the 
explant (MFI/area) (right y-axis). For permeability values, levels of HA (left y-axis) were plotted side-by-side with area-normalized permeability values (right vertical scale). (C 
and D) Side-by-side immunofluorescent staining of CD44 and lymphatic endothelial cell HA receptor (LYVE)-1 in sections of chorionic villous explants treated and infected as 
in A and B. Data shown are the MFI/area values for each explant normalized to each explant size, including the mean ± standard error. CD68 was used as a marker for fetal 
macrophages, Hofbauer cells ([HBC] red) (D). Zoomed-in inset depicting expression of CD68 and LYVE-1 in HBCs (lower right). Explants treated only with ZIKV NS1 were also 
included (iv). Images are representative of 2 independent experiments. Magnification, ×40. Scale bar = 100 µM.
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anchoring villous explants from human placentas as a model 
for infection [3, 4, 7, 29, 30]. We have also described the role 
of flavivirus NS1 in modulating the permeability of human 
endothelial cell layers, and ZIKV NS1 preferentially triggered 
hyperpermeability in human umbilical vein endothelial cells 

[3, 7]. In this study, we show that ZIKV NS1 modulates the 
integrity of HS, HA, and Sia, 3 components of the ECM of 
trophoblast cells, in vitro and in intact villous explants ex vivo, 
as well as the expression of CD44 and LYVE-1, receptors for 
soluble HA in the villous core. NS1 induced upregulation of 
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Figure 5. Zika virus (ZIKV) NS1 modulates the expression of hyaluronidases in human trophoblast cells. (A) Immunofluorescence staining of hyaluronic acid ([HA], first and 
third columns) and human hyaluronidase ([HYAL-1], second and fourth columns) in confluent monolayers of JAR and JEG-3 cells cultured on collagen-treated glass cover-
slips 24 hours posttreatment with ZIKV NS1 (5 µg/mL) and West Nile virus (WNV) NS1 (5 µg/mL). Images are representative of 2 independent experiments run in duplicate. 
Magnification, x20. Scale bar = 10 µM. White arrowheads indicate expression of HYAL-1. (B) Mean fluorescence intensity analyses of HA and hyaluronidase expression in 
JAR and JEG-3 cultures after ZIKV or WNV NS1 treatment as described above. Each bar shows the mean ± SE of 2 independent experiments run in duplicate. The percentage 
of HA expression (dark gray) in JAR and JEG-3 cells treated with NS1 was normalized to the control untreated cells taken as 100%. Hyaluronidase (light gray) was expressed 
as the ratio (fold change) between NS1 and untreated cells used as control. White arrowheads indicate hyaluronidase expression puncta in trophoblast cells (light gray). 
Nuclei were stained with Hoechst. Magnification, x20. Scale bars= 5 µM. Ordinary one-way analysis of variance was used for statistical analyses: ***, P < .001; t test, ****,  
P < .0001 (ZIKV NS1 vs control: JAR and JEG-3 cells). ns, not significant.
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CD44 in the villous stroma and downregulation of LYVE-1 in 
Hofbauer cells infected with ZIKV or in the presence of ZIKV 
NS1 alone. These changes were associated with increased 
shedding of HA, HS, and Sia and significant disruption of 
trophoblast and anchoring villus endothelial barrier func-
tion. Together, these results highlight ZIKV NS1 as a key viral 
component that could modulate the permeability of early-
gestation placentas targeting cell column CTBs and suggest a 
potential vaccine target.

The ECM constitutes a network of proteins and GAGs that 
provides structural support and regulates distinct functional 
aspects of cell behavior in tissues and organs [31]. In the pla-
centa, GAGs include HS, HA, CS, and the monosaccharide Sia, 
as well as its large homopolymer form, called polysialic acid, 
that has been described in the ECM of CTBs and promotes cell 
motility and penetration of basement membranes [25, 32, 33]. 
Disruption of GAGs in the ECM under pathophysiological con-
ditions has been shown to lead to impaired barrier function of 
tissues and increased vascular leakage [7, 8, 12, 34, 35]. In this 
study, we showed that soluble ZIKV NS1 significantly affects 
the integrity of HS, HA, and Sia in trophoblasts and anchoring 
villous explants. Moreover, ZIKV NS1 induced changes in the 
barrier function of JAR cell monolayers measured by TEER 
and increased the permeability of villous explants to a fluores-
cent tracer, dextran-A680. This defective barrier function of 
human trophoblasts was associated with altered distribution of 
intercellular junction proteins, such as ZO-1 and E-cadherin, 
as key components of cell-to-cell contacts. We also found that 
changes in barrier function of anchoring villi were higher in 
first-trimester (7 and 9 weeks) compared with later in second-
trimester (14 weeks) placentas and were caused by ZIKV NS1 
but not NS1 from the closely related WNV. Consistent with this 
finding, only congenital ZIKV infection has been linked to thou-
sands of cases of birth defects, whereas congenital WNV infec-
tion in humans is still sporadic and rare [1, 36, 37]. Our findings 
suggest that ZIKV NS1, but not WNV NS1, may affect CTB cell 
columns that are more abundant in first-trimester developing 
placentas by disrupting the integrity of ECM components [4], 
potentially leading to persistent infection at the uterine-placenta 
interface [6]. ZIKV NS1 protein has been detected in the vil-
lous core of placentas obtained from ZIKV-infected women [38, 
39]. In this study, we found that exposure of anchoring villous 
explants to ZIKV resulted in hyperpermeability and increased 
HA. This effect was dependent on the concentration of NS1 in 
the stock of virus used (unpurified vs purified) and the addi-
tion of exogenous ZIKV NS1 to the purified stock of virus. A re-
cent study showed that ZIKV NS1 but not WNV NS1 induced 
hyperpermeability of human umbilical vein endothelial cells [7]. 
NS1 is well conserved among flaviviruses, exhibiting 20%–40% 
identity and 60%–80% similarity [40]. Despite this, ZIKV NS1 
possesses divergent electrostatic features that may influence host 
protein interactions and also ZIKV pathogenesis [41].

As one of the major components of the ECM, HA is a linear, 
unbranched polysaccharide [27] whose presence is regulated 
by HYAL-1, the most active somatic HYAL [28]. On tissues, 
HYALs induce degradation of HA into monosaccharides, ac-
companied by shedding of HA and subsequent cellular uptake 
triggered by its binding to CD44 [27] and/or LYVE-1, expressed 
in the lymphatic endothelium [23]. In this study, a combina-
tion of soluble NS1 and ZIKV resulted in increased levels of 
released HA in explants, which correlated with modulation of 
the expression of CD44 and LYVE-1 in the villous core. CD44 
was highly expressed in explants infected with ZIKV containing 
either endogenous (unpurified) or exogenous (purified plus re-
combinant ZIKV NS1) soluble NS1. Increased expression was 
associated with higher circulating levels of released HA in an-
choring villi, suggesting the potential role of soluble HA in 
modulating CD44 expression. In vitro and in vivo studies have 
revealed a direct mechanism for HA in promoting cell invasion 
into sites of inflammation [27, 42–44]. This process was shown 
to be dependent on both increased levels of CD44-receptor and 
the removal of HA from the pericellular matrix (ie, fibroblasts) 
[42, 43]. In eukaryotic cells, shedding of HA can be modulated 
by hyaluronan synthase or HYAL (HYAL-1), with distinct ex-
pression patterns depending on the tissue. In this study, we 
showed that increased expression of HYAL-1 in 2 human troph-
oblast cell lines correlated with enhanced shedding of HA in the 
presence of ZIKV NS1 but not WNV NS1. Recent studies dem-
onstrate activity of HYAL-1 in human placental tissues [45]. As 
an important proteoglycan-degrading enzyme, altered expres-
sion of HYALs may lead to important changes in the composi-
tion and structure of GAGs, influencing placental development. 
Thus, release of HA from anchoring villi, potentially via activa-
tion of HYAL-1, may cause upregulation of CD44 expression in 
villous cores that alters the placental environment. In this study, 
enzymatic activity for HYLA-1 or HA-synthesis enzymes was 
not examined. However, determining the contribution of both 
HYALs and hyaluronan synthases is critical for understanding 
their potential roles in placental pathology.

Another receptor for soluble HA is LYVE-1, a molecule closely 
related to the HA receptor CD44 [23]. In this study, in contrast to 
the increased signal observed for CD44 staining in NS1-treated 
villi, the levels of LYVE-1 were notably reduced in the villous core 
of explants infected with unpurified ZIKV, purified ZIKV plus ex-
ogenous NS1, or those only exposed to soluble ZIKV NS1 protein. 
LYVE1 expression was observed on Hofbauer cells, macrophages 
in the villous core, that were dependent on the presence of NS1 
and/or infection [3, 4].  In the placenta, Hofbauer cells can play 
critical roles in placental vasculogenesis and angiogenesis, im-
mune regulation, and endocrine function across the maternal-
fetal barrier [46]. Analysis of ZIKV-infected placentas from 
congenital infection has revealed proliferation and hyperplasia of 
Hofbauer cells in second and third trimesters, primarily associated 
with placental abnormalities leading to congenital malformations 
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[47–49]. Other studies have demonstrated that arterial macro-
phages help to maintain normal arterial function via interactions 
between LYVE-1 and HA [50]. Thus, altered LYVE-1 expression 
induced by ZIKV NS1 may affect the ability of Hofbauer cells to 
form and to maintain the vascular structures within the placental 
villous core, thereby leading to placental dysfunction.

CONCLUSIONS

In summary, our results suggest that early in gestation, ZIKV 
could increase NS1 secretion at the uterine-placental inter-
face and alter the normal expression, distribution, and re-
lease of important ECM components expressed on STBs and 
CTBs columns, affecting the expression of specific receptors 
for glycans (eg, HA) on cells  in the chorionic villous stroma 
of human placentas, such as Hofbauer cells and fibroblasts. 
This process may alter the permeability and architecture of 
the placental villi, leading to placental dysfunction and po-
tentially facilitating access of ZIKV into the stromal villous 
cores, and from there through the endothelial barrier into 
fetal circulation.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.

Supplementary Figure 1. Zika virus (ZIKV) NS1 modu-
lates the expression of glycosaminoglycans (GAGs) on human 
trophoblast cells. Immunofluorescence staining of (A) heparan 
sulfate ([HS] green), (B) sialic acid ([Sia] red), and (C) hyalu-
ronic acid ([HA] yellow) on confluent monolayers of JEG-3 
cells cultured on collagen-treated glass coverslips 24 hours 
posttreatment with ZIKV NS1 Suriname (5  µg/mL) or West 
Nile virus (WNV) NS1 (5  µg/mL). Images are representative 
of 3 independent experiments run in duplicate. Magnification, 
×20. Scale bar = 10 µM.

Supplementary Figure 2. Permeability measured by fluo-
rescence assay in chorionic villous explants treated with 
nonstructural protein 1 (NS1) proteins. (A) Measurement 
of projected explant area. Explant images imported into 
Photoshop were outlined using the magic wand tool (1), 
which selects areas of similar brightness (2). The total number 
of pixels outlined is recorded using the Record Measurement 
function, which provides the number of pixels (3). Areas 
were determined by measuring outlines of images taken on 
a Leica dissecting scope at ×32. Images were imported di-
rectly into Adobe Photoshop, explants were outlined using the 
magic wand tool, and the total number of pixels within the 
selected area was recorded using the measurement function 
in Photoshop (A). For each of 6 experiments with tissue from 
6 different placentas, the area-normalized A680 readings were 

plotted for each condition, and average values and standard 
deviations were calculated. (B and C) Explant size and signal 
intensity. Representative images of human explants treated 
with Zika virus (ZIKV) or West Nile virus (WNV) NS1 pro-
teins (5 µg/mL) are shown (brightfield). Gestational ages (B) 
7 (i–iii) and 9 (iv–vi) weeks, and (C) 10 (i–iii) and 14 (iv–vi) 
weeks. Scale bars = 0.5 mm.

Supplementary Figure 3. Purified Zika virus (ZIKV) has 
reduced levels of soluble ZIKV nonstructural protein 1 (NS1). 
Levels of soluble ZIKV NS1 from unpurified (Unp) and puri-
fied (Pur) ZIKV preparations used to infect human chorionic 
villi. Serial dilutions (1:10) of cell-free supernatants of ZIKV-
infected C6/36 cells were used to quantify the amount of ZIKV 
NS1 using an in-house NS1 capture enzyme-linked immuno-
sorbent assay. Levels of NS1 were estimated via linear regression 
analyses using commercial recombinant ZIKV NS1 (Suriname) 
to generate an NS1 standard curve. t test was used for statistical 
analyses; ***, P < .0097.
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