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Many pathogens are able to replicate or survive in abiotic environments.
Disease transmission models that include environmental reservoirs and
environment-to-host transmission have used a variety of functional forms
and modelling frameworks without a clear connection to pathogen ecology
or space and time scales.Wepresent a conceptual framework to organizemicro-
parasites based on the role that abiotic environments play in their lifecycle.
Mean-field and individual-based models for environmental transmission are
analysed and compared. We show considerable divergence between both
modelling approaches when conditions do not facilitate well mixing and
for pathogens with fast dynamics in the environment. We conclude with rec-
ommendations for modelling environmentally transmitted pathogens based
on the pathogen lifecycle and time and spatial scales of the host–pathogen
system under consideration.
1. Introduction
Non-host environments such as water, decaying organic matter and abiotic
surfaces are important components of the lifecycle of pathogens. These environ-
ments provide habitats in which pathogens may replicate or survive, facilitating
transmission. Even when environments only serve as fomites, environment-to-
host transmission may determine invasion and long-term persistence pathogen
dynamics [1,2]. In addition to influencing pathogen ecology, the need to survive
in two distinct habitats—host and non-host environments—shapes pathogen
evolution [3,4]. Therefore, environmental transmission often warrants explicit
consideration in population biology models.

In representing environmental transmission in models, linking host and
pathogen scales can be particularly challenging. Processes on these two popu-
lations often act at different temporal and spatial scales. Depending on the
survival strategies, survival times of pathogens in the environment can be several
magnitudes smaller or larger than the duration of infection in hosts. For example,
for pathogens that produce spores, the persistence of spores in the environment
can last months or years, while infection lasts days [5,6]. Similarly, while trans-
mission is a local process, mobility and hydrologic processes can facilitate
long-range pathogen dispersion [7]. Population biology models that explicitly
incorporate environmental reservoirs and environment-to-host transmission
vary both in their representation of the pathogen dynamics in the environment,
as well as in the modelling approaches and mathematical expressions used to
describe the per capita rate of infection (also referred to as the force of infection)
[8–12]. With few exceptions [13], modellers often have not provided the rationale
behind their choices in representing environment-to-host transmission.
Mean-field (top-down) models are commonly used to address environmental
transmission [8–12]. In mean-field models, individuals are aggregated and,
instead of tracking individuals, global population densities are represented.
Mean-field models assume individuals randomly interact and are well mixed.
When considering environmental transmission, these assumptions may not
hold across host–pathogen systems and scales, particularly if the system is
highly structured in space with local interactions. Individual-based (bottom-
up) models (IBMs) explicitly represent individuals interacting in their local
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Table 1. The inclusion of environmental processes in epidemiological models depends on the pathogen lifestyle (sapronotic versus parasitic) and relative
contribution of different transmission pathways. Flow diagrams for epidemiological models based on these two criteria are presented. Hosts are categorized in
two epidemiological states: susceptible (S) and infected (I). For simplicity, a recovered (R) is not represented. Pathogens in the environment are represented by
the compartment P. Solid lines represent flows among variables and dashed arrows indicate when a compartment I or P contributes to new infections.

pathogen classification examples model structure

(a) sapronotic only: Legionella pneumonia S I

P

reproduce in the environment Mycobacterium ulcerans

environment-to-host transmission Fusarium solani

(b) sapronotic and parasitic: Vibrio cholera
S I

P

reproduces in the environment/host Bacillus anthracis

environment-to-host transmission Geomyces destructans

other transmission modes

(c) parasitic only: chronic wasting disease (prions)
S I

P

reproduces in the host Cryptosporidium parvum

environment-to-host transmission Clostridioides difficile

other transmission modes Salmonella enterica

hantavirus

influenza

(d) no environmental role: Chlamydia trachomatis
S I

reproduces in the host human immunodeficiency virus

other transmission modes Treponema pallidum
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environment. As such, there is no assumption of mixing at the
population level, but instead, of local interactions that result in
aggregate patterns. IBMs are implemented in code. The aggre-
gate behaviour of an IBM is obtained by summarizing large
number of replicated simulations. Compared to mean-field
models, fewer IBMs for environmental transmission have
been developed [7,14].

Our objective is to compare mean-field models and IBMs
for environmental transmission. First, we provide a frame-
work to classify pathogens based on the role of non-host
environments in the lifecycles of those pathogens as a
guide to further considering environmental pathogen
dynamics in the models. Then we present and analyse a
mean-field model and an IBM representing environment-to-
host transmission. We evaluated under what conditions and
life histories the temporal dynamics of the global populations
of infected hosts and pathogen level in the environment as
predicted by both approaches are in agreement. Lastly, we
conclude with recommendations for modelling environmen-
tally transmitted pathogens. We show that for certain life
histories and conditions, IBMs may be a better choice for
modelling environmental transmission.
2. Pathogen classification based on the role of
non-host environments in pathogen lifecycles

Non-host environments are ubiquitous components of most
pathogen lifecycles. To address the question of when patho-
gen dynamics should be explicitly modelled, here we
propose a pathogen classification based on the role that
non-host environments play in pathogen lifecycles (table 1).
The importance of non-host environments in a pathogen life-
cycle is determined by the pathogen’s ability to replicate or
survive in environments outside the host and by the relative
importance of environment-to-host versus other transmission
modes (e.g. direct host-to-host, airborne or vector-borne).
This classification is a useful first step to consider whether
to include environmental processes in epidemiological
models as it divides pathogens into four discrete categories.
Each category can be represented by a specific model
structure as shown in table 1.

At one end of the organismal spectrum, sapronotic patho-
gens use environments such as soil, water or decaying matter
as their replication site and hence non-host environments are
disease reservoirs [5,6] (table 1a). Sapronotic pathogens are
fungi, protozoa and bacteria that can cause opportunistic
infections, particularly in immunocompromised individuals,
through inhalation, ingestion and open wounds or trauma.
In general, infected hosts do not contribute to new infections;
therefore, host-centric interventions such as isolation, quaran-
tine or immunization are not effective to control these
pathogens [15]. Furthermore, because hosts are incidental
environments, the evolution of sapronotic pathogens is not
influenced by trade-offs between transmission and virulence
[16]. On the contrary, traits that favour fitness in the environ-
ment may also accidentally increase virulence in the infected
host. For example, Legionella pneumophila is a sapronotic
organism that thrives in hot water systems, cooling towers
and humidifiers. Legionella pneumophila uses the same mech-
anisms to parasitize freshwater protozoa as it does to attack
human macrophages [15,17]. Overall, epidemiological and
evolutionary dynamics are driven by pathogen processes
taking place at non-host environments.



Table 2. Transmission functions, units of the transmission parameter β, suggested scaling of β to produce similar or identical dynamics across all four cases
and associated basic reproduction number, R0. The scalings listed are used throughout this work; however other values can be used for scaling to obtain similar
results, as discussed in §3. Area is assumed fixed.

case H (S, I, R, P) scaling with N units of β β scaling R0

1 β1PS c ⫫ N 1/(pathogen × day) β1
bNj

d(gþm)

2 b2PS
N c / 1

N individuals/(pathogen × day) β2 = Nβ1
bj

d(gþm)

3 b3PS
KmþP c ⫫ N 1/day β3 = 2Kmβ1

bNj
dKm(gþm)

4 b4PS
N(KmþP) c / 1

N individuals/day β4 = 2Km Nβ1
bj

dKm(gþm)
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Some pathogens have a predominant sapronotic lifestyle,
but can also revert to a parasitic lifestyle, causing disease in
immunocompetent hosts (table 1b). These organisms’ life
history may reflect trade-offs on traits associated with sapro-
notic and parasitic lifestyles. These pathogens can also
sustain both environment-to-host and host-to-host direct
transmission. A particularly well-studied pathogen in this
group is the organism that causes cholera in humans, Vibrio
cholerae. Vibrio lives in estuarine and costal environments as
free-living organisms and in association with plankton and
detritus. Two serogroups of V. cholerae, O1 and O139, have
both sapronotic and parasitic lifestyles and cause epidemics
sustained by host-to-host transmission [18]. To increase
pathogen fitness in the host, these serogroups carry virulence
factors such as cholera toxin, which disrupts ion transport in
enteric cells, causing secretory diarrhoea and severe dehy-
dration [19]. Epidemic serogroups are more likely than
other serogroups to transition into a dormant state in the
environment suggesting a trade-off between sapronotic and
parasitic lifestyles [18]. However, some traits facilitate both
environmental growth and host infection. For example,
V. cholerae forms biofilms (i.e. a matrix of cells and secreted
polysaccharides) under a variety of environmental and phys-
iological conditions [18] that increase both environmental
persistence and infectivity as the infective dose is increased
[20]. For these group of pathogens, the pathogen interaction
with the biotic community and abiotic conditions in the
environment still determine at large their ecology and evol-
utionary dynamics, and therefore environmental dynamics
need to be explicitly accounted for in addressing long-term
dynamics [21].

Most parasitic pathogens only have a parasitic lifestyle,
and therefore they do not replicate in the environment
(table 1c). Although these pathogens do not replicate in the
environment, they are able to transiently survive andmaintain
viable populations that can infect hosts. The environmental
lifespan of these pathogens is highly variable as they can
use diverse strategies to prolong survival. Environmental
persistence depends on multiple environmental factors such
as temperature, humidity, salinity or radiation [22]. Most
viruses fall into this category as they require living cells to
replicate, but they also transiently reside in non-host environ-
ments. For example, avian influenza viruses only multiply
within the relatively high and stable temperature conditions
of hosts, but because of their ability to survive in the environ-
ment, traits that favour tolerance to the variable, and relatively
lower temperature of the environment may represent an
evolutionary trade-off [23]. For pathogens that survive in
the environment (table 1c), the relative temporal scales
between the pathogen dynamics in the environment and the
epidemiological host dynamics influence the model structure.

Finally, environments play no role in the transmission of
some pathogens with well-defined contacts for transmission,
such as sexual contacts or vector bites (table 1d). Most sexually
transmitted pathogens are often highly labile and require
close sexual encounters for transmission. Environment-
to-host transmission is an uncommon mode for pathogens
transmittedmainly through biological vectors. Environmental
variables are important drivers of the population dynamics of
biological vectors, but because transmission occurs through
direct contact between hosts and arthropods (e.g. via biting),
environment-to-host transmission does not play a main role
in pathogens transmitted by biological vectors.
3. Environmental transmission in mean-field
models

In mean-field models, the functional form representing the
force of infection has embedded assumptions regarding how
the host and pathogen populations interact without explicitly
modelling interactions at the lower hierarchical levels.
In directly transmitted diseases, the terminology and use of
the different functional forms for the force of infection has
been extensively debated [24–26]. In this section, we discuss
the assumptions behind a few forms used in environmental
transmission, listed as Cases 1–4 in table 2. Although different
terms for the force of infection may lead to different model-
derived expressions such as the basic reproduction number,
the force of infection expressions are often scalable one to
each other. As a consequence, models with different force of
infections may be mostly indistinguishable when fitting to
population-level data.

Following the heuristic derivation used for directly trans-
mitted diseases by Begon et al. [26], the term describing
environment-to-host transmission can be thought of as the
product of (i) the rate of contact between the host population
and the environment, (ii) the exposure dose associated with
that contact and (iii) the probability that an exposure to a
given infectious dose leads to infection. Thus, the transmission
term has implicit assumptions regarding the scaling of contact
rates with the host population density, and the scaling of the
probability of infection given an exposure dose.

Anderson &May [8] presented one of the first models that
explicitly included a transmission term for free-living stages of
a pathogen in the environment. The transmission term was



Table 3. Parameters used for parameter set A and parameter set B.

parameter description A B units

tmax maximum time of simulation 300 4000 days

m population birth/death rate 3 × 10−5 3 × 10−5 1/day

β1 transmission coefficient 1 × 10−5 1 × 10−5 see table 2

γ recovery rate 7 × 10−2 8 × 10−4 1/day

ξ pathogen shedding rate 1 0.05 pathogen/(individuals × day)

δ pathogen decay rate 0.01 0.1 1/day

Km dose yielding 50% infection chance 4456 128 pathogen

S0 initial susceptible population 960 960 individuals

I0 initial infected population 40 40 individuals

R0 initial recovered population 0 0 individuals

P0 initial pathogen population 40 40 pathogen
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assumed to be proportional to the number of infective stages
in the environment (P), the number of susceptible (S) and a
proportionality constant representing transmission efficiency
(ν). This expression is analogous to the density-dependent
(mass-action) term used for directly transmitted diseases
(Case 1, table 2). Since then, a variety of other expressions
have been used in modelling environmental transmission,
including frequency-dependent type formulations [11,13]
and nonlinear formulations [9,10,12,13]. Cases 2 and 4 in
table 2 assume the contact rate is inversely proportional to
the host population. Almberg et al. [13] suggested that contact
may relate inversely with population density as an increased
population size may reduce the home range of individuals,
reducing effectively the proportion of encountered landscape.
Lastly, Cases 3 and 4 assume a dose-dependent probability of
infection. Here, we apply the different cases to a modified
form of a model proposed by Cortez et al. [27]:

dS
dt

¼ F(S, I, R)�H(S, I, R, P)�mS,

dI
dt

¼ H(S, I, R, P)� gI �mI,

dR
dt

¼ gI �mR

and
dP
dt

¼ jI þ E(P):

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(3:1)

In this system of equations, the state variables S(t), I(t) andR(t)
are the expected number of susceptible, infectious and
recovered individuals in a population, respectively. The state
variable P(t) is a measure of the pathogen in the environment.
The recovery rate is γ, m is the natural mortality rate and ξ is
the shedding rate of pathogens into the environment by the
host. Functions governing the population structure of
the host, transmission and environmental dynamics are
represented by F, H and E, respectively. The formulation of
the transmission and environmental functions H and E can
accommodate a wide variety of transmission and pathogen
lifestyle conditions as shown in table 1.

In order to explore the different cases for the transmission
functions H presented in table 2, we choose a special case of
the generalized model (3.1) that represents pathogens cate-
gorized in table 1 within the C group (parasitic only). We
choose E(P) =−δP as the pathogen decay rate. For simplicity,
host-to-host transmission is not included, and we choose the
total birth rate for the host population to be equal to the total
mortality rate, that is, F(S, I, R) =mN. As such, the total
population N remains constant.

When assuming constant population, the four trans-
mission functions can yield similar dynamics when they are
properly scalable to each other. Table 2 shows suggested scal-
ings for β to achieve this. We define βi to correspond to Case i;
we choose β1 as a base and scale the other cases relative to
this. Since we are considering a constant population N, the
functional form of Cases 1 and 2 is simply given by PS.
Cases 3 and 4 have different functional forms due to the
variable P in their denominators, representing a nonlinear
probability of infection. In these instances, having the sol-
ution to Case 3 be an identical curve to Case 1 (with linear
probability of infection) is unlikely; however, there will exist
some scaling β3 = αβ1, such that the difference between the
cases is minimized (with an analogous scaling for β4). Km is
the pathogen load yielding 50% chance of infection. We
note that Km < Km + P <Km + Pmax and throughout the paper
we chose Km = Pmax/2. For simplicity, we use α≈ 2Km. The
value 2Km is the midpoint of the upper and lower bounds
of the denominator and is used as a simple substitution for
α. For any choice of Km, there exist different exact values of
α. Under this scaling, there will be minimal to no difference
between each of the different cases.

Using these scalings, we solve the system for each of our
four transmission functions for two distinct parameter sets
representing two environmentally transmitted pathogens
with different life histories based on the time scales of patho-
gen and host dynamics (see parameter sets A and B in
table 3). In parameter set A, the decay rate of the pathogen
in the environment is slow relative to the recovery rate and
the shedding rate. In parameter set B, the decay rate of the
pathogen is fast relative to the recovery rate and the shedding
rate. Despite both cases yielding different long-term
dynamics (population recovers for parameter set A, infection
persists in parameter set B) we observe little to no difference
between the overall dynamics of Cases 1–4 with reasonable
scaling factors as shown in figures 1 and 2.

In comparing transmission across populations with differ-
ent host and pathogen densities, transmission functions can,
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Figure 1. The solutions to model (3.1) using parameter set A. The initial conditions are S0 = 960, I0 = 40, R0 = 0, P0 = 40. The susceptible, infected, recovered and
pathogen are compared where Case 1 (dotted blue), Case 2 (dashed purple), Case 3 (dotted red) and Case 4 (dashed green) are plotted in each panel. (Online
version in colour.)
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however, yield very different simulation and analytical results
including different threshold expressions for invasion and
persistence of the diseases. For example, the basic reproduc-
tion number, R0, is an invasion threshold representing the
average number of secondary infections produced by a
single infectious host introduced into a totally susceptible
population. Transmission functions yield R0 expressions
with different qualitative implications (table 2). For example,
Cases 1 and 3 have host density population invasion
thresholds and thus there is a minimum population size
below which disease cannot invade. Cases 3 and 4 have
infective dose invasion thresholds.
4. Environmental transmission in a spatially
explicit individual-based model

In this section, we explore the transmission terms in the
context of an IBM for environmental transmission in which
the physical location of individuals and pathogen is con-
sidered, and transmission only occurs locally. We construct
a two-dimensional spatial domain with M = 25 sites, in the
form of a 5 by 5 grid. The grid is occupied by individuals,
who take on either a susceptible, infected or recovered
state, and by pathogen units. The dynamics of the system
are driven by events described by the ODE model (3.1).
The full details of the model construction and simulation
are presented in appendix A. Both parameter sets A and B
are considered (table 3)
We analyse the IBM using the transmission terms out-
lined as Cases 1–4. The IBM assumes homogeneous mixing
only within each site. This means that all susceptible individ-
uals and pathogen within the same site will interact with each
other locally. Therefore, in order to get consistent results
across transmission functions, scaling needs to consider that
transmission is local, not global. A derivation and discussion
of appropriate scalings for the IBM are given in appendix B,
with the summary given in table 4. Figure 3 shows the result-
ing number of susceptible, infected and recovered
individuals, as well as the number of pathogen units in the
system for the two different parameter sets (other simulation
details are given in the figure caption) while using the scal-
ings given in table 4. While the IBM has some important
differences in implementation compared to the ODE model
(see table 4 and appendix B) we are still able to find consistent
results across transmission terms. Cases 1 and 2, and Cases 3
and 4, are almost identical with all four cases yielding similar
transient and long-term results.
5. Comparison of mean-field and individual-
based models for environment-to-host
transmission

To finalize our analysis, we compare the mean-field model to
the IBM. Since there are no substantial differences between the
four cases when scaling parameters appropriately, for brevity,
we will only be comparing results for Case 1 in this section.



Table 4. For Cases 1–4, we show the transmission functions for the ODE
model and the spatial model. We wish to highlight the scaling between
the ODE model and the spatial model derived in appendix B. Note Sj, Ij, Rj
are the number of susceptible, infected and recovered individuals at site j,
respectively, while Pj is the number of pathogen units at site j.

case
ODE
model spatial model β scaling

Km
scaling

1 β1 SP b̂1S jP j b̂1 ¼ Mb1 —

2 b2SP
N

b̂2S j P j
S jþI jþR j

b̂2 ¼ b2 —

3 b3SP
KmþP

b̂3S j P j
K̂mþP j

b̂3 ¼ b3 K̂m ¼ Km
N

4 b4SP
N(KmþP)

b̂4S j P j
(S jþI jþR j )(K̂mþP j )

b̂4 ¼ b4
M K̂m ¼ Km

N
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Figure 2. The solutions to model (3.1) using parameter set B. The initial conditions are S0 = 960, I0 = 40, R0 = 0, P0 = 40. The susceptible, infected, recovered and
pathogen are compared where Case 1 (dotted blue), Case 2 (dashed purple), Case 3 (dotted red) and Case 4 (dashed green) are plotted in each panel. (Online
version in colour.)
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Under a number of simplifying assumptions, the IBM can
be reduced such that it exactly matches the mean-field ODE
model. If the simplifying assumptions are reasonable, the
ODE model can be used to predict the dynamics of the IBM.
The simplifying assumptions include the assumptions of
spatial homogeneity, independence between host and patho-
gen, continuum approximation and deterministic rates. We
discuss the independence and homogeneity assumptions
which produce all notable differences between the IBM and
ODE models, highlighting when these assumptions are
reasonable. Note that other assumptions such as comparing
a discrete model to a continuous model, or comparing a
stochastic model to a deterministic model result in negligible
differences. These assumptions become negligible when
averaging over sufficiently many realizations of the IBM.

We first compared the models varying the assumption that
host and pathogen are spread equally throughout the spatial
domain (homogeneity assumption). As the movement rate is
increased (relative to the other event rates), the random move-
ment of host individuals causes them to diffuse throughout
the domain becoming homogeneously distributed. This is
observable in figures 4 and 5 where higher movement rates
(left column) decrease the error between the ODE model and
the spatialmodel.Unsurprisingly, our homogeneous initial con-
dition is beneficial to the homogeneity assumption.
Alternatively, our heterogeneous initial condition contradicts
this assumption and worsens the agreement between the
ODE model and IBM. This is easily observable in figures 4
and 5, where under the homogeneous initial condition (top
row), the ODE model and IBM are more in agreement than
under the heterogeneous initial condition (bottom row). When
the movement rate is sufficiently high, the diffusive element
of movement makes the initial positions of individuals
irrelevant. Both low movement and heterogeneous initial
conditions can yield drastically different results from the ODE
model. This can result in the two models having different
steady-state solutions. In somecases,weobserve the eradication
of apathogen in the IBMwhile theODEmodel predicts anende-
mic solution. These results are similar for both parameter sets.



100 200 300
time

0

200

400

600

800

1000

po
pu

la
tio

n

0

200

400

600

800

1000

po
pu

la
tio

n

susceptible
infected

100 200 300
time

0

2000

4000

6000

8000

pa
th

og
en

1000 2000 3000 4000
time

1000 2000 3000 4000
time

0

50

100

150

200

250

300

pa
th

og
en

recovered

Figure 3. Comparison between four different transmission terms implemented in an individual-based model. Simulation A uses parameter set 1 with a movement
rate μ = 0.01 and homogeneous initial condition. Simulation B uses parameter set 2 with μ = 0.01 and heterogeneous initial condition. Left-hand panels compare
S, I, R populations while right-hand panels compare pathogen units P. (Online version in colour.)

royalsocietypublishing.org/journal/rsfs
Interface

Focus
10:20190056

7

We now consider the independence assumption, which
has little effect on parameter set A but a substantial effect
on parameter set B. The independence assumption used to
construct the ODE model is
Pr(site j containing x susceptible> site j containing y pathogen units)

� Pr(site j containing x susceptible)� Pr(site j containing y pathogen units):
This assumption ignores the correlation between the number
of susceptible and the number of pathogen units at a given
site. Hence, in instances with high correlation, we expect
the difference between the ODE model and the IBM to be
large. In instances with low correlation, we expect consistent
results between both models. To best observe the error due to
the independence assumption, we consider cases with high
movement rates. In these cases, the homogeneity assumption
is valid, hence all error produced is a result of the indepen-
dence assumption. High movement rates can be observed
in the left columns of figures 4 and 5.

Parameter set A demonstrates an example of consistent
results, while parameter set B demonstrates an example in
which the ODE model and the spatial IBM never converge.
The parameter set A was chosen so that recovery time and
shedding are quick relative to the decay rate. As such, each
pathogen unit has high survivability allowing individuals to
move or change state frequently before the pathogen decays.
This results in low correlation between the states of individual
hosts and the pathogen units at a given site. The parameter set
Bwas chosen so that recovery time is slow, and pathogen decay
is quick relative to shedding. Quick pathogen decay means
that the presence of pathogen will likely imply the presence
of an infected individual, hence resulting in high correlations
between the states of individuals and the pathogen units.
6. Discussion and conclusion
We have discussed several aspects to consider when formulat-
ing models for environmentally transmitted pathogens,
including pathogen natural history, environmental trans-
mission terms, and spatial and temporal scales of the system.
The explicit role of the environment within the pathogen natu-
ral history should guide the model structure. The pathogen
natural history has additional implications for the modelling
framework. As shown in §5, the assumption of independence
between pathogen and host individuals underlying the mean-
field models may not be met for pathogens with faster
environmental decay dynamics compared to the duration of
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the infectious period, independently of the spatial scope or
level of mixing between pathogen and hosts. When environ-
mental decay was rapid relative to other dynamics, it created
a dependence between the state of individual hosts and the
pathogen present at site. These components are assumed to
be independent in the mean-field model, hence the IBM
never converges to the mean-field model. Additional compli-
cations for pathogens with fast environmental dynamics are
the inability of estimating individual parameters related to
environmental transmission, such as the transmission coeffi-
cient β and pathogen shedding rate ξ, and the difficulty in
discerning between transmission pathways [28,29]. Host-to-
host direct and environment-to-host transmission pathways
cannot easily be distinguished when the time scales of the
pathogen dynamics in the environmental compartment are
fast compared to the epidemiological host dynamics
[12,27,28]. For such pathogens, environmental transmission
is often combined with host-to-host direct transmission in
mean-field models [12]. Additional measurements such as
environmental pathogen loads can also improve parameter
identifiability [28]. However, if transmission pathways need
to be independently represented (e.g. to identify control strat-
egies), then IBMs may be a more appropriate approach as this
modelling framework can incorporate local hierarchical level
data to describe processes underlying transmission. These
data may be more readily available from different sources
than population-level data alone. Although parametrization
of complexmodels like IBMs is challenging, recent approaches
on model calibration such as approximate Bayesian
computation have been successfully applied [30].

Selecting a suitable functional form to characterize the
transmission term is challenging. Selection of functional
forms is based on suitable assumptions for the specific
system or by fitting the model to available empirical data
[31–33]. When selecting a transmission term for characterizing
transmission in a single host–pathogen population, the support
generated by the goodness of fit yields limited evidence in
favour or against different transmission functions. As shown
in §§3 and 4, by scaling β to the appropriate units, the model
dynamics between different functional forms can be made to
converge. We showed that the dynamics between models
with dose-dependent (Cases 3 and 4) and non-dose-dependent
transmission functions (Cases 1 and 2) could be made to come
into close agreement with each other by selecting particular
scalings of β. As the functional forms for transmission include
varying assumptions regarding the scaling of contact rate with
host population, care should, therefore, be exercised in the
selection of the transmission function for a varying population
or across populations. Empirical data collected across popu-
lations are recommended to elucidate the transmission form
[32]. However, this type of data may be not be available.
In addition, differences in spatial scale may obscure the
transmission mechanisms underlying local transmission [34].

Our comparison between mean-field model and IBM for
environmental transmission demonstrates that whether
exposure is modelled in a global or local way has a significant
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impact on model dynamics, particularly when the assump-
tions of homogeneity and independence embedded in the
mean-field models are not met. The distribution of the patho-
gen, the movement and distribution pattern of hosts, and
the spatial scope of the system should all be considered to
determine whether spatial heterogeneity needs to be con-
sidered into the model. In general, the distribution of most
pathogens and hosts is expected to be heterogeneous at
broader spatial scales. However, some pathogen distribution
in the environment can be heterogeneous even at small
scales [35,36]. In those conditions, modelling environmental
transmission within an IBM framework and transmission as
local process—with a transmission term based on suitable
assumptions—may be the most accurate approach.

The relationship of patterns, scale and processes is central
to ecology and is particularly relevant to the ecology of infec-
tious diseases [37]. Patterns of pathogen transmission arise
from complex interactions between local transmission and
the broader spatial and temporal scales of the system [34].
These aspects are even more critical for environmentally trans-
mitted pathogens because of the explicit consideration of both
host and pathogen levels and their associated demographic
and epidemiological processes. First, we suggest that the
development of a model begin with a careful consideration
of pathogen life-history characteristics, particularly as they
relate to the temporal scales of pathogen dynamics relative to
host dynamics. This should be followed by the consideration
of whether the distribution of the pathogen, the movement
and distribution pattern of hosts, and the spatial scope of the
model systemwarrant the incorporationof spatial heterogeneity
and local transmission into the structure of the model.
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Appendix A. Individual-based model description
and simulation
We construct a two-dimensional spatial domain with M = 25
sites, in the form of a 5 by 5 grid. The grid is occupied by
individuals, who take on either a susceptible, infected or
recovered state, and by pathogen units. Our model initially
has N0 = 1000 individuals, made up of 960 susceptible indi-
viduals and 40 infected individuals, as well as 40 pathogen
units. Each individual and pathogen unit is initially distribu-
ted to one of the 25 sites based on the initial condition. The
number of individuals or pathogen units at a given site can
change based on the dynamics of the system. The Matlab
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code for the model is available at github.com/lanzaslab/
environmentalmodels.

We consider seven different events in our spatial model.
The birth event is implemented by each individual at rate m
and adds a new individual to the corresponding site. The
death event is implemented by each individual at rate m
and removes that individual from the system. The recovery
event is implemented by each infected individual at rate γ
and changes their state from infected to recovered. The shed-
ding event is implemented by each infected individual at rate
ξ and adds a new pathogen unit to the corresponding site.
The decay event is implemented by each pathogen unit at
rate δ and removes that pathogen unit from the system.

The final two events are somewhat more complex. The
movement event is implemented by each individual at rate μ/4
with each site that is currently adjacent to their current site.
We describe adjacent as being the four surrounding sites
(above, below, left and right). As such, an individual at a non-
edge site has four directions to move, and can move to each
one at rate μ/4, for a total movement rate of μ. On an edge (or
corner) site, the total movement rate is reduced. For example,
if no site exists to the left of an individual’s current site, then
a movement event cannot be performed to the left and hence
the total rate of movement for that site is 3μ/4.

Finally, the infection event is implemented between pairs
of susceptible individuals and pathogen units so long as
the pair are occupying the same site. We consider each of
the four cases of transmission functions discussed in §4,
hence the rate at which this occurs will vary. We discuss
this in more detail in appendix B, but in general, each inter-
acting susceptible individual and pathogen unit perform an
infection event at rate β. Results for this are summarized in
table 4. Note that our model assumes homogeneous mixing
within each site. This means that all susceptible individuals
and pathogen units within the same site will interact with
each other continuously and equally.

Each event in the spatial model is implemented based only
on the current state of the model. As such, this model is an
example of continuous-time Markov chain. This implies the
existence of a matrix Q, which describes the transition from
each state to each other state. In this case, the state refers to
all possible configurations of the spatial domain. We can
simulate realizations of the system in continuous time using
a process known as the Gillespie algorithm.

The procedure of the Gillespie algorithm is as follows:

(1) calculate the total rate λ of all possible events from the
current state,

(2) generate a time step that is exponentially distributed with
parameter 1/λ,

(3) randomly select an event to implement, proportional to
the rate at which each event can occur,

(4) implement the event and the time step and repeat the
process.

It is convenient to define Sj, Ij and Rj as the number of
susceptible, infected and recovered individuals at site j, and
Pj as the number of pathogen units at site j.

The total rate λ is the sum of all possible transition rates for
each event from the current state to anyother state.Consider the
example of a birth event. Each individual has a rate m of per-
forming a birth event. This event will increase the number of
susceptible individuals at a given site by one, hence changing
the state of the system. If we sum over all individuals, we find
that the total rate of birth is mN(t). Calculating this rate is rela-
tively simple because it does not depend on interactions
between individuals or the pathogen. We now consider the
example of an infection event, which is more complicated due
to the nonlinear nature of the event. Due to the interaction
between susceptible individuals and pathogen units, summing
over each case does not result in a simple expression as it did for
the birth rate. If we consider the Case 1 transmission function
for infection, the total infection rate is found by calculating
the rate β1 Sj Pj for each site, and then summing over all sites.
Once the rates of all events have been calculated, we sum all
of these in order to obtain the total rate λ.

Upon calculating λ, its inverse is used as the parameter
for an exponential distribution. By randomly generating a
number from this, we simulate the time until the next
event. We now select which event will occur. By considering
each event as a proportion of the total rate, we can calculate
the probability of each event occurring. For instance, mN(t)/λ
is the probability of a birth event occurring. Upon choosing
an event, we must select which individual performs the
event. As each individual within a given site is essentially
identical, we need only choose which site will perform the
event. The probability of each site performing the event is
proportional to the total rate of that event occurring. For
instance, site j will perform a birth event with probability
m(Sj + Ij +Rj)/mN. Once a site has been chosen, the event is
performed and the process can continue to the next time step.

Upon reaching some maximum time, we wish to obtain
the total number of susceptible, infected and recovered indi-
viduals in the system, Ŝ, Î and R̂, and the total number of
pathogen units in the system P̂. These total populations can
be calculated directly from the site-wise totals

Ŝ ¼
XM
j¼1

S j, Î ¼
XM
j¼1

I j, R̂ ¼
XM
j¼1

Rj and P̂ ¼
XM
j¼1

Pj:

We can then compare these variables for each of our different
cases and to the corresponding ODE variables.
Appendix B. Transmission terms and scaling for
individual-based model
Recall that for the birth event, we could sum over all the rates
to obtain mN(t). As a result, the ODE model and IBM have
(on average) an equal birth rate. If we consider the total
rate of the infection event for the IBM, using Case 1 as an
example, we obtain

XM
j¼1

b̂1S jP j = b1SP:

This lack of equivalence appears due to the nonlinear nature
of these terms and is present in all four transmission func-
tions considered throughout the paper. As a result, it is
difficult for us to directly relate the rates of the ODE model
and IBM.

In order to relate the ODE model and the IBM, we use the
homogeneous mixing assumption. Essentially, this assump-
tion states that each population is spread equally among
each site, that is Xj =Xk for all sites j and k, and X∈ {S, I, R,
P}. From here, we can define the total number of susceptible,
infected and recovered individuals, and the total number of
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pathogen units under the homogeneity assumption by the
following equations:

S� ¼ MSj, I� ¼ MIj, R� ¼ MRj and P� ¼ MPj,

recalling that M is our number of sites. For convenience, we
also define Nj = Sj + Ij +Rj as the total number of individuals
at site j.

To relate the rates in our two models, let us consider the
exact equation for the rate of change of the number of
infected individuals on site j (this can be derived directly
from the continuous-time Markov chain)

dI j
dt

¼ H(S j, I j, Rj, Pj)� gI j �mI j þ m(Iadj � I j),

where Iadj is the rate of moving into site j from any of the adja-
cent sites. Note that the movement expression is slightly
different at boundaries, but does not affect the scaling idea
presented. Upon applying the homogeneous mixing assump-
tion to this equation and multiplying by M, we can make the
following substitution:

dI�

dt
¼ MH(S j, I j, Rj, P j)� gI� �mI�: (B 1)

If we now consider each of our individual cases, we can under-
stand the appropriate β scaling between the ODE model and
the IBM.

We consider each case individually from this point,
starting with Case 1:

dI�

dt
¼ Mb̂1S jP j � gI� �mI�

¼ Mb̂1
S�

M
P�

M
� gI� �mI�

¼ b̂1

M
S�P� � gI� �mI�

recalling that for the IBM, b̂i is the rate of infection for Case i.
In order to compare results between the ODE model and
IBM, we require b̂1 ¼ Mb1. We can find the appropriate
scalings for each case using this process. For Case 2, we
obtain the following:

dI�

dt
¼ Mb̂2

S j

Nj
P j � gI� �mI�

¼ Mb̂2
S�=M
N=M

P�

M
� gI� �mI�

¼ b̂2
S�

N
P� � gI� �mI�

resulting in the scaling b̂2 ¼ b2.
For Case 3, we obtain the following:

dI�

dt
¼ Mb̂3S j

P j

P j þ K̂m
� gI� �mI�

¼ Mb̂3
S�

M
P�=M

P�=Mþ K̂m
� gI� �mI�

¼ b̂3S
� P�

P� þMK̂m
� gI� �mI�

resulting in the scaling b̂3 ¼ b3 and K̂m ¼ Km=M. Note that
here, the half infectious dose parameter must be scaled in
order to give consistent results.

For Case 4, we obtain the following:

dI�

dt
¼ Mb̂4

S j

N j

P j

P j þ K̂m
� gI� �mI�

¼ Mb̂4
S�=M
N=M

P�=M
P�=Mþ K̂m

� gI� �mI�

¼ Mb̂4
S�

N
P�

P� þMK̂m
� gI� �mI�

resulting in the scaling b̂4 ¼ b4=M and K̂m ¼ Km=M. A sum-
mary of the major results of this appendix is shown in table 4.
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