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The inability to develop multiscale models which can describe vector-borne
disease systems in terms of the complete pathogen life cycle which rep-
resents multiple targets for control has hindered progress in our efforts to
control, eliminate and even eradicate these multi-host infections. This is
because it is currently not easy to determine precisely where and how in
the life cycles of vector-borne disease systems the key constrains which are
regarded as crucial in regulating pathogen population dynamics in both
the vertebrate host and vector host operate. In this article, we present a gen-
eral method for development of multiscale models of vector-borne disease
systems which integrate the within-host and between-host scales for the
two hosts (a vertebrate host and a vector host) that are implicated in
vector-borne disease dynamics. The general multiscale modelling method
is an extension of our previous work on multiscale models of infectious
disease systems which established a basic science and accompanying
theory of how pathogen population dynamics at within-host scale scales
up to between-host scale and in turn how it scales down from between-
host scale to within-host scale. Further, the general method is applied to
multiscale modelling of human onchocerciasis—a vector-borne disease
system which is sometimes called river blindness as a case study.
1. Introduction
Vector-borne diseases are infectious disease systems which arise because the
infectious agent (viruses, bacteria, protozoa and helminth) has a complex life
cycle so that there is need for at least two hosts: (i) a vertebrate host—which
is usually a human host or other animal host and (ii) a vector host—which
include mosquitoes, flies (sand flies and black flies), ticks, bugs and snails for
the pathogen to complete its life cycle. The vector acts both as a carrier and
as an organism within which the parasite develops to an infectious stage
before it is transmitted to the vertebrate host. Major vector-borne diseases
include malaria, dengue, lymphatic filariasis, Chagas disease, onchocerciasis,
leishmaniasis, chikungunya, Zika virus disease, yellow fever, Japanese ence-
phalitis and schistosomiasis [1]. An estimated 17% of the global disease
burden of infectious diseases is attributed to vector-borne diseases [1]. In gen-
eral, we can roughly demarcate the transmission mechanisms of vector-borne
diseases into two types which are:

(a) Type I vector-borne disease systems. These are vector-borne diseases in which
part of the life cycle of the infectious agent (the pathogen) is external to the
two hosts that are implicated in the transmission of these multi-host infec-
tions (usually a vertebrate host and a vector host). For these vector-borne
diseases the infection of both the vertebrate host and the vector host is
caused by a free-living infective pathogen life stage in the environment.
Examples of such vector-borne diseases are human schistosomiasis [2]
and Guinea worm [3].
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(b) Type II vector-borne disease systems. These are vector-borne
diseases in which the whole pathogen life cycle is strictly
internal to the two hosts that are implicated in the
transmission of these multi-hosts infections. For these
vector-borne diseases, there is no free-living pathogen life
stage in the environment that causes infection to either
the vertebrate host or the vector host. Infection of these
hosts is caused by pathogens which only survive in the
internal environment of the two hosts (i.e. at within-host
scale). The majority of these type II vector-borne diseases
are transmitted by blood-feeding arthropods, such as mos-
quitoes, ticks and fleas. Two groups of type II vector-borne
diseases can be identified. (i) Those in which there is no
pathogen replication cycle at within-host scale (within-
vertebrate host and within-vector host). For such type II
vector-bone diseases, the pathogen load at the within-
host scale (within-vertebrate host and within-vector host)
increases only through super-infection (i.e. repeated infec-
tion before the host recovers from the infectious episode).
In this article, we develop a general multiscale modelling
method for such type II vector-borne diseases and then
apply it to human onchocerciasis as an example.
(ii) Those in which the pathogen has a life stage with a
pathogen replication cycle at within-host scale. For such
type II vector-borne diseases, the pathogen load at within-
host scale increases mainly through the life stage which
has a pathogen replication cycle.Malaria is a classic example
of such type II vector-born diseaseswhere themerozoite life
stage has a replication cycle at within-host scale in the
vertebrate host. The multiscale modelling of such vector-
borne diseases is considered elsewhere. In this article, we
present a general method for development of multiscale
models of type II vector-borne diseases in which there is
no pathogen replication cycle at within-host scale.

There are five main different generic categories of multiscale
models of infectious disease systems that can be developed
at the different levels of organization of an infectious disease
system (the cell level, the tissue level, the host level, etc.) by
integrating two adjacent scales at a time. These five main gen-
eric categories are [2,4]: (i) individual-based multiscale models
(IMSMs), (ii) nested multiscale models (NMSMs), (iii)
embedded multiscale models (EMSMs), (iv) hybrid multiscale
models (HMSMs) and (v) coupled multiscale models
(CMSMs) with each of these categories having several different
classes of multiscale models. For vector-borne diseases, the
multiscale models developed at host level (i.e. those integrat-
ing the within-host scale and the between-host scale) are
categorized as CMSMs [4].

The general multiscale modelling method for type II vector-
borne diseases presented in this paper, which is a coupled mul-
tiscale model, is an extension of two of our previous papers
[5,6]. The first of these papers [5] introduced a method for
development of multiscale models of type I vector-borne
diseases at host level (i.e. linking within-host scale and
between-host scale) using human schistosomiasis as an
example. The paper demonstrated in a practical way the
idea of scaling up and down in linking scales of an infectious
disease system by identifying within-host scale and between-
host scale variables and parameters and design a feedback of
these variables and parameters through down-scaling and
up-scaling across the within-host scale and the between-host
scale. For this multiscale model, the development of
between-host scale submodel was based on principles of mod-
elling environmentally transmitted infectious diseases [7]. The
main distinction between modelling of directly transmitted
infectious disease systems and environmentally transmitted
infectious disease systems is that the latter usually have at
least one extra equation describing the dynamics of pathogen
in the environment. The paper [5] established the role this
extra equation plays in the development of multiscale
models of type I vector-borne diseases that link the within-
host scale and between-host scale. The second of these
papers [6] established a multiscale modelling science base
for directly transmitted infectious disease systems similar to
the multiscale modelling method for environmentally trans-
mitted infectious disease systems in [5] using HIV/AIDS as
a case study by introducing the concept of community patho-
gen load (CPL) as a new public health measure in multiscale
modelling of directly transmitted infectious disease systems.
CPL is defined as an aggregation of individual pathogen
loads of hosts (humans, animals, vectors, plants) infected
with a particular pathogen (virus, protozoan, helminth, bac-
teria, fungus, prion, etc.) in a particular geographical
location or community at a particular time [6]. Thus, in this
article the word pathogen refers to any biological infectious
agent (virus, protozoan, helminth, bacteria, fungus, prion).
Although we use the term ‘community pathogen load’ in
the development of the general multiscale model of vector-
borne diseases when the infectious agent is not specified,
we shall assume, for purposes of development of specific mul-
tiscale models from the general multiscale (i.e. when the
infectious agent is specified), that the word ‘pathogen’ is
implied to mean the actual pathogen name. For example, if
the infectious agent considered in the multiscale model is a
worm (for some helminth infections), the term ‘community
pathogen load’ is interpreted to mean ‘community worm
load’. Similarly, if the infectious agent considered in the multi-
scale model is a virus, the term ‘community pathogen load’ is
interpreted to mean ‘community viral load’.

The introduction of CPL as an additional variable at
between-host scale entails the incorporation of an extra
equation describing this variable in the modelling of directly
transmitted infectious disease systems. Incidentally, this con-
verts models of directly transmitted infectious disease
systems which are developed by compartmentalizing the host
population into susceptible, exposed, infected, recovered
(SEIR) and variations of this paradigm (SI, SIS, SEI, SEIS, SIR,
SIRS, SEIRS, etc.) into those which are equivalent to environ-
mentally transmitted infectious disease models which are
developed based on compartmentalizing the host population
into susceptible, exposed, infected, recovered, together with
an extra variable describing pathogen load in the environment
(SEIRP), and variations of this paradigm (SIP, SISP, SEIP, SEISP,
SIRP, SIRSP, SEIRSP, etc.). For details of single-scale modelling
of environmentally transmitted infectious diseases at host
level, see [7] and references therein. The paper [6] gave a scien-
tific rationale and justification for the use of CPL in multiscale
modelling of directly transmitted infectious disease systems so
that the science and accompanying theory for multiscale mod-
elling of environmentally transmitted infectious disease
systems in [5] can be applied to multiscale modelling of directly
transmitted infectious disease systems. Our goal in this article is
to extend the ideas in [5,6] to develop a general method for
multiscale modelling of type II vector-borne disease systems.
The general multiscale modelling method is applied to
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Figure 1. A conceptual diagram of the general multiscale model of a type II vector-borne disease system. All the terms associated with arrows in this flow diagram
are the actual rates of flow and not per capita rates.
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human onchocerciasis (river blindness) as a case study. The
approach is quite general and avoids the complications of
using HMSMs [8,9] and IMSMs [10] as sub-models of coupled
multiscale models [4] in multiscale modelling of vector-borne
diseases which require more computational resources to solve.
2. The general method for multiscale modelling
of type II vector-borne disease systems

In this section, we present the general method for multiscale
modelling of type II vector-borne diseases in which there is no
pathogen replication cycle at both the within-vertebrate host
scale and the within-vector host scale. The general multiscale
model of such type II vector-borne diseases is shown in a flow
diagram in figure 1. Details of the mathematical derivation of
this multiscale model are given in appendix A. We introduce
the general multiscale model first so that those who want to
develop their own multiscale model of a type II vector-borne
disease system know where to start. In the general multiscale
model for type II vector-borne diseases shown in figure 1, infec-
tion of the vertebrate host usually begins with a bite of
vertebrate host by an infected vector host to draw a blood
meal. In the course of obtaining a blood meal, the pathogen in
the vector host enters the vertebrate host and constitutes the
pathogen population in the first life stage at within-vertebrate
host scale denoted by X0 = Pf in figure 1 and may increase
through super-infection at a rate λvsh, or die naturally in ver-
tebrate host at rate μ0 = μf or proceed to the first intermediate
life stage at rate α0 = αf which is assumed to have a pathogen
population X1. The pathogen will then typically develop
through multiple intermediate life stages denoted i = 1, 2,
3,…, n− 1 within the vertebrate host with pathogen popu-
lations denoted X1, X2,…,Xn−1 in each of the life stages as
shown in figure 1. During these intermediate life stages, the
pathogen is assumed to transition from one life stage to the
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next at rates fi(Xi−1, αi−1) or die naturally at a rates μi, i = 1, 2,
3,…, n− 1 until it reaches the last life stagewith pathogen popu-
lation denoted Xn = Ph which causes infection to the vector
hosts. This last life stage is then shed/excreted into the vertebrate
host’s specific anatomical compartments such as cells, tissues,
organs, body fluids at an assumed rate αh to constitute the ver-
tebrate host reservoir of infective pathogen in the community
or die there naturally at a rate μh. Thus, the variables X0, X1,
X2,…, Xn constitute the within-vertebrate scale sub-model.

Atwithin-vector scale, the first life stage of the pathogen also
beginswithabite of an infectedvertebratehost byavectorhost to
draw a bloodmeal. The pathogen in the infected vertebrate host
then enters the vector host and also constitutes the pathogen
population in the first life stage at within-vector host scale
denoted by Y0 = Ps in figure 1 and may increase through super-
infection at a rate λhsv, or die naturally in the vector host at rate
η0 = ηs or proceed to the first intermediate life stage at rate σ0 =
σs, which is assumed to have a pathogen population Y1. The
pathogen will also typically develop through multiple inter-
mediate life stages denoted j = 1, 2, 3,…,m− 1 in the vector
host with pathogen populations denoted Y1, Y2,…,Ym−1 in
each of the life stages as shown in figure 1. During the inter-
mediate life stages, the pathogen is assumed to transition
from one life stage to the next life stage at rates gj(Yj−1, σj−1)
or die naturally at rates ηj, j = 1, 2, 3,…,m− 1 until it reaches
the last life stage with pathogen population denoted Ym = Pv

that causes infection to the vertebrate hosts. This last life
stage is then shed/excreted into specific anatomical compart-
ments of the vector host such as salivary glands or the
head at an assumed rate σv to constitute the vector host reser-
voir of infective pathogen in the community or die there
naturally at a rate ηv. Thus, the variables Y0, Y1, Y2,…, Ym

also constitute the within-vector scale sub-model.
The variables for the sub-model that describe the trans-

mission and spread of pathogen at between-host scale from
vertebrate host-to-vertebrate host or from vector host-to-vector
host consist of two parts. In the multiscale model represented
by figure 1, the part that describes the transmission of pathogen
fromvector host tovertebrate host is an SIP sub-modelwith vari-
ables which are susceptible vertebrate hosts (SH), infected
vertebrate hosts (IH) and community vector host pathogen
load (PV) so that the transmission of pathogen at between-host
scale from community infectious reservoir of vector hosts to ver-
tebrate hosts happens at a rate βVλV(PV)SH. Similarly, the part
that describes the transmission of pathogen from vertebrate
hosts to vector hosts is also an SIP sub-model with variables
which are susceptible vector hosts (SV), infected vector hosts
(IV) and community vertebrate host pathogen load (PH) so
that the transmission of pathogen at between-host scale from
community infectious reservoir of vertebrate hosts to vector
hosts happens at a rate βHλH(PH)SV. In these between-host
scale variables, the susceptible host populations (SH and SV)
as well as the infected host populations (IH and IV) experience
natural death at rates μH and μV while the infected host
populations (IH and IV) suffer additional mortality at rates δH
and δVdue to infection. Further, since themost sureway to elim-
inate an infectious disease is to eliminate the infectious agent
(since PH = PV = 0 would imply that a vector-borne disease is
eliminated in a community), then 1/αH and 1/σV are the aver-
age times it would take to eliminate the community vertebrate
host pathogen load (CHPL) and community vector pathogen
load (CVPL), respectively, and render the community non-infec-
tious to the vertebrate hosts and vector hosts. The mathematical
details of how these sub-models are integrated to give the gen-
eral multiscale model of type II vector-borne diseases are given
in appendix A. The general multiscale model represented sche-
matically in figure 1 andmathematically in appendixA contains
the main components of the dynamics of vector-borne disease
which include: (i) pathogen dynamics at within-vertebrate
host scale; (ii) vector-borne disease dynamics in the vector
host population at between-host scale, (iii) pathogen dynamics
at within-vector host scale, and (iv) vector-borne disease
dynamics in the vertebrate host population at between-host
scale. However, the general multiscale model (A 2) offers
many opportunities for stronger links between biologists/
epidemiologists and mathematical modelers for improvements
and extensionswhen applied to specific type II vector-bornedis-
eases. Some of the extensions and improvements that can be
realized through such collaborations include incorporating the
following: (i) the effects of immune response, (ii) the effects of
health interventions, (iii) the effects of environmental change,
(iv) the effects of life cycle of the vector host, and (v) the age
structure of the vertebrate host population.
3. Application of the general multiscale model
to human orchocerciasis as a paradigm

In this section, we apply the general multiscale model given
schematically in figure 1 and represented mathematically by
multiscale model (A 2) in appendix A for type II vector-borne
diseases to human onchocerciasis as a case study. This vector-
borne disease is caused by Onchocerca volvulus parasite and
humans are the only vertebrate host, while the vector host
are the blackflies of the genus Simulium. Human onchocercia-
sis is a type II vector-borne disease in which the Onchocerca
volvulus parasite does not have a replication cycle in both
the human host and the blackfly vector. This multi-host infec-
tious disease causes visual impairment, blindness, skin
disease and excess mortality in humans [11]. To adapt the
general multiscale model (A 2) in appendix A to human
onchocerciasis, the sub-models at between-host scale (for
both the human host and vector host) are developed based
on compartmentalizing the host population into susceptible,
infected, together with the extra variable describing CPL
(SIP). Since there is no pathogen replication cycle at within-
host scale (for both the human host and blackfly vector
host), the within-host sub-models for human onchocerciasis
can be established by representing the transitions of pathogen
populations from one life stage to another using linear tran-
sition functions specified in the general multiscale model
(A 2) in the form fi(Xi−1, αi−1) = αi−1Xi−1 for i = 1, 2,…, n and
gj(Yj−1, σj−1) = σj−1Yj−1 for j = 1, 2,…, m. Further, from the
general multiscale model (A 2) in appendix A, we choose
λH(PH) = (βHPH(t))/(H0 + PH(t)) and λV(PV) = (βV PV(t))/
(V0 + PV(t)) from the infectivity response functions (A 3)
and (A 4) specified for the general multiscale model (A 2) in
appendix A. Then the super-infection that introduces the popu-
lation of first life stage of Onchocerca volvulus parasite at the
within-blackfly vector scale (denoted Y0 = Ps) is modelled by

lh(t)sv(t) ¼ bHlH(PH)[SV(t)� 1]
FV[IV(t)þ 1]

¼
bHPH(t)

h
SV(t)� 1

i
h
H0 þ PH(t)

i
FV

h
IV(t)þ 1

i : (3:1)
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Therefore, this expression links the between-host scale to the
within-blackfly vector host scale. Similarly, the super-infection
that introduces the population of first life stage of Onchocerca
volvulus parasite at the within-human host scale (denoted
X0 = Pf) is modelled by

lv(t)sh(t) ¼ bVlV(PV)[SH(t)� 1]
FH[IH(t)þ 1]

¼
bVPV(t)

h
SH(t)� 1

i
h
V0 þ PV(t)

i
FH

h
IH(t)þ 1

i : (3:2)

This expression also links the between-host scale to the within-
human host scale. Taking into account all these specifications
based on the general multiscale model (A 2) in appendix A,
the multiscale model for human onchocerciasis becomes

1:
dSH(t)
dt

¼ LH �bVPV(t)SH(t)
V0 þ PV(t)

�mHSH(t),

2:
dIH(t)
dt

¼ bVPV(t)SH(t)
V0 þPV(t)

� (mH þ dH)IH(t),

3:
dPf (t)
dt

¼
bVPV(t)

h
SH(t)� 1

i
h
V0 þPV(t)

i
FH

h
IH(t)þ 1

i� (a f þm f )Pf (t),

4:
dPw(t)
dt

¼ a f P f (t)� (aw þmw)Pw(t),

5:
dPm(t)
dt

¼ fwawPw(t)�mmPm(t),

6:
dPh(t)
dt

¼NmamPm(t)� (ah þmh)Ph(t),

7:
dPH(t)
dt

¼ (IH þ 1)ahPh(t)�aHPH(t),

8:
dSV(t)
dt

¼ LV �bHPH(t)SV(t)
H0 þPH(t)

�mVSV(t),

9:
dIV(t)
dt

¼ bHPH(t)SV(t)
H0 þPH(t)

� (mV þ dV)IV(t),

10:
dPs(t)
dt

¼
bHPH(t)

h
SV(t)� 1

i
h
H0 þPH(t)

i
FV

h
IV(t)þ 1

i� (hs þss)Ps(t),

11:
dPa(t)
dt

¼ ssPs(t)� (ha þsa)Pa(t),

12:
dPb(t)
dt

¼ saPa(t)� (hb þsb)Pb(t),

13:
dPv(t)
dt

¼ sbPb(t)� (hv þsv)Pv(t),

14:
dPV(t)
dt

¼ (IV þ 1)svPv(t)�sVPV(t):

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(3:3)

The multiscale model (3.3) for human onchocerciasis was
established from the general multiscale model (A 2) in appen-
dix A by incorporating details of the Onchocerca volvulus
parasite life cycle which can roughly be demarcated into
two major life stages as follows:

(a) The human host life stage: at the within-human scale,
Onchocerca volvulus parasite has four main life stages.
These life stages are represented in the multiscale model
(3.3) in terms of rates of change of the parasite population
in each life stage which are as follows. (i) X0 = Pf, which is
the parasite population in the first life stage at within-
human scale. This consists of L3 larvae introduced by an
infected blackfly during a blood-meal at rate λvsh and
experiences natural death at rate μ0 = μf. (ii) X1 = Pw,
which is the parasite population in the first intermediate
life stage at within-human scale. This consists of immature
worms which have developed from the L3 larvae at
an assumed rate of α0 = αf and can die naturally at an
assumed rate of μ1 = μw. (iii) X2 = Pm, which is the parasite
population in the second intermediate life stage at within-
human scale. This consists of mature female worms
(which are a proportion ϕw of the total population of
mature worms) which have developed from immature
worms at an assumed rate of α1 = αw and also experience
natural death at rate μ2 = μm. (iv) X3 = Ph, which is the
parasite population in the final life stage at within-human
scale. This parasite population consists of microfilariae pro-
duced by mature female worms at a rate α2 = αm. This last
life stage of the Onchocerca volvulus parasite is infectious to
blackfly vector. The microfilariae are then shed/excreted
into the dermis layer of the skin and eyes at a rate α3 = αh
where they constitute the infectious reservoir of humans
in the community at within-human host scale (waiting to
begin a second life stage in the blackfly vector host) or
die naturally in the dermis layer of the skin and eyes at a
rate μ3 = μh.

(b) The blackfly vector host life stage: at the within-blackfly vector
scale, Onchocerca volvulus parasite also has four main life
stages. These life stages are represented in the multiscale
model (3.3) in terms of rates of change of the parasite
population in each life stage as follows. (i) Y0 = Ps, which
is the parasite population in the first life stage at within-
blackfly vector scale. This consists of microfilariae ingested
by a blackfly at rate λhsv during a bloodmeal from an
infected human host. These microfilariae experience natu-
ral death at rate η0 = ηs at within-blackfly vector scale.
(ii) Y1 = Pa, which is the parasite population in the first
intermediate life stage at within-blackfly vector scale.
This consists of L1 larvae which have developed from the
microfilariae at an assumed rate of σ0 = σs. These L1
larvae also experience natural death at rate η1 = ηa at
within-blackfly vector scale. (iii) Y2 = Pb, which is the para-
site population in the second intermediate life stage at
within-blackfly vector scale and experiences natural
death at an assumed rate of η2 = ηb. This consists of L2
larvae which have developed from L1 larvae at an assumed
rate of σ1 = σa. (iv) Y3 = Pv, which is the parasite popula-
tion in the final life stage at within-blackfly vector scale.
This parasite population consists of L3 larvae which
have developed from L2 larvae at an assumed rate of
σ2 = σb. The L3 larvae are then shed/excreted into the
saliva at rate σ3 = σv of the blackfly’s proboscis where
they constitute the infectious reservoir of blackfly vector
at within-blackfly vector scale (waiting to begin a second
life stage in the human host) or die naturally in the
saliva at rate η3 = ηv.

In the multiscale model (3.3) for human onchocerciasis, we
interpret the quantities 1/H0 and 1/V0 as measures of a
specific geographical area/community/country’s suscepti-
bility to human onchocerciasis. We assume that every
geographical area/community/country’s human onchorece-
ciasis dynamics is characterized by a different set of
susceptibility coefficients 1/H0 and 1/V0 to human onchocer-
ciasis infection which is intrinsic to that community and that
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these susceptibility coefficients are dependent on many factors
which include: (i) temperature and rainfall, (ii) structure and
topography of the rivers, (iii) strength of the health system
and (iv) vegetation in and around river beds. Together, these
characteristics will lead to particular human onchocerciasis
susceptibility coefficients 1/H0 and 1/V0, which determine
the human onchocerciasis baseline burden (the level of
human onchocerciasis burden that would exist in a given geo-
graphical area/community/country if no interventions are
implemented to control it). These two quantities (1/H0 and
1/V0) indicate the extent to which conditions are favourable
for human onchocerciasis disease transmission in a specific
geographical area. Because of the dependence of super-infec-
tion in the multiscale model (3.3) on two sets of parameters
which are contact rates (βV and βH) with community pathogen
load and the susceptibility coefficients (1/H0 and 1/V0), the
multiscale model for human onchocerciasis (3.3) can be used
to formalize and test the assumptions that underlie the
observed age distribution of pathogen loads in human oncho-
cerciasis [11], by extending the multiscale model (3.3) into an
age-structured multiscale model in which contact rates (βV,
βH) and the susceptibility coefficients (1/H0 and 1/V0) are
different for each age group to identify mechanisms that
produce observed distribution of pathogen burden in
infected hosts. Table 1 in appendix B gives a summary of the
variables of the multiscale model (3.3). A summary of
the description of the parameters in multiscale model (3.3) is
given in table 2 in appendix B. The mathematical analysis of
the multiscale model (3.3) is given in appendix C. In what
follows we present results of the numerical study of the multi-
scale model (3.3).
4. Numerical study of the multiscale model
In the previous section, we presented the multiscale model
(3.3) of human onchoceriasis as an example application of
the general multiscale model (A 2) in appendix A of vector-
borne diseases. However, not all modelling is without
limitations. The biological mechanisms involved in the multi-
scale model (3.3) for human onchoceriasis have many
inherent complexities. To begin with, most of the parameters
are usually best measured only approximately. Secondly,
there normally exists substantial variation in these par-
ameters depending on geographical region, demographic
factors and several other factors. Also, some of the par-
ameters may essentially be stochastic. As a consequence of
such complexities, the multiscale model (3.3) is inherent of
epistemic uncertainty which derives from lack of knowledge
about the value of parameters that are assumed to be con-
stant throughout the model analysis [12]. We therefore need
to investigate the uncertainty in the model output generated
from uncertainty in unknown parameter inputs whose values
are approximated so that reasonable qualitative features of
the expected output trajectories are simulated. An interval
is created with minimum and maximum values so that the
chosen parameter value is within the interval. Interval analy-
sis using the uniform distribution is used to assess how the
variations of each of the parameters, after discounting the
effects of the rest of the parameters, can be apportioned to
the variation in the model output. To get insight on how
some of the estimated parameters affect the output of the
model and for reasonable inference of model simulations,
we use the Latin hypercube sampling technique which is
one technique that is used to detect such epistemic uncertain-
ties. It is a reliable and efficient technique which allows an
unbiased estimate of the average model output and requires
fewer samples than simple random sampling to achieve the
same accuracy. The technique is combined with the partial
rank correlation coefficients (PRCCs) which measure the
strength of the relationship between each input variable
and each output variable [13]. The qualitative predictive
results from variations of these parameters are generic in
nature and the baseline values used in simulations are repre-
sentative of the overall effects of the parameters within the
specified ranges. Since these parameters are unknown, one
way of determining their values is through the use of data,
and different datasets may generate different parameter
values but the qualitative effects of these parameters remain
the same if the parameters fall in the intervals suggested in
this study.

The numerical values of the parameters used in the
numerical simulations are given in table 3 in appendix B.
The multiscale model (3.3) for human onchocerciasis is cate-
gorized as a CMSM [2,4]. An important feature of CMSMs is
that they use other categories of multiscale as sub-models.
These categories of multiscale models which are used as
sub-models are [2,4]: (i) IMSMs, (ii) NMSMs, (iii) EMSMs
and (iv) HMSMs. In the case of the CMSM (3.3), EMSMs
are used as sub-models. A key feature of EMSMs developed
at host level is that the within-host scale and the between-host
influence each other in a reciprocal way (i.e. both ways)
continuously throughout the period when infected hosts are
infectious [4]. In this section, we use numerical simulations
to illustrate and verify this structure of the coupled multiscale
model (3.3) and indicate the implications for control and
elimination of human onchocerciasis. Of critical importance
to this verification is (a) to investigate the influence of the
within-host scale on between-host scale human onchocercia-
sis disease and (b) the influence of the between-host scale
on the within host scale. We include scenarios which usually
emanate from the standard decoupled within-vector host
scale dynamics, within-human host scale dynamics and
between-host scale dynamics, the fundamental difference
being that these scenarios are extracted from the full coupled
multiscale model.

4.1. The influence of within-host scale on between-host
scale human onchoceriasis dynamics

In this section, we investigate the influence of the average
progression rates σs, σv, αf and αh at within-blackfly vector
scale and within-human host scale on the (i) between-
host scale variables (PH, PV, IH, IV), (ii) within-human scale
variables (Pf, Ph) and (iii) within-vector scale variables
(Ps, Pv).

Figure 2 shows the influence of the average progression
rate from microfilariae to L1 larvae with σs = 0.006, 0.0105
and 0.015. Figure 2a–d shows the effects of the variation of
σs on the between-host scale variables (PH, PV, IH, IV), while
figure 2e–h shows the effects of variation of σs on within-
human host scale variables (Pf, Ph) and within-vector host
scale variables (Ps, Pv). The results in figure 2 show that an
increase in σs results in very minimal increases in vector
community pathogen load PV as well as the microfilariae
load Ps. Currently, there is no intervention that we know
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of that targets this life stage. However, these results suggest
that control strategies that target the first life stages of
the pathogen at within-vector scale will have minimal
benefits in reducing parasite load at within-host scale and
human onchocerciasis burden at vector pathogen community
scale.

In figure 3, we show the results of investigating the influ-
ence of the average excretion/shedding rate (σv) of L3 larvae
into the saliva of the blackfly’s proboscis where σv = 0.05, 0.1
and 0.15. Figure 3a–d shows the effects of variation of σv on
the between-host scale variables (PH, PV, IH, IV) and figure
3e–h shows the effects of the variation of σv on within-
human host scale variables (Pf, Ph) as well as within-vector
host scale variables (Ps, Pv). The results show that an increase
in σv is associated with the increase in the between-host scale
variables (PH, PV), the within-human host microfiliariae
population Ph and the mean population of L3 larvae per
infected human host Pf. The within-vector populations (Ps, Pv)
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decrease with the increase in σv. These results indicate
that use of interventions that hinder growth and develop-
ment of the Onchocerca volvulus parasite at within-blackfly
scale will reduce parasite load at within-host scale and
human onchoceriasis burden in the community. However,
care should be taken when using such strategies as they
may have a positive effect of possibly increasing the within
vector parasite load.

Figure 4 shows the effects of increasing the average
progression rate from L3 larvae to immature worm at within-
human host scale for parameter values αf = 0.00005, 0.00001
and 0.000015. Figure 4a–d shows the effects of the variation
of αf on the between-host scale variables (PH, PV, IH, IV) and
figure 4e–h shows the effects of variation of αf on within-
human host scale variables (Pf, Ph) as well as within-vector
host scale variables (Ps, Pv). The results show that the
between-host scale variables (PH, PV, IV) as well as the
within-human scale parasite load (Ph) and within-vector
scale parasite loads (Ps, Pv) increase with the increase in αf
while the within human stage Pf decreases. We deduce from
these results that vaccines which induce protective immunity
against incoming L3 larvae have potential individual and com-
munity scale level benefits in controlling human onchoceriasis.

Figure 5 shows the effects of varying the rate of microfiliar-
iae shedding/excretion into the human host’s dermis layer of
the skin and eyes αh where αh = 0.0000273, 0.0000546 and
0.0000819. Figure 5a–d shows the effects of variation of αh on
the between host variables (PH, PV, IH, IV) and figure 5e–h
shows the effects of variation of αh on within human host
variables (Pf, Ph) and within vector host variables (Ps, Pv). We
observe from figure 5 that the between host variables (PH,
PV, IV) increase significantly in response to the increase in the
rate of microfiliariae shedding/excretion into the human
host’s dermis layer of the skin and eyes. The within human
and within vector dynamics show some switching dominance
after the population peaks are reached with the within human
dynamics dominating before the peaks and the within vector
dynamics after. These switches can be associated with the
change in correlation of αh (figure 10) over time. The results
suggest control strategies such as the use of ivermectin, a
highly effective microfilaricide that inhibits the female worm
microfilarial production, may have individual level benefits
such as prevention of visual impairment, blindness, skin
disease and excess mortality to infected individuals and
community level benefits due to reduced burden of the disease
in the population.

4.2. The influence of between-host scale on within-host
scale human onchocerciasis dynamics

In this section, we investigate the influence of the
between-host scale parameters βV, V0, H0 and βH on (i) the
within-host scale variables (Ps, Pv, Pf, Ph), (ii) between-
human host scale variables (PH, IH) and (iii) between-vector
host scale variables (PV, IV). Figures 6–9a–d show the effects
of variation of each of the between-host scale parameters βV,
βH, H0 and V0 on the between host variables (PH, PV, IH, IV)
and figures 6–9e–h show the effects of variation of each of
the between-host scale parameters βV, βH, H0 and V0 on
within-human host scale variables (Pf, Ph) as well as within-
vector host scale variables (Ps, Pv).

Figure 6 shows the effects of the contact rate of susceptible
humans with infectious reservoir of blackflies βV. The values
used for the parameter βV are βV = 0.00055, 0.00111 and 0.0017.
The results in figure 6 show that an increase in βV increases
the between-host scale variable (IH). On the rest of between-
host dynamics, the increase in βV ultimately leads to the
reduction of their populations. A similar trend is observed on
the within human dynamics and within vector dynamics with
significant decreases observed in the within human dynamics.
Therefore, behavioural interventions such as reducing outdoor
activities during peak periods of blackfly activity and applying
insect repellent containing DEET, wearing protective clothing
and minimizing openings such as buttonholes through which
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blackflies crawl in an attempt to feed and wearing of fine-mesh
head nets, similar to those worn by beekeepers would benefit
both individuals and the community.

The results in figure 7 show the influence of the variation of
the contact rate of susceptible blackfly vector with infectious
reservoir of humans βH. The values used in this variation are
βH = 0.0057, 0.114 and 0.171. The results show that as
βH increases, there is also a noticeable increase in the
between-host scale variables (PH, PV, IH, IV), and the within-
humanvariables (Pf,Ph). The increase of βH leads to the decrease
in within vector dynamics (Ps, Pv). This implies that interven-
tions that include reducing outdoor activities during peak
periods of blackfly activity, applying insect repellent containing
DEET, wearing protective clothing, minimizing openings such
as buttonholes through which blackflies crawl in an attempt
to feed and wearing of fine-mesh head nets, similar to those
worn by beekeepers would benefit both individuals and the
community.

In figure 8, we show the effects of increasing the half satur-
ation constant associated with infection of blackflies H0 using
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the values H0 = 15000, 30 000 and 45 000. The results show that
an increase in H0 results in a significant decline of the between
host variables (PH, PV, IV) and the within human variables
(Pf, Ph) while the within vector variables initially increase but
ultimately decrease over time. As stated earlier, the parameter
H0 is associated with a measure of susceptibility of a commu-
nity’s human onchocerciasis burden through a susceptibility
coefficient 1/H0. The increase in H0 corresponds to the
reduction in susceptibility coefficient while the reduction in
H0 corresponds to the increase in susceptibility coefficient.
Thus, the results in figure 8 suggest interventions that reduce
susceptibility of blackfly vectors to infectious reservoir of
humans (PH) reduce the burden of human onchocerciasis at
community level and reduce parasite load at within-host
scale for both human host and blackfly.

In figure 9, we show the effects of the variation of the half
saturation constant associated with infection of humans V0

with V0 = 1000, 5000 and 7500. Increasing V0 is associated
with the decrease in the between host variables (PH, PV) and
the within human variables (Pf, Ph) while the within vector
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variables (Ps, Pv) also decrease over time. As in the case
of H0, the measure of susceptibility of the blackflies is through
a susceptibility coefficient 1/V0. The increase in V0 corre-
sponds to the reduction in susceptibility coefficient while the
reduction in V0 corresponds to the increase in susceptibility
coefficient. Similarly, the results in figure 9 suggest interven-
tions that reduce susceptibility of humans to infectious
reservoir of blackflies (PV) such as vaccines reduce the
burden of human onchocerciasis at community level and
reduce parasite load at within-host scale for both human
host and blackfly.
4.3. Sensitivity analysis
In this section, figure 10a–d is used to investigate the contri-
bution of the between host parameters (βV, βH,H0, V0) on
within host dynamics and figure 10e–h the within host
parameters (σs, σv, αf, αv) on between host dynamics. The
ranges of values used are as indicated in table 3 in
appendixB.ThePRCCsof eachparameterare trackedover time.

Figure 10a shows that βH and βV are positively correlated to
Ps while H0 and V0 are negatively correlated. Over time, the
correlation of βV, H0 and V0 changes towards zero correlation.
Positive correlation of βH and βV on Ps indicates that if we
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increase the parameters, the variable Ps increases (and vice
versa). The negative correlation of H0 and V0 to Ps indicates
that if we increase the parameter, the variable Ps decreases
(and vice versa). The change in correlation of V0 and H0 from
negative correlation towards zero correlation suggests that
the parameters were initially responsible for lowering Ps then
over time the parameters lose that effect on Ps. A change in cor-
relation of βV from positive towards zero correlation indicates
that the parameter was initially responsible for increasing Ps

and over time the parameter loses these effects on Ps. A similar
interpretation holds for figure 10b–h.

In figure 10b, the parameters βH and H0 are initially posi-
tively correlated to Pv with βH changing its correlation to
negative correlation over time and H0 changing its correlation
towards zero. The parameters βV and V0 are initially negatively
correlated to Pv with βV changing to positive correlation and V0

changing to zero correlation over time. The change of corre-
lation of βH from positive to negative indicates that the
parameter was initially responsible for the increase in Pv and
then over time responsible for the lowering of Pv. The change
of correlation of βV from negative to positive suggests that the
parameter was initially responsible for the lowering of Pv and
later for the increase in Pv. The other two scenarios of either
changing from negative to zero or from positive to zero corre-
lation are as explained in figure 10a.

Figure 10c shows that theparameters βH and βVarepositively
correlated to Pf with βV having near perfect correlation and βH
changing correlation towards zero correlation,H0 changes corre-
lation from negative to near zero and V0 changes from negative
to zero correlationover time. Thus, the parameters βH and βVwill
be associated with the increase in Pf with much contribution
coming from βV and the effects of βH becoming insignificant
over time while the parameter H0 will initially be associated
with the lowering of Pf but losing the effects over time.

In figure 10d, the parameter V0 is negatively correlated to
Ph, βV, H0 and βH are positively correlated to Ph. The par-
ameter V0 will be associated with the decrease in Ph, βV, H0

and βH increase will result in the increase of Ph. The PRCC
values are, however, small, and thus their influence may
not be significant against Ph over all.

Figure 10e shows that the parameters σs and αh are
negatively correlated to PH and σv and αf are positively corre-
lated to PH. This indicates that the parameters σs, σv and αh
are associated with lowering PH while the parameter αf is
associated with increasing PH. In figure 10f, the parameter
σs is positively correlated to PV, σv is negatively correlated
to PV, αf changes from positive to zero correlation and αh
changes correlation from positive to negative and finally
positive. This means that increasing the parameter σs results
in the increase in PV, σv will be responsible for lowering the
population PV, αf increase will result in the initial increase
of PV losing its effects over time and increasing αh is
associated with initial increase in PV followed by lowering
and finally an increase in PH. Figure 10g shows that the par-
ameters σs, σv and αh are negatively correlated to IH and αf
changes from positive to negative correlation with all the
four parameters changing to a zero correlation over time.
All the parameters with be associated with the decrease in
IH but since the PRCCs are mostly close to zero, their effects
are almost always insignificant on IH. In figure 10h, the par-
ameter σs changes from negative to zero correlation, σv and
αf are negatively correlated to IV, and αh changes from positive
to negative and to zero correlation. This suggests that
increasing σs initially lowers the IV population while the
effects become insignificant over time. The increase of σv
and αf will be associated with lowering IV and the increase
in αh will initially increase then decrease and eventually its
effects on IV will become less significant over time. The
PRCC values of all the four parameters are also small and
thus, the effects of these parameters may not be so significant.

The results in this section indicate potential drivers of
between-host scale dynamics as well as within-host scale
dynamics that could be targeted with the available prevention
and control measures for human onchoceriasis.
5. Discussion and conclusion
In this article, we presented a new method for the development
of multiscale models of type II vector-borne diseases in which
there is no pathogen replication cycle at both the within-
vertebrate host scale and the within-vector host scale. For such
type II vector-borne diseases, the pathogen load in the infected
host (both the vertebrate host and the vector host) can only
increase through super-infection (that is, repeated infection
before the host recovers from the infectious episode). The
method is based on making assumptions about how individual
infectiousness is scaled up to define population/community
infectiousness, which determines the probability that a random
vector bite on a random vertebrate will infect the vector host or
the vertebrate host. Therefore, the multiscale models developed
through thismethod includes the actual parasite load (in the var-
ious life stages of the parasite life cycle) at within-host scale and
between-host scale insteadof just tracking the numberof infected
hosts. Themultiscalemodel for human onchocerciasis suggests a
number of control points, which are suitable for trying out strat-
egies for controlling the spread of this vector-borne disease. The
control strategies can be divided into two categories: those tar-
geting the vector host associated with control of PV (which
may include control of the vector population or which reduce
the parasite load at within-vector host scale) and those targeting
the human host associated with modifying PH (which may
include control of the contact of human host with the vector, or
which reduce the parasite load in the various life stages of the
parasite life cycle at within-human host scale). Overall, the
results in this study confirm that there is reciprocal influence
between public health interventions to control human onchocer-
ciasis which are focused on communities and populations (at
between-host scale) on the one hand and medical interventions
to treat diseases which are focused on thewell-being of the indi-
vidual (at within-host scale) on the other hand. These findings
suggest that there are importantmedical and public health plan-
ning consequences to consider during the processes of planning
of control and elimination of human onchocerciasis.
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Appendix A. Derivation of the general multiscale
model for type II vector-borne diseases
In this appendix, we present details for the derivation of the
general multiscale model for type II vector-borne disease
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systems in which the pathogen does not have a replication
cycle at within-host scale of any of the two hosts required
to complete its life cycle (the vertebrate host and the
vector host). For such type II vector-borne diseases, the
pathogen load at within-host scale increases only through
super-infection (i.e. repeated infection before the host
recovers from an infectious episode). To develop the general
multiscale model, consider a general type II vector-borne
disease in which both the vector hosts and the vertebrate
hosts are compartmentalized into two compartments
according to their disease status, that is, susceptible ver-
tebrate hosts SH and infected vertebrate hosts IH as well as
susceptible vector hosts SV and infected vector hosts IV,
with no natural recovery of infected hosts in both popu-
lations (for simplicity). Suppose that the mean pathogen
populations at within-vertebrate host scale in life stages
0, 1,…, n are X0, X1, X2,…,Xn, with X0 = Pf being the patho-
gen population in the first life stage and Xn = Ph being mean
pathogen population in last life stage (which is infectious to
the vector hosts) while X1, X2,…,Xn−1 are the mean patho-
gen populations in the intermediate life stages at within-
vertebrate scale. Suppose also that the mean pathogen
populations at within-vector scale in life stages 0, 1,…, m
are Y0, Y1, Y2,…,Ym, with Y0 = Ps being the pathogen popu-
lation in the first life stage and Ym = Pv being mean
pathogen populations in the last life stage (which is infec-
tious to the vertebrate hosts) while Y1, Y2,…,Ym−1 are the
mean pathogen populations in the intermediate life stages
at within-vector scale. The most critical challenge in the
development of multiscale models that integrate the two
sets of variables, which are (i) SH, IH at the between-ver-
tebrate host scale and X0, X1,…,Xn at the within-vertebrate
host scale as well as (ii) SV, IV at the between-vector host
scale and Y0, Y1,…,Ym at within-vector host scale, is to
establish methods for linking/coupling sub-models across
the between-host scale and the within-host scale for the
two host populations implicated in the transmission of the
vector-borne disease. From a biological point of view, the
linking of the within-host scale and the between-host scale
for type II vector-borne diseases without pathogen replica-
tion cycle within the two hosts consists of both super-
infection, that is, repeated infection before the host recovers
from an infectious episode (for linking of between-host
scale to the within-host scale) and pathogen excretion/
shedding (for linking of within-host scale to the between-
host scale). However, from a mathematical point of view,
the linking/coupling/integration of sub-models across scales
involves up-scaling (for linking of within-host scale to the
between-host scale) and down-scaling (for linking between-
host scale to the within-host scale) of variables associated
with the two disease processes (super-infection and pathogen
shedding/excretion). Therefore, each of these two linking
mechanisms involves exchange of pathogen between the
within-host scale and between-host scale through super-infec-
tion (which involves movement of the pathogen from the
community scale to the within-host scale) and pathogen shed-
ding/excretion (which involves movement of the pathogen
from the within-host scale to the community scale). Extending
the ideas in [5,6] to type II vector-borne diseases, the linkage
between the scales can be established as follows.

(a) Linking within-host scale to the between-host scale. This
is achieved by upscaling individual infectiousness Ph
(for each infected vertebrate host) and Pv (for each
infected vector host) to community infectiousness
PH(t) = Ph(t)IH(t) (for all infected vertebrate hosts) and
PV(t) = Pv(t)IV(t) (for all infected vector hosts) in a
particular community. In this study, we refer to PH and
PV as the CHPL and CVPL, respectively. Thus, the
total infectious reservoir of vertebrate hosts (PH) and
vector hosts (PV) in the community (which we collecti-
vely call CPL) is a product of the vertebrate host
population IH(t) and the infectious within-vertebrate
host pathogen load Ph (for the CHPL) as well as a pro-
duct of the vector host population IV(t) and the
infectious within-vector pathogen load Pv(t) (for the
CVPL). Following [6], the CVPL and the CHPL
are modelled by

dPH(t)
dt

¼
h
IH(t)þ 1

i
ahPh(t)� aHPH(t)

and
dPV(t)
dt

¼
h
IV(t)þ 1

i
svPv(t)� aVPV(t),

9>>=>>; (A 1)

where αh and σv are the rates at which the infectious
pathogen populations in the last life stages of the patho-
gen life cycle are shed/excreted into specific anatomical
compartments of the vertebrate host and vector host to
constitute the CHPL and CVPL, respectively. Even
though there is no actual movement of pathogen (as
happens in environmentally transmitted infectious dis-
eases) from within-host scale to between-host scale
(population/community scale) at rates αh and σv in
equations (A 1), the fact that Ph and Pv at within-host
scale are aggregated to re-constitute PH and PV, respect-
ively at between-host scale (population/community
scale), is in this study interpreted to imply that Ph and
Pv moved from within-host scale (where they constitute
individual host infectious pathogen load) at rates αh
and σv to between-host scale (population/community
scale)—where they constitute community/population
infectious pathogen load. In equations (A 1), 1/αH and
1/αV are the average times to eliminate the total CHPL
and CVPL, respectively, and render a particular commu-
nity non-infectious to all vertebrate hosts and vector
hosts. The addition of 1 in the infected classes in
equations (A 1) is due to the fact that the infection of a
single host happens through a single transition defined
by (SH(t), IH(t), PV(t)) �! (SH(t)� 1, IH(t)þ 1, PV(t)) with
probability λV(PV) and (SV(t), IV(t), PH(t)) �! (SV(t)� 1,
IV(t)þ 1, PH(t)) with probability λH(PH). The subtrac-
tion of a one from the susceptible class and the
addition of a one to the infected class is supported by
the theory of transition probabilities [14]. The contri-
butions of different hosts (the vertebrate host and the
vector host) to vector-borne disease burden has been a
key gap in our knowledge of vector-borne disease
dynamics. An important feature of the multiscale
model proposed in this article is that PV and PH can be
used to give us a formal way of quantifying the contri-
bution of each of the two hosts (the vertebrate host
and the vector host) to vector-borne disease burden in
a specific community. Since PH = PV = 0 would imply
that a vector-borne disease is eliminated in a particular
community, then CHPL (PH) and CVPL (PV) can be
operationalized in the evaluation of the path from
control to elimination for a vector-borne disease system
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in a particular community as: (i) an indicator of a com-
munity’s level of infectiousness and transmission
probability of disease from vector hosts to vertebrate
hosts (for CVPL) as well as an indicator of a commu-
nity’s level of infectiousness and transmission
probability of disease from vertebrate hosts to vector
hosts (for CHPL), (ii) a measure of the effectiveness of
vector-borne disease interventions targeted at the
vector host (for CVPL) as well as a measure of the
effectiveness of vector-borne disease interventions tar-
geted at the vertebrate host (for CHPL) and (iii) a
proximal marker of vector-borne disease incidence
among vector hosts and their potential to propagate
vector-borne disease to vertebrate hosts (for CVPL) as
well as a proximal marker of vector-borne disease inci-
dence among vertebrate hosts and their potential to
propagate vector-borne disease to vector hosts (for
CHPL). Currently, single scale models of infectious dis-
ease systems at host level define disease burden in
terms of incidence and prevalence. However, for some
infectious diseases prevalence is not very informative, as
the infectivity of individuals depends more on pathogen
load than on whether one is infected or not. Incidence is
difficult to measure directly. More importantly, the use
of CPL as a measure of disease burden also enables us
to use a common metric for disease dynamics and
burden across scales. Further, community pathogen also
combines information from prevalence.

(b) Linking between-host scale to the within-host scale. The
incorporation of CPL (CHPL and CVPL) described by
equations (A 1) enables us to specify the forces of the
transmission of the vector-borne disease in the two
hosts so that the force of infection of disease transmission
from vector hosts to vertebrate hosts in terms of CVPL
becomes βVλV(PV) and the force of infection for the
transmission of the disease from vertebrate hosts to
vector hosts in terms of CHPL becomes βHλH(PH). The
linking of the between-host scale to the within-host
scale through super-infection can be modelled by
down-scaling population-level vector-borne transmission
which is βHλH(PH)SV (for the vector host) and βVλV(PV)SH
(for the vertebrate host) to individual host level vector-
borne disease transmission so that super-infection that
introduces the population of the first life stage of
vector-borne parasite from the between-vertebrate host
scale to the within-vector host scale (denoted Y0 = Ps)
is modelled by λh(t)sv(t) = (βHλH(PH)[SV(t)− 1])/(ΦV

[IV(t) + 1]). Similarly, the super-infection that introduces
the population of the first life stage of vector-borne
parasite from the between-vector host scale to the
within-vertebrate host scale (denoted X0 = Pf ) is modelled
by λv(t)sh(t) = (βVλV(PV)[SH(t)− 1])/(ΦH [IH(t) + 1]).
However, this representation of super-infection is a
refinement of the approach in [5] in two ways. First, the
approach in [5] specifies the functional forms of λH(PH)
and λV(PV). Here λH(PH) and λV(PV) are a general class
of functions whose properties will be specified later.
Second, the approach in [5] over-estimates the number
of new infections, while here the number of new infec-
tions is assumed to be a proportion ΦH of the existing
cumulative number of infected vertebrate hosts and a
proportion ΦV of the existing cumulative number of
infected vector hosts.
We now develop a general multiscale model of a type II
vector-borne disease system that integrates the two sets of vari-
ables which are (i) SH, IH, PV at the between-vertebrate host
scale and X0, X1,…,Xn at the within-vertebrate host scale as
well as (ii) SV, IV, PH at the between-vector host scale and Y0,
Y1,…,Ym at within-vector host scale. Based on the linking
mechanisms we have just described, which represent an exten-
sion of the work in [5,6] to vector-borne disease transmission
theory, then the casual links between the state variables at
the within-host scale and the between-host scale for the ver-
tebrate hosts and the vector hosts can be recast into a
general multiscale model for type II vector-borne diseases in
the form

1:
dSH(t)
dt

¼ LH � bVlV(PV)SH(t)� mHSH(t),

2:
dIH(t)
dt

¼ bVlV(PV)SH(t)� (mH þ dH)IH(t),

3:
dPf (t)
dt

¼ bVlV(PV)[SH(t)� 1]
FH[IH(t)þ 1]

� (a f þ a f )Pf (t),

4:
dXi(t)
dt

¼ fi(Xi�1, ai�1)� (ai þ mi)Xi(t),

i ¼ 1, 2, 3, . . . , n� 1,

5:
dPh(t)
dt

¼ fn(Xn�1, an�1)� (ah þ mh)Ph(t),

6:
dPH(t)
dt

¼ (IH þ 1)ahPh(t)� aHPH(t),

7:
dSV(t)
dt

¼ LV � bHlH(PH)SV(t)� mVSV(t),

8:
dIV(t)
dt

¼ bHlH(PH)SV(t)� (mV þ dV)IV(t),

9:
dPs(t)
dt

¼ bHlH(PH)[SV(t)� 1]
FV[IV(t)þ 1]

� (hs þ ss)Ps(t),

10:
dYj(t)
dt

¼ g j(Yj�1, s j�1)� (h j þ s j)Yj(t),

j ¼ 1, 2, 3, . . . , m� 1,

11:
dPv(t)
dt

¼ gm(Xm�1, sm�1)� (hv þ sv)Pv(t),

12:
dPV(t)
dt

¼ (IV þ 1)svPv(t)� sVPV(t):

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(A 2)

In the general multiscale model (A 2), the transmission rates of
the vector-borne disease from the community to the vertebrate
hosts and from community to vector hosts are modelled by
some general functions βVλV(PV) and βHλH(PH), respectively.
The functions λV and λH have the following specifications:

(a) lV : [0, 1) �! [0, 1] represents the probability that a
random bite of a vertebrate host by a vector host in a par-
ticular community with a CVPL PV(t) will infect the
vertebrate host with a vector-borne disease in that
community.

(b) lH : [0, 1) �! [0, 1] represents the probability that a
random bite of a vertebrate host by a vector host in a
particular community with a CHPL PH(t) will infect
the vector host with a vector-borne disease in that
community.

Since the functions λV(PV) and λH(PH) are probabilities, they
must have the following desirable properties [15]:
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(i) Property I: the probabilities of infection vanish in
the absence of pathogen (i.e. λV(0) = 0, λH(0) = 0)
and approach 1 as the community pathogen
load becomes large (i.e. limPV!1 lV(PV) ¼ 1,
limPH!1 lH(PH) ¼ 1).

(ii) Property II: the probabilities of infection λV(PV)
and λH(PH) increase with the community pathogen
loads PV and PH, that is, λV0 (PV) > 0 and λH0 (PH) > 0,
where prime denotes derivative with respect to
the argument.

Several possible functions λV(PV) and λH(PH), which we
refer to as infectivity response functions, can satisfy the
above listed two properties including the following two
classic examples:

(a) The negative exponential infectivity response function. This
function has the form [15]

lV(PV) ¼ 1� e�gVPV and lH(PH) ¼ 1� e�gHPH : (A 3)

(b) The sigmoid infectivity response function. This function has
the form [16]

lV(PV) ¼ Pk
V

Vk
0 þ Pk

V
and

lH(PH) ¼ Pk
H

Hk
0 þ Pk

H
, k ¼ 1, 2, . . . , n, (A 4)

where the parameter k defines the steepness of the
sigmoid infectivity response.

In (a) and (b) above, V0 and H0 are quantities of CPL
which give 50% probability of infection and γV = ln(2/V0),
γH = ln(2/H0) [17]. For more information on other forms
of infectivity response functions, see [18]. However, the
multiscale modelling method for type II vector-borne
disease systems presented in this article is still in its foun-
dation stages. Currently data on type II vector-borne
disease systems are still not yet available to select analytic
forms of λV(.) and λH(.) on the basis of empirical evidence.
Therefore, our selection of analytic forms of λV(.) and λH(.)
is limited to them being able to satisfy property I and
property II above.

In the general multiscale model (A 2), equations (1) and
(2) describe the dynamics of a type II vector-borne disease
system from the vector host to the vertebrate host where the
force of infection specified is based on equations (3) and (4)
in terms of the community vector pathogen (CVPL) load
given by equation (12) of the general multiscale model
(A 2). In these equations, μH and δH are the natural death
rate and disease induced death rate, respectively.
Equations (3–5) of the general multiscale model (A 2)
describe the dynamics of the various pathogen populations
in the different life stages at within-vertebrate host scale. In
these equations, equation (3) describes the dynamics of the
pathogen population in the first life stage at within-ver-
tebrate host scale, while equation (5) describes changes in
the pathogen population in the last life stage at within-ver-
tebrate host scale (which is infectious to the vector hosts).
Equations (4) describe the pathogen populations in the
intermediate life stages at within-vertebrate host scale. In
all the three equations (i.e. (3–5)), the transition of patho-
gen populations from one life stage to another (modelled
by fi(Xi−1, αi−1), i = 1, 2,…, n, where f1(X0, α0) = f1(Pf, αf ))
is either through developmental changes to the next life
stage or through reproduction of the next life stage from
the previous life stage since we assumed a type of vector-
borne disease system that does not have a pathogen repli-
cation cycle at within-vertebrate host scale. These
pathogen populations in the different life stages i = 0, 1,
2,…, n suffer natural death at rates μi where μ0 = μf and
μn = μh.

Similarly, in the general multiscale model (A 2),
equations (7) and (8) describe the transmission of the
vector-borne disease system from the vertebrate host to
the vector host where the force of infection specified is
based on equations (3) and (4) in terms of the community
vertebrate host pathogen (CHPL) load given by equation
(6) of the general multiscale model (A 2). The other three
equations in the general multiscale model (A 2), that is,
equations (9–11), describe the dynamics of the pathogen
population in the different life stages at within-vector
host scale. In these equations, equation (9) describes the
dynamics of the pathogen population in the first life stage
at within-vector host scale, while equation (11) describes
changes in the pathogen population in the last life stage
at within-vector host scale (which is infectious to the ver-
tebrate hosts). Equations (10) describe the pathogen
populations in the intermediate life stages at within-
vector host scale. Equally, in all the three equations (i.e.
(9–11)), the transition from one life stage to another (mod-
elled by gj(Yj−1, σj−1) j = 1, 2,…,m, where g1(Y0, σ0) =
g1(Ps, αs)) is either through developmental changes to the
next life stage or through production of the next life stage
from the previous life stage for the same reason that we
assumed a type of vector-borne disease system that does
not involve a pathogen replication cycle at within-vector
host scale. The pathogen populations in the different life
stages j = 0, 1, 2,…,m also suffer natural death at rates ηj
where η0 = ηs and ηm = ηv. A conceptual diagram of the gen-
eral multiscale model (A 2) is given in figure 1. Following
[5], we can easily derive two important results which are:

(a) For positive parameters, the variables of the general mul-
tiscale model (A 2) with positive initial conditions will
remain non-negative for all t≥ 0 and for ΛH > μH and
ΛV > μV, so that they do not violate a basic property of
biological reality.

(b) For a specified λH(PH) and λV(PV) chosen from the poss-
ible list of infectivity response functions (A 3) and (A 4),
the solutions of the general multiscale model (A 2) are
bounded for ΛH > μH and ΛV > μV.

Therefore, the general multiscale model (A 2) is mathemat-
ically and biologically well posed for ΛH > μH and ΛV > μV.
We shall assume in all that follows (unless stated otherwise)
that ΛH > μH and ΛV > μV.
Appendix B. Variables and parameters of the
human ochocerciasis multiscale model
Table 1 gives a description of the variables in multiscale
model (3.3), while table 2 gives a description of the par-
ameters in multiscale model (3.3).



Table 1. A summary of the variables of the human onchocerciasis multiscale model given by (3.3).

no. variable description

1 SH(t) population of susceptible human hosts at time t

2 IH(t) population of infected human hosts at time t

3 Pf(t) mean population of L3 larvae per infected human host at time t

4 Pw(t) mean population of immature worms per infected human host at time t

5 Pm(t) mean population of mature worms per infected human host at time t

6 Ph(t) mean population of microfilariae per infected human host at time t

7 PH(t) community microfilariae pathogen load (CMPL) at time t

8 SV(t) population of susceptible blackfly vector hosts at time t

9 IV(t) population of infected blackfly vector hosts at time t

10 Ps(t) mean population of microfilariae per infected blackfly vector at time t

11 Pa(t) mean population of L1 larvae per infected blackfly vector at time t

12 Pb(t) mean population of L2 larvae per infected blackfly vector at time t

13 Pv(t) mean population of L3 larvae per infected blackfly vector at time t

14 PV(t) community L3 larvae pathogen load (CLPL) at time t

Table 2. Description of parameters.

no. parameter description of parameter

1 ΛH supply rate of susceptible humans through birth

2 βH contact rate of susceptible blackfly vector with infectious reservoir of humans

3 μH natural death rate of humans

4 δH disease-induced death rate of humans

5 αH rate of human community microfilariae load elimination

6 H0 half saturation constant associated with infection of blackfly

7 ΦH proportion of new infected humans in the total infected human population

8 ΛV supply rate of susceptible blackfly vector through birth

9 βV contact rate of susceptible humans with infectious reservoir of blackfly vector

10 μV natural death rate of blackfly vector

11 δV infection-induced death rate of blackfly vector

12 αV rate of blackfly community microfilariae load elimination

13 V0 half saturation constant associated with infection of humans

14 ΦV proportion of new infected blackfly vector in the total infected blackfly vector population

15 αf average progression rate from L3 larvae to immature worm in the human host

16 μf natural death rate of L3 in the human host

17 αw average progression rate from immature worm to mature worm in the human host

18 μw natural death rate of immature worm in the human host

19 αm rate at which female worms become fertilized in the human host

20 μm natural death rate of worm to mature female worm in the human host

21 αh rate at which microfilariae are shed/excreted into the human host’s dermis layer of the skin and eyes

22 μh natural death rate of microfilariae in the human host’s skin and eyes

23 σs average progression rate from microfilariae to L1 larvae in the thoracic flight muscle of the blackfly vector

24 ηs natural death rate of microfilariae in gut of the blackfly vector

25 σa average progression rate from L1 larvae to L2 larvae and migration to the proboscis of the blackfly vector in the saliva

26 ηa natural death rate of L1 in the thoracic flight muscle of the blackfly vector

27 σb average progression rate from L2 larvae to L3 larvae in the blackfly vector

28 ηb natural death rate of L2 in the blackfly’s proboscis

29 σv rate at which L3 are shed/excreted into saliva of blackfly’s proboscis

30 ηv natural death rate of infectious stage L3 larvae in the blackfly’s proboscis

31 Nm number of microfilariae produced per female worm

32 ϕw proportion of female worms among the total adult population of worms
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Table 3. Parameter values used in the multiscale model.

no. parameter value [range explored] units source/rationale

1 ΛH 0.165 [0.083–0.2475] d−1 [19]

2 βH 0.114 [0.057–0.171] d−1 [19]

3 μH 0.000055 [0.000046–0.000068] d−1 [11]

4 δH 0.00001 [5 × 10−6–1.5 × 10−5] d−1 s.a

5 αH 0.0000546 [2.73 × 10−5–8.19 × 10−5] d−1 s.a

6 H0 30000.00 [1000.00–50000.00] d−1 s.a

7 ΦH 0.0001 [5 × 10−5–1.5 × 10−4] d−1 s.a

8 ΛV 712.33 [356.1650–1.0685 × 103] d−1 [19]

9 βV 0.00111 [0.000555–0.0017] d−1 [19]

10 μV 0.071233 [0.032877–0.142466] d−1 [11]

11 δV 0.001068 [0.000685–0.001644] d−1 [11]

12 σV 0.10000 [0.050000–0.150000] d−1 s.a

13 V0 5000.00 [2500.00–7500.00] d−1 s.a

14 ΦV 0.0001 [0.00005–0.00015] d−1 s.a

15 αf 0.0001 [0.00005–0.00015] d−1 s.a

16 μf 0.00027 [1 × 10−4–3 × 10−4] d−1 [20]

17 αw 0.0003 [5 × 10−5–1.5 × 10−4] d−1 s.a

18 μw 0.0002 [1 × 10−4–3 × 10−4] d−1 s.a

19 αm 0.001836 [9.18 × 10−4–0.0028] d−1 s.a

20 μm 0.000274 [0.000249–0.000304] d−1 [21]

21 αh 0.000546 [0.000384–0.002740] d−1 [11]

22 μh 0.002192 [0.001370–0.008219] d−1 [11]

23 σs 0.0105 [0.0060–0.0150] d−1 s.a

24 ηs 0.0012 [0.0006–0.0018] d−1 s.a

25 σa 0.200411 [0183178–0.213041] d−1 [22]

26 ηa 0.200411 [0.183178–0.213041] d−1 s.a

27 σb 0.365595 [0.333534–0.403863] d−1 [22]

28 ηb 0.010000 [0.005–0.0150] d−1 s.a

29 σv 0.10000 [0.05–0.15] d−1 s.a

30 ηv 0.142466 [0.071233–0.284932] d−1 [11]

31 Nm 100 [1−1000] worm−1 d−1 s.a

32 ϕw 0.5 [0.1−0.9] d−1 [23]
s.aRange of values adapted from sensitivity analysis using the Latin hypercube sampling technique.
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Appendix C. Analysis of the multiscale model
(a) The reproductive number of human ochocerciasis
The model system (3.3) has a disease-free equilibrium given by
E0 ¼ (S0H , I
0
H , S

0
V , I

0
V , P

0
H , P

0
V , P

0
f , P

0
w, P

0
m, P

0
h, P

0
s , P

0
a , P

0
b , P

0
v)

¼ LH

mH
, 0,

LV

mV
, 0, 0, 0, 0, 0, 0, 0, 0, 0

� �
: (C1)

The basic reproduction number denoted as R0 is a
threshold value that is often used in public health to measure
the spread of a disease. Using the next generation operator
approach [24], the multiscale model (3.3) can be written in
the form

dX
dt

¼ f(X, Y, Z),

dY
dt

¼ g(X, Y, Z)

and
dZ
dt

¼ h(X, Y, Z),

9>>>>>>>=>>>>>>>;
(C 2)

where

X ¼ (SH , SV),
Y ¼ (IH , Pf , Pw, Pm, Ph, IV , Ps, Pa, Pb, Pv)

and Z ¼ (PH , PV):

9>=>; (C 3)

Components of X denote the number of susceptibles,
while components of Y represent the number of infected
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individuals that do not transmit the disease. Components
of Z represent the number of individuals capable of
transmitting the disease. Following [24], we define
 lsocietyp
~g(X�, Z) by

~g(X�, Z) ¼ (~g1(X
�, Z), ~g2(X

�, Z), ~g3(X
�, Z), ~g4(X

�, Z),
~g5(X

�, Z), ~g6(X
�, Z), ~g7(X

�, Z), ~g8(X
�, Z)), (C 4)

with
ub
lishing.org/journal/rsfs
Interface
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1: ~g1(X
�,Z)¼ bVLHPV

mH(mHþdH)(V0þPV)
,

2: ~g2(X
�,Z)¼ 1

a f þm f
� bV(LH�mH)PV

mH(mHþdH)FH(V0þPV)[eg1(X�,Z)þ1]
,

3: ~g3(X
�,Z)¼ 1

awþmw
� a f

af þm f
� bV(LH�mH)PV

mH(mHþdH)FH(V0þPV)[eg1(X�,Z)þ1]
,

4: ~g4(X
�,Z)¼ 1

mm
� fwaw

awþmw
� a f

a f þm f
� bV(LH�mH)PV

mH(mHþdH)FH(V0þPV)[eg1(X�,Z)þ1]
,

5: ~g5(X
�,Z)¼ 1

ahþmh
�Nmam

mm
� fwaw

awþmw
� af

af þm f
� bV(LH�mH)PV

mH(mHþdH)FH(V0þPV)[eg1(X�,Z)þ1]
,

6: ~g6(X
�,Z)¼ bHLVPH

mV(mVþdV)(H0þPH)
,

7: ~g7(X
�,Z)¼ 1

ssþhs
� bH(LV�mV)PH

mV(mVþdV)FV(H0þPH)[eg6(X�,Z)þ1]
,

8: ~g8(X
�,Z)¼ 1

saþha
� ss

ssþhs
� bH(LV�mV)PH

mV(mVþdV)FV(P1þPH)[eg6(X�,Z)þ1]
,

9: ~g8(X
�,Z)¼ 1

sbþhb
� sa

saþha
� ss

ssþhs
� bH(LV�mV)PH

mV(mVþdV)FV(H0þPH)[eg6(X�,Z)þ1]
,

10: ~g9(X
�,Z)¼ 1

svþhv
� sb

sbþhb
� sa

saþha
� ss

ssþhs
� bH(LV�mV)PH

mV(mVþdV)FV(H0þPH)[eg6(X�,Z)þ1]
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(C5)
ffiffiffi
:

Let

Nh ¼ 1
ah þ mh

� Nmam

mm
� fwaw

aw þ mw
� a f

a f þ m f

and Nv ¼ 1
sv þ hv

� sb

sb þ hb
� sa

sa þ ha
:

ss

ss þ hs
�

9>>>=>>>; (C 6)

Then,

h1 ¼ NhahbV(LH � mH)
mH(mH þ dH)FH

� PV

(V0 þ PV)
� aHPH

and h2 ¼ NvsvbH(LV � mV)
mV(mV þ dV)FV

� PH

(H0 þ PH)
� sVPV:

9>>>=>>>; (C 7)

Let A ¼ DZh(X�, ~g(X�, 0), 0) and further assume that A can
be written in the form A =M−D, where M≥ 0 and D > 0,
a diagonal matrix. Then A becomes

A ¼
�aH

NhahbV(LH � mH)
mH(mH þ dH)FHV0

NvsvbH(LV � mV)
mV(mV þ dV)FVH0

�sV

2664
3775: (C 8)

Since A =M−D, we deduce matrices M and D to be

M ¼
0

NhahbV(LH � mH)
mH(mH þ dH)FHV0

NvsvbH(LV � mV)
mV(mV þ dV)FVH0

0

2664
3775 and

D ¼ aH 0
0 sV

� �
: (C 9)
The basic reproductive number is the spectral radius
(dominant eigenvalue) of the matrix MD−1, that is,

R0 ¼ r(MD�1)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"

Nhah

(mH þ dH)
(LV � mV)bH

mVaHH0

#"
Nvav

(mV þ dV)
� (LH � mH)bV

mHsVV0

#vuut
(C 10)

In this case,

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RHV � RVH

p
, (C 11)

where

RHV ¼ Nhah

(mH þ dH)
� (LV � mV)bH

mVaHH0

¼ ah

ah þ mh
� Nmam

mm
� fwaw

aw þ mw
� a f

a f þ m f

� bH(LV � mV)
mV(mV þ dV)FVaHH0

: (C 12)

Similarly,

RVH ¼ Nvsv

(mV þ dV)
� (LH � mH)bV

mHsVV0

¼ sv

sv þ hv
� sb

sb þ hb
� sa

sa þ ha
� ss

ss þ hs

� bV(LH � mH)
mH(mH þ dH)FHsVV0

: (C 13)
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Figure 11. A conceptual diagram of the four partial reproductive numbers that constitute the human onchocerciasis reproductive number. (Online version in colour.)
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Therefore, basic reproductive number R0 has four main
components which are: (i) the human-to-community partial
reproductive number (RHC), (ii) the community-to-vector
partial reproductive number (RCV), (iii) the blackfly-to-com-
munity partial reproductive number (RVC) and (iv) the
community-to-human partial reproductive number (RCH)
so that RHV ¼ RHC:RCV and RVH ¼ RVC:RCH. These partial
reproductive numbers in the transmission cycle of human
onchocerciasis are shown in a schematic diagram in figure 11.

Therefore, the basic reproductive number R0 in the
human-to-human or blackfly-to-blackfly for human oncho-
cerciasis transmission is made up of the following four
partial reproductive numbers.

(i) The human-to-community partial reproductive number
(RHC). This partial reproductive number is given by

RHC ¼ Nhah

(mH þ dH)
: (C 14)

This is the average amount of infectious reservoir con-
tributed to the community microfilariae load by each
infected human host during his or her entire period
of infectiousness. This quantity depends on the aver-
age number of microfilariae Nh produced by female
worms in each infected human, which is available
for ingestion by a blackfly during her uptake of
blood meals from an infected human during his or
her entire period of infectiousness and is a composite
parameter given by

Nh ¼ 1
ah þ mh

:
Nmam

mm
:

fwaw

aw þ mw
:

a f

a f þ m f
: (C 15)

In the expression for RHC, αh is the rate at which
microfilariae are shed/excreted into the dermis layer
of the skin. Therefore, Nhαh is the rate that describes
how much each infected human host contributes to
the community microfilariae load (the total infectious
reservoir of humans in the community) during his/
her entire period of infectiousness while 1/(μH + δH)
is the average microfilariae carriage time by each
infected human host.

(ii) The community-to-blackfly vector partial reproductive
number (RCV). This partial reproductive number is
given by

RCV ¼ (LV � mV)bH

mVaHH0
: (C 16)

It describes the average number of infected blackflies
arising from each infectious dose of microfilariae
ingested from the total infectious reservoir of
humans in the community. This partial reproductive
number depends on the effective supply rate of sus-
ceptible blackflies (ΛV− μV), the average life span of
each susceptible blackfly 1/μV, the rate of contact of
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the susceptible blackflies with the infectious reservoir
of humans βH, the average time it takes to eliminate
the infectious reservoir of humans in the community
1/αH and the susceptibility coefficient 1/H0 of blackfly
vectors to infection by the total human infectious
reservoir in the community.

(iii) The blackfly-to-community partial reproductive number
(RVC). This partial reproductive number is given by

RVC ¼ Nvsv

(mV þ dV)
: (C 17)

This is also the average amount of infectious reservoir
contributed to the community L3 larvae load (CLL) by
each infected blackfly vector during her entire period
of infectiousness. This quantity depends on the aver-
age number of L3 larvae produced in each infected
blackfly vector Nv, which is available for injection
into a human host by a blackfly during uptake of
blood meals from a human during her entire period
of infectiousness and is a composite parameter
which is also given by

Nv ¼ 1
sv þ hv

:
sb

sb þ hb
:

sa

sa þ ha
:

ss

ss þ hs
: (C 18)

In the expression for RVC, σv is the rate at which L3
larvae are excreted/shed into the saliva in the probos-
cis of the blackfly. Therefore, Nvσv is the rate that
describes how much an infected blackfly contributes
to the CLL (the total infectious reservoir of blackflies
in the community) during her entire period of infec-
tiousness while 1/(μV + δV) is the average L3 larvae
carriage time by each infected blackfly.

(iv) The community-to-human partial reproductive number
(RCH). This reproductive number is given by

RCH ¼ (LH � mH)bV

mHsVV0
: (C 19)

It describes the average number of infected humans
arising from each infectious dose of L3 larvae injected
from the total infectious reservoir of blackflies in the
community. This partial reproductive number
depends on the effective supply rate of susceptible
blackflies (ΛH− μH), the average life span of each sus-
ceptible humans 1/μH, the rate of contact of the
susceptible humans with the infectious reservoir of
blackflies βV, the average time it takes to eliminate
the infectious reservoir of blackflies in the community
1/σV and the susceptibility coefficient 1/V0 of human
hosts to infection by the CLL (the total blackfly infec-
tious reservoir in the community).

Another informative way of interpreting R0 is to consider it
as a product of two partial reproductive numbers which are
the human-to-blackfly partial reproductive number RHV

and the blackfly-to-human partial reproductive number
RVH so that

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"

Nhah

(mH þ dH)
(LV � mV)bH

mVaHH0

#"
Nvav

(mV þ dV)
� (LH � mH)bV

mHsVV0

#vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RHV � RVH

p
: (C 20)
In equation (C 20), the quantity RHV is interpreted as
follows. Consider a single newly infected human host enter-
ing a disease-free population of blackflies at equilibrium.
This individual is still present and infectious and the
expected number of blackflies infected by this human host
is approximately

RHV ¼ Nhah

(mH þ dH)
(LV � mV)bH

mVaHH0

¼ ah

ah þ mh
�Nmam

mm
� fwaw

aw þ mw
� a f

a f þ m f

� bH(LV � mV)
mV(mV þ dV)FVaHH0

: (C 21)

Therefore, the human-to-blackfly transmission coefficient
RHV is composed of between-host disease parameters and
within-human parameters. Similarly, in equation (C 20) the
quantity RVH is interpreted as follows. Consider a single
newly infected blackfly vector entering a disease-free popu-
lation of humans at equilibrium. This blackfly is still
present and infectious and the expected number of humans
infected by this blackfly is approximately

RVH ¼ Nvsv

(mV þ dV)
:
(LH �mH)bV

mHsVV0

¼ sv

svþhv
:

sb

sb þhb
:

sa

saþha
:

ss

ssþhs
:

bV(LH �mH)
mH(mH þ dH)FHsVV0

:

(C22)

From equation (C 22), we deduce that the blackfly-
to-human transmission coefficient RVH is also composed
of between-host disease parameters and within-blackfly
parameters.

(b) Feasible region of the equilibria of the model
All parameters and state variables for model system (3.3)
are assumed to be non-negative to be consistent with
human and animal populations. Further, it can be verified
that for model system (3.3), all solutions with non-negative
initial conditions remain bounded and non-negative.

Letting NH = SH + IH and adding equations (1) and (2) in
system (3.3) gives

dNH

dt
� LH � mHNH :

This implies that

lim
t!1 sup(NH(t)) � LH

mH
: (C 23)

Similarly, letting NV = SV + IV and adding equations (8)
and (9) in system (3.3) gives

dNV

dt
� LV � mVNV: (C 24)

This implies that

lim
t!1 sup(NV(t)) � LV

mV
: (C 25)

Using equations (C 23) and (C 25) similar expressions can
be derived for the remaining model variables. Hence,
all feasible solutions of system (3.3) are positive and
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eventually enter the invariant attracting region

V ¼ ((SH , IH , SV , IV, Pf , Pw, Pm, Ph, PH , Ps, Pa, Pb, Pv, PV):

0 � SH þ IH � M1,

0 � SV þ IV � M2, 0 � Pf � M3, 0 � Pw � M4,

0 � Pm � M5, 0 � Ph � M6, 0 � PH � M7,

0 � Ps � M8, 0 � Pa � M9, 0 � Pb � M10 0 � Pv � M11,

0 � PV � M12), (C 26)

where
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M1 ¼ LH

mH
,

M2 ¼ LV

mV
,

M3 ¼ 1
a f þ m f

:
bV[LH � mH]
fH[LH þ mH]

:
aHH0

h
R2

0 � 1
i

h
sVV0RVH þ aHH0R2

0

i ,
M4 ¼ 1

aw þ mw
:

a f

a f þ m f
:
bV[LH � mH]
fH[LH þ mH]

:
aHH0

h
R2

0 � 1
i

h
sVV0RVH þ aHH0R2

0

i ,
M5 ¼ 1

mm
:

fwaw

aw þ mw
:

a f

a f þ m f
:
bV[LH � mH]
fH[LH þ mH]

:
aHH0

h
R2

0 � 1
i

h
sVV0RVH þ aHH0R2

0

i ,
M6 ¼ 1

ah þ mh
:
Nmam

mm
:

fwaw

aw þ mw
:

a f

a f þ m f
:
bV[LH � mH]
fH[LH þ mH]

:
aHH0

h
R2

0 � 1
i

h
sVV0RVH þ aHH0R2

0

i ,
M7 ¼ ah

ah þ mh
:
Nmam

mm
:

fwaw

aw þ mw
:

a f

a f þ m f
:
bV[LH � mH]
fHmHaH

:
aHH0

h
R2

0 � 1
i

h
sVV0RVH þ aHH0R2

0

i ,
M8 ¼ 1

ss þ hs
:
bH[LV � mV]
fV[LV þ mV]

:
sVV0

h
R2

0 � 1
i

h
aHH0RHV þ sVV0R2

0

i ,
M9 ¼ 1

ha þ ha
:

ss

ss þ hs
:
bH[LV � mV]
fV[LV þ mV]

:
sVV0

h
R2

0 � 1
i

h
aHH0RHV þ sVV0R2

0

i ,
M10 ¼ 1

sb þ hb
:

sa

sa þ ha
:

ss

ss þ hs
:
bH[LV � mV]
fV[LV þ mV]

:
sVV0

h
R2

0 � 1
i

h
aHH0RHV þ sVV0R2

0

i ,
M11 ¼ 1

sv þ hv
:

sb

sb þ hb
:

sa

sa þ ha
:

ss

ss þ hs
:
bH[LV � mV]
fV[LV þ mV]

:
sVV0

h
R2

0 � 1
i

h
aHH0RHV þ sVV0R2

0

i ,
M12 ¼ sv

sv þ hv
:

sb

sb þ hb
:

sa

sa þ ha
:

ss

ss þ hs
:
bH[LV � mV]
fVmVsV

:
sVV0

h
R2

0 � 1
i

h
aHH0RHV þ sVV0R2

0

i ,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(C 27)
where

RVH ¼ NvsvbV[LH � mH]
fHmHsVV0

and RHV ¼ NhahbH[LV � mV]
fVmVaHH0

,

9>>>=>>>; (C 28)

for ΛH > μH, ΛV > μV. Thus, whenever ΛH > μH and ΛV > μV
then Ω is positively invariant and attracting and it is sufficient
to consider solutions of model system (3.3) in Ω. Existence,
uniqueness and continuation results for system (3.3) hold in
this region and all solutions starting in Ω remain there for
all t≥ 0. Hence, model system (3.3) is mathematically and epi-
demiologically well posed, and it is sufficient to consider the
dynamics of the flow generated by model system (3.3) in Ω.
We shall assume in all that follows (unless stated otherwise)
that ΛH > μH, ΛV > μV and R0 . 1.
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