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Phenological differences between host plants can promote temporal isolation
among host-associated populations of insects with life cycles tightly coupled
to plant phenology. Divergence in the timing of spring budbreak between
two sympatric sister oak species has been shown to promote temporal iso-
lation between host plants and their host-associated populations of a
cynipid gall wasp. Here, we examined the generality of this mechanism
by testing the hypothesis of cascading temporal isolation for five additional
gall-formers and three natural enemy species associated with these same oak
species. The timing of adult emergence from galls differed significantly
between host-associated populations for all nine species and parallels the
direction of the phenological differences between host plants. Differences
in emergence timing can reduce gene flow between host-associated popu-
lations by diminishing mating opportunities and/or reducing the fitness
of immigrants due to differences in the availability of ephemeral resources.
Our study suggests that cascading temporal isolation could be a powerful
‘biodiversity generator’ across multiple trophic levels in tightly coupled
plant–insect systems.
1. Introduction
Understanding the origins of biodiversity presents an enduring challenge for
biologists. Sequential speciation posits that speciation events within one lineage
can have cascading effects across an entire community, by promoting diver-
gence and speciation across multiple species [1–4]. Emerging from this
perspective, cascading reproductive isolation describes the process whereby trait
divergence that generates reproductive isolation (RI) between populations in
one species transcends trophic levels to generate population divergence
within interacting species [5]. The diversity of host-specific insect herbivores
with their close ties to host plants offers opportunities to test whether cascading
RI is a common mechanism promoting divergence [5–8].

Phenological difference between host plants is a key selective force that pro-
motes phenological differences and initial population divergence of host-
specific insects with life histories tied to host plants (e.g. Rhagoletis fruit flies
[9]; Eurosta gall flies [10] and Enchenopa treehoppers [11]; reviewed in [12,13]).
For example, Hood et al. [5] demonstrated that temporal RI between two sym-
patric sister species of live oaks, Quercus virginiana (Qv), and Q. geminata (Qg)
cascades as a reproductive barrier among populations of the host-specific,
gall-former, Belonocnema treatae. Divergence in the timing of budbreak, which
is linked to male flower production, generates temporal RI between the two
sister plant species [14]. Simultaneous temporal RI between B. treatae popu-
lations associated with each oak species is also generated as budbreak leads
to the formation of new leaves that the wasps require at an early developmental
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Figure 1. Phenological differences between host plants Q. virginiana (Qv) and Q. geminata (Qg). (a) Boxplot of the average flowering date by host illustrating the
median, 25th and 75th percentiles, and the 95% confidential intervals displayed. The dots outside of the boxes are outliers. (b) Cumulative frequency of budbreak of
Qv and Qg (mean % budbreak per tree ± s.e.). Panels modified from Hood et al. [5].
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stage (less than 72 h old) to induce gall formation [5,15]. Tem-
poral isolation reduces gene flow between host-associated
gall-former populations by decreasing mating opportunities
and lowering immigrant fitness in non-natal host plant
environments (i.e. immigrant inviability) due to a mismatch
in timing of ephemeral host resources [15]. Thus, budbreak
acts as a ‘multitrophic, multi-effect trait,’ whereby differences
in budbreak phenology generates RI between both the oak
species and their obligately dependent insect herbivores [5].

These sister oak species share a diverse community of
gall-formers and their associated insect natural enemies are
similarly dependent on plant phenology [16,17]. Thus, the
stage is set to test whether differences in host plant phenol-
ogy drive temporal isolation across multiple species and
trophic levels. To accomplish this, we monitor the emergence
phenology of five additional gall-former species and three
natural enemy species found on the two oaks [18–20].
2. Material and methods
(a) Study system
Gall-formers are specialist insect herbivores that induce three-
dimensional outgrowths of nutritive plant tissues (i.e. ‘galls’)
within which larvae feed and develop, and from which adults
emerge [21]. Many species within the major gall-forming lineage
Cynipidae (Hymenoptera) exhibit cyclical parthenogenesis,
wherein alternating sexual and asexual generations develop on
different plant tissues to complete a bivoltine life cycle [21–23].
Both generations require newly formed plant tissues as ovipos-
ition sites to successfully induce galls. Oviposition into these
tissues at the wrong time, often by only a week or two, can pre-
clude gall formation [15]. Thus, the timing of tissue availability is
critical for gall formation and insect survival [15,22].

The gall-former community of Qv and Qg includes five
common cynipid species: Andricus quercuslanigera, A. quercusfoliatus,
B. treatae, Callirhytis quercusbatatoides and Disholcaspis quercusvirens;
and the gall-forming midge, Arnoldiola atra (Diptera: Cecidomyii-
dae) [18]. The geographical ranges of Qv and Qg overlap in the
southeastern USA, but the production of new flowers and
leaves takes place an average of three weeks earlier in the spring
for Qv (figure 1). Cavender-Bares & Pahlich [14] suggested that
this phenological difference is a response to selection against
hybridization. The development of these six gall-formers depends
on the new spring growth of plant tissues [19,20,24]. Sexual gen-
eration B. treatae and A. atra emerge and oviposit into the new
leaves and shoots, respectively [24,25]. Similarly, asexual gener-
ation A. quercuslanigera and D. quercusvirens oviposit into
developing buds inducing galls that harbour the sexual gener-
ations on catkins and manipulated buds, respectively [19,20].
Lastly, while the sexual generations of A. quercusfoliatus and C.
quercusbatatoides are unknown, asexuals emerge from rapidly
developing bud and stem galls, respectively. The reproductive
life stage of gall-formers is typically brief, with adults surviving
2–7 days in ideal laboratory conditions, and oviposition begin-
ning immediately upon emergence [5,20,22,24]. Therefore,
differences in the timing of ephemeral resources between alterna-
tive host plant species likely results in divergent selection on the
timing of emergence and oviposition [5,15,21,22].

Gall-formers are attacked by a diverse community of natural
enemies, including inquilines that compete for plant resources
within galls and often negatively impact gall-formers [10,20]. In
this study, we focused on gall-formers and their inquilines because
both are directly dependent on host plant resources, the timing of
which differs between host plants [26]. The dominant inquilines
of galls on live oaks are Synergus spp. (Cynipidae: Synerginae)
[17,27]. Inspection of the COI and cytb regions in the mtDNA
genome (approx. 1000 bp total) showed that Synergus emerging
from galls induced by A. quercuslanigera, C. quercusbatatoides and
D. quercusvirens on Qv and Qg represent distinct evolutionary
lineages based on sequence divergence, which ranged from 11%
to 17% between groups (electronic supplementary material, figure
S1). Therefore, we also tested whether phenological differences
between host plant species cascade to phenological differences in
emergence timing within the Synergus natural enemy community.
(b) Sample collection
From November to December 2014–2018, we collected and hus-
banded galls potentially housing the six gall-formers and the
three Synergus species from Qv and Qg from 72 sites in Florida
and Alabama where the geographical ranges of the host plants
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Figure 2. (a–i) The timing of adult emergence (standardized as z-scores) for six gall-formers and three Synergus associated with three gall-formers (Aql: A. quer-
cuslanigera; Cqb: C. quercusbatatoides and Dqv: D. quercusvirens). The values above each confidence interval indicate sample sizes per host plant. Least squared
means of emergence time were displayed with 95% confidence intervals, calculated from linear mixed models with host plants and sampling years as fixed factors.
All p-values from one-tailed hypothesis testing.
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overlap. Galls of each species were placed in separate 1 l glass
jars that were covered by filter paper and misted twice weekly.
In 2014–2016 and 2018, galls were reared under ambient environ-
mental conditions at ≈23°C in the laboratory. In 2017, galls were
maintained outdoors under natural conditions in Houston, TX,
USA. Each year, the numbers of emergent individuals were
monitored once every 2 days through mid-May. In total, we
identified 10 249 gall-formers and 706 Synergus that emerged
from galls induced by A. quercuslanigera; C. quercusbatatoides
and D. quercusvirens (see electronic supplementary material).
(c) Statistical analysis
To test the hypothesis that gall-formers and their natural enemies
emerge earlier on Qv than those on Qg, linear mixed model
analysis was conducted in each individual species using the
nlme package in R v. 3.5.2, with standardized z-scores of trans-
formed emergence times (Julian dates) in each year as the
response variable, host plant and collection year as fixed effects,
and collection site as a random effect [28]. We also analysed
models with latitude as a fixed effect, but results were similar
(electronic supplementary material, table S1). We report least
squared means of z-scores, (calculated using emmeans package
in R, [29]) to illustrate differences in emergence between Qv-
and Qg-associated populations across years for each species.
We also report differences in average (±s.e.) emergence time in
days to show biologically relevant values by back-transforming
the least square mean z-score from the linear mixed model into
the average emergence date for each host-associated population
each year. Finally, to test the generality of cascading temporal iso-
lation in this system, we compliment individual analyses with a
standard sign test to compare the least square means of emergence
date from our linear mixed model across all nine species.
(d) Temporal isolation
Temporal isolation between host-associated populations for all
nine species was estimated as the percent of individuals for
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each host-associated population that overlaps temporally based
on emergence date and average adult longevity [19,20,30]. Esti-
mated longevity of B. treatae (3 days) and D. quercuesvirens
(7 days) were adopted from Hood et al. [5] and Bird et al. [20].
In the remaining seven species, we used the average adult long-
evity of B. treatae and D. quercusvirens (i.e. 5 days) to calculate
temporal overlap (5 days) was used to calculate temporal over-
lap. We quantified temporal isolation (TI) between Qv- and
Qg-associated populations following Feder et al. [30]:

TI ¼ 1�
P

xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2i y

2
i

q :

Here, xi and yi are the percentage of wasps from populations
x and y alive on day i based on emergence time and probabilities
of survival to day i based on average longevity estimates.

Temporal isolation estimates RI and ecological isolation
for sexual and asexual generations emerging in the spring,
respectively.
20190572
3. Results
Across all nine species, we observed consistent differences in
emergence timing, with Qv-associated populations emerging
significantly earlier, on average, than Qg-associated popu-
lations (figure 2 and table 1; sign test: z = 3.0, p = 0.0027).
This suggests that a community-wide difference of gall-
formers and natural enemies is associated with the observed
differences in host plant phenology (figure 1). However, there
is significant variation in the difference in emergence times
between hosts across gall-former species: A. atra = 16.5 ± 5.5
days, A. quercusfoliatus = 7.0 ± 0.8 days, A. quercuslanigera =
18.1 ± 4.9, B. treatae = 9.3 days, C. quercusbatatoides = 4.3 days
and D. quercusvirens = 6.9 ± 1.3 days, Synergus from
A. quercuslanigera = 10.1 ± 2.3 days, Synergus from C. quercusba-
tatoides = 5.2 ± 0.6 days and Synergus from D. quercusvirens =
72 ± 27 days.

Estimated temporal isolation between host-associated
populations of each of the nine species across years ranges
from a low of 0.31 in C. quercusbatatoides, to a high of 0.94
in Synergus attacking D. quercusvirens (table 1).
4. Discussion
Cascading RI could be an important evolutionary mechanism
to promote divergence and RI between populations within
species across adjacent trophic levels [4]. Our results demon-
strate that herbivore and natural enemy populations of each
species on Qv emerged earlier than populations on Qg, con-
sistent with the phenological differences in plant tissue
growth between the live oak species. Even though the overall
pattern is consistent across the community, there is remark-
able variation in the phenological differences among
species, from just 4 days in C. quercusbatatoides to 72 days
for the Synergus sp. attacking D. quercusvirens. This suggests
that there are likely many important natural history details
underlying the degree to which temporal host plant RI
cascades.

Our data suggest that the observed phenological differ-
ences among host-associated populations are a result of
individuals specializing on each host plant rather than a gen-
eralist bet-hedging strategy, as a generalist strategy should
require either that individuals emerge over a broad length
of time or live long enough to oviposit on either host
plants. Both assumptions contradict our observations in this
and previous studies [5]. The emergence time differences
between populations of sexual generations in the gall-formers
A. atra and B. treatae, and the three Synergus species directly
translates into temporal RI. Temporal RI across these sexual
lineages ranges from 0.42 to 0.94, which represents a signifi-
cant direct reduction in the opportunity for gene flow.
Differences in emergence time between populations in the
four asexual lineages may also promote RI indirectly since
galling insects require developing plant tissues with a
narrow time window to induce and form galls (e.g. [13]).
Thus, the time mismatch between the emergent gall-formers
and the ephemeral plant tissues from an alternative host
plant could translate into reduced immigrant fitness [13].
There are 10–30 different natural enemy species that attack
the gall-former in this system, many of which are host-
specific [5,9,10]. Future research will explore the extent to
which temporal isolation continues to cascade across these
natural enemy species and how phenological divergence con-
tributes to the total RI between populations throughout this
oak-gall wasp community.

How common is cascading temporal isolation in nature?
Our study shows that this phenomenon is common among
this guild of host-specific herbivores, where the difference
in ephemeral tissue resources presents strong selection on
the phenology of herbivores, and eventually cascades to the
third trophic level. Cascading temporal isolation occurs in
two key steps: (i) temporal isolation evolves in one focal (key-
stone) species and (ii) temporal isolation extends to other
species at different trophic levels that rely on the traits of
the focal species. Accumulating case studies suggest that
temporal isolation initiates divergence and promotes specia-
tion in a diverse range of taxa including plants, insects and
coral reefs, thus building a case that it is a widespread
phenomenon [31–33]. The second step of cascading tem-
poral isolation requires temporal isolation in one species
to exert strong selection on timing of other interacting
species in the community. This situation is likely in systems
with highly specialized interactions, such as parasitism or
mutualism, when one of the interacting species is closely
tied with the focal organism’s reproduction, or when the
development of the resources the interacting species
depends on is strongly linked with the focal organism’s
reproduction time. Since specialists compose a majority of
the biodiversity on Earth [34], this highlights the possible
generality of cascading temporal isolation in promoting
species diversity.
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