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Sampling reservoir hosts over time and space is critical to detect epizootics,
predict spillover and design interventions. However, because sampling is
logistically difficult and expensive, researchers rarely perform spatio-
temporal sampling of many reservoir hosts. Bats are reservoirs of many
virulent zoonotic pathogens such as filoviruses and henipaviruses, yet the
highly mobile nature of these animals has limited optimal sampling of bat
populations. To quantify the frequency of temporal sampling and to charac-
terize the geographical scope of bat virus research, we here collated data on
filovirus and henipavirus prevalence and seroprevalence in wild bats. We
used a phylogenetically controlled meta-analysis to next assess temporal
and spatial variation in bat virus detection estimates. Our analysis shows
that only one in four bat virus studies report data longitudinally, that
sampling efforts cluster geographically (e.g. filovirus data are available
across much of Africa and Asia but are absent from Latin America and Ocea-
nia), and that sampling designs and reporting practices may affect some viral
detection estimates (e.g. filovirus seroprevalence). Within the limited
number of longitudinal bat virus studies, we observed high heterogeneity
in viral detection estimates that in turn reflected both spatial and temporal
variation. This suggests that spatio-temporal sampling designs are important
to understand how zoonotic viruses are maintained and spread within and
across wild bat populations, which in turn could help predict and preempt
risks of zoonotic viral spillover.
1. Introduction
Risks of pathogen spillover vary across time and space [1,2], in part because
pathogen shedding from reservoir hosts is a dynamic spatio-temporal processes
[3,4]. Metapopulation dynamics and other spatial processes characterize many
reservoir hosts [5], where populations connectivity can determine the spatio-
temporal distribution of a pathogen [6,7] and degree of spatial synchrony
structuring infection dynamics [8]. Temporal pulses of shedding driven by
seasonality in birth and climate are also common [9,10]. Understanding how
infection prevalence in reservoir hosts varies over space and time is thus a critical
need for predicting and managing zoonotic disease risks.

However, surveillance strategies often do not sample this underlying
spatio-temporal process, as spatially and temporally explicit designs present
logistical challenges when studying mobile and gregarious species [3,11,12].
For hosts such as birds and bats, surveillance is often opportunistic or relies
on convenience sampling [13]. These non-probabilistic and often single
sampling events cannot characterize spatial and temporal fluctuations in
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infection, can over- or under-represent times or locations of
high prevalence, and can result in non-randomly missing
data [3,14]. These challenges cannot be fixed with statistical
modelling and can bias estimates of prevalence and epide-
miological parameters such as the basic reproductive
number [13,15].

Given a fixed cost, difficult decisions must be made about
how to allocate sampling efforts. Sampling over space facili-
tates detecting geographical clusters of disease and predictive
mapping [16,17], while sampling over time can identify periods
of intensive pathogen shedding and enable inference about
dominant transmission routes [18,19]. Researchers often treat
this as a trade-off between sampling over either time or
space, rather than allocating effort to both [20]. Implicit here
is that the temporal component is constant over space or that
the spatial component is constant over time, and such sampling
designs result in no data to assess this assumption.

We here quantify the temporal and spatial data limit-
ations for two taxa of high-profile viruses of bats: the
family Filoviridae and genus Henipavirus. Bats have been
widely studied as reservoirs for zoonotic pathogens and
host more viruses with zoonotic potential than other mam-
mals [21,22]. Some henipaviruses and filoviruses (e.g.
Marburg virus) can be shed from bats into the environment
[23,24] and can cause fatal disease in humans by environ-
mental exposure or from contact with intermediate hosts
such as horses, wild primates or pigs [25–30]. Many filo-
and henipaviruses show variable dynamics in space and
time, including shedding pulses from bats [6,25,31–33],
which implies spatio-temporal sampling are likely necessary
to capture viral dynamics in bats. Yet while past efforts have
focused on bat virus discovery [34], determinants of reservoir
status [35] and experimental mechanisms of viral trans-
mission [36], spatio-temporal studies of the bat–virus
dynamics are rare [37]. This limits understanding how
viruses are maintained and spread within and across bat
populations and impairs improving future sampling designs
and ecological interventions [20,38].

We here systematically collated data on filo- and henipavirus
prevalence and seroprevalence in wild bats to (i) quantify the
frequency of temporal studies and (ii) assess the geographical
scope of current research. We used phylogenetic meta-analysis
to (iii) quantify how sampling designs and reporting practices
may influence viral detection estimates. Single snapshots
could miss pulses of viral shedding from bats, whereas pooling
data over time could under- or overestimate viral presence
[18,20]. Lastly, we (iv) characterized the degree of temporal
and spatial variation in bat virus detection estimates.
2. Methods
To systematically identify studies quantifying the proportion of
wild bats positive for filoviruses and henipaviruses using PCR
or serology, we searched Web of Science, CAB Abstracts and
PubMed (see electronic supplementary material, figure S1). Our
dataset included 1177 records from 68 studies. Viruses included
not only Hendra, Nipah, Ebola and Marburg virus but also
Lloviu and Reston virus. We grouped viruses by taxa given
our sample sizes and known issues of serological cross-reactivity
[39,40].

From each study, we defined sampling subunits: a tem-
porally defined sampling event of one bat species in one
location per viral detection estimate. Each subunit is the lowest
spatial, temporal and phylogenetic scale (of bats and their
viruses) reported. We classified subunits into three sampling
designs and reporting practices: one sampling event, multiple
events or pooled events over time. Records of a single prevalence
or seroprevalence estimate from a population sampled from a
period less than or equal to one month were classified as single
sampling events, whereas records of a population over multiple
monthly time points were classified as spanning multiple events
(i.e. a longitudinal study). For example, every monthly preva-
lence estimate per population of Pteropus lylei in Thailand
would represent a unique subunit and be classified as longitudi-
nal [41]. Records of a period longer than one month were
classified as pooled events, where researchers may have sampled
a population across more than one time point but reported data
as a single viral detection estimate. A schematic of these categor-
izations is provided in figure 1a. One month was selected
because this time frame was the lowest common temporal unit
and because bat shedding of these viruses can occur within a
month [36,42]. These data were reported for most records (1122/
1177 subunits; three publications did not report these data and
three additional publications did not always report such data for
all records). For each subunit, we also recorded the bat species,
virus taxon, coarse detection method (i.e. PCR or serology),
number of bats sampled, proportion of bats positive, sampling
time points, sampling location and country (recoded to the
United Nations geoscheme for our descriptive analyses).

We quantified the proportion of studies using each sampling
and reporting design, both across all data and stratified by virus
taxon. To assess how the frequency of longitudinal studies (i.e.
those with repeated sampling) has changed over time, we fit a
generalized additive model with the mgcv package in R and a
smooth term for publication year [43]. We also calculated the
duration of repeat sampling for these longitudinal studies. For
studies that pooled data over time, we quantified days rep-
resented per subunit. To describe geographical biases in bat
virus studies, we assessed sampling gaps according to the
region (United Nations geoscheme). We used a χ2 test to assess
if sampling designs and reporting practices were differently dis-
tributed across regions.

To assess the contribution of sampling designs and reporting
practices to viral detection estimates and to quantify the degree
of spatial and temporal variation in bat–virus interactions,
we used the metafor package to calculate logit-transformed
proportions and sampling variances and to fit hierarchical
meta-analysis models [44,45]. To account for phylogenetic
dependence, we included bat species as a random effect [46],
for which the covariance structure used the phylogenetic corre-
lation matrix; we obtained our phylogeny from the Open Tree
of Life with the rotl and ape packages [47,48]. We excluded sub-
units that pooled data across or within bat genera (n = 102). As a
small number of subunits (n = 14) pooled data across specified
species in a genus, we randomly selected one species to retain
these records. Our final dataset included 1075 subunits from 63
studies and 219 bat species (electronic supplementary material,
figure S2). Our models also included subunit nested within the
study as a random effect and weighting by sampling variances.
To first assess heterogeneity among all viral detection estimates,
we fit a random-effects model (REM; intercept only) and then
stratified this analysis per viral taxon and detection method.
We used restricted maximum likelihood to obtain unbiased esti-
mates of the variance components, from which we derived I2 to
quantify the contribution of true heterogeneity to the total var-
iance in viral detection estimates [49]. We used these estimates
to partition variance attributed to each random effect; in the
case of bat species, we derived phylogenetic heritability (H2) as
a measure of phylogenetic signal [46]. We used Cochran’s Q to
test if such heterogeneity was greater than expected by sampling
error alone [50].
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Figure 1. Top: conceptual schematic of how different sampling designs and reporting practices (coloured points and lines) capture the underlying temporal
dynamics of infection (black line), followed by observed proportions for studies of bat filoviruses and henipaviruses (grey shows the proportion of studies not
reporting these data). Bottom: countries sampled for bat filoviruses and henipaviruses and where wild bats have been found positive through PCR or serology.
(Online version in colour.)
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To next test how sampling designs and reporting practices
may influence viral detection estimates (n = 1020), we fit a
mixed-effects model (MEM) with the same random effects and
an interaction between sampling design and reporting practices,
detection method and virus taxon. We tested the significance of
moderators using the Q test [44] and derived a pseudo-R2 as the
proportional reduction in the summed variance components
compared with those of an REM [51].

To test if viral detection estimates showed spatio-temporal
variation, we fit models with the same random effects to our
data subset reporting multiple events (n = 273). We fit a REM to
quantify I2 for longitudinal studies. We then fit MEMs with
location and month as univariate moderators to test if viral
detection estimates varied across space and time. Because this
subset of the data included many unique locations (n = 28) and
months (n = 12), we did not use interaction terms and instead fit
an additional set of MEMs to each viral taxon–detection
method strata.

3. Results
Only 26% of bat virus studies reported data longitudinally
(10 filo- and nine henipavirus studies; figure 1). However, the
frequency of such studies has weakly increased over time
(electronic supplementary material, figure S3, x21 ¼ 2:75, p =
0.1). Eleven studies reported sampling populations two to
three times while 12 reported sampling populations over four
times. The duration of longitudinal studies ranged from
150 days to over 10 years, on average spanning 2.5 years of
repeat sampling (electronic supplementary material, figure S4).
Bycontrast, half of our studies (n= 35) instead reportedestimates
across multiple time points as pooled proportions, which on
average represented 643 days of temporally aggregated data
(s.d. = 492; electronic supplementary material, figure S5).

Bat sampling showed geographical biases (figure 1 and
table 1). Filovirus studies were conducted across much of
Africa and Asia but not in Latin America and Oceania.
PCR and serology have been used in the same region in
most areas, but only one or the other have been used in
Europe, Eastern and Middle Africa, and Eastern Asia for
henipaviruses (table 1). Geography was also associated
with sampling design and reporting (χ2 = 365, p = 0.001).
Longitudinal data were only reported from Central, Eastern,
Middle and Southern Africa for filoviruses and from South-
eastern Asia, Eastern Africa and Oceania for henipaviruses
(table 1).



Table 1. Summary of the temporal and spatial limitations for bat filovirus and henipavirus prevalence and seroprevalence data. Some studies had multiple
diagnostic methods, sampling designs and reporting methods. Diagnostic mismatch refers to geographical regions (United Nations geoscheme) where either PCR
or serology have been used (but not together).

longitudinal virus
studies

geographical sampling
gaps diagnostic mismatch

regions with longitudinal
data

filoviruses PCR 5/20 Latin America, Oceania Central Africa, Eastern Africa

serology 7/25 Central Africa, Eastern Africa,

Middle Africa, Southern Africa

henipaviruses PCR 4/13 Eastern Africa, Southern

Africa, Eastern Asia

Europe, Eastern Africa,

Middle Africa, Eastern

Asia

Southeastern Asia, Oceania

serology 5/27 Middle Africa, Southern

Africa, Europe

Southeastern Asia, Oceania,

Eastern Africa
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We observed significant heterogeneity across viral detec-
tion estimates (I2 = 0.90, Q1074 = 7115, p < 0.001). Bat species
and study accounted for most variation (I2species ¼ 0:36,
I2study ¼ 0:35, H2 = 0.40; electronic supplementary material,
table S1). We also found significant heterogeneity within
each viral taxon–detection strata, although I2 and H2 values
varied across these subsets (electronic supplementary
material, table S1). Viral detection estimates for henipaviruses
had much stronger phylogenetic signal than filoviruses.

Our MEM showed that viral detection estimates varied
with detection method and virus taxa (Q1 = 7.75, p < 0.01; ser-
oprevalence was higher than prevalence, especially for
henipaviruses) and that associations with sampling design
and reporting weakly depended upon both virus taxa and
detection method (three-way interaction: Q2 = 5.95, p = 0.05,
R2 = 0.02; electronic supplementary material, table S2). A
post hoc analysis with MEMs fit to each stratum showed
sampling design and reporting were associated primarily
with filovirus seroprevalence (Q2 = 10.84, p = 0.01, R2 = 0.11;
figure 2), with longitudinal studies showing higher pro-
portions of positive bats. Sampling design and reporting
had no effects on henipavirus seroprevalence and weak
effects on henipavirus prevalence (electronic supplementary
material, table S3).

We also detected high variation in viral detection esti-
mates across longitudinal studies (Q272 = 2866, p < 0.0001,
I2 = 0.94; figure 2). Study contributed more to residual var-
iance than phylogeny (I2species ¼ 0:27, I2study ¼ 0:54,
I2subunit ¼ 0:14). Across these data, location did not predict
viral detection estimates (Q27 = 17.67, p = 0.91). Yet MEMs
fit to each stratum showed high spatial heterogeneity for all
data strata except filovirus prevalence, with location explain-
ing up to 76% of the variation in viral detection estimates
(electronic supplementary material, table S4). Month also
had little predictive power across all longitudinal data
(Q11 = 6.95, p = 0.80), but separate MEMs revealed that
time explained up to 37% of the variation in filovirus
seroprevalence and henipavirus prevalence (electronic sup-
plementary material, table S5).

4. Discussion
Our study provides a systematic synthesis of prevalence and
seroprevalence for bat filoviruses and henipaviruses that can
guide future sampling. Only one in four studies reported
longitudinal data, although the use of such approaches is
increasing. Half of the studies instead pooled data over
time (and space). Geographical limitations were also evident,
especially for where longitudinal studies have been con-
ducted. This was especially evident for filoviruses; although
the absence of studies in Latin America and Oceania may
reflect the lack of reported human cases, bat reservoirs are
predicted to occur in both regions [35]. Many studies also
used either PCR or serology, although using both may
improve statistical inference about how zoonotic pathogens
persist in hosts [18].

We found generally weak evidence that variation in
sampling design and reporting affected viral detection esti-
mates, although filovirus seroprevalence tended to be
greatest from longitudinal studies. Serological surveys of
Marburg and Ebola virus have found strong temporal
dynamics that may reflect seasonality in bat reproduction
or food availability [31,53,54]. Detection estimates could be
higher with repeated sampling, as such studies are more
likely to detect shedding pulses and pooling of data could
increase zeros in the numerator (underestimating seropreva-
lence). The lack of a similar pattern for filovirus PCR data
could result from the low prevalence and be biased by zero
inflation. However, our low R2, alongside high contributions
of bat phylogeny and study random effects, suggests other
aspects of bat ecology (e.g. seasonal birth [31,55]) or study
idiosyncrasies (e.g. assay type, lethal versus live sampling,
serological cut-offs [39,40]) likely play more critical roles in
shaping viral detection estimates. The high H2 for henipa-
viruses in particular also suggests that cladistic or trait-based
analyses of viral shedding could be useful for guiding surveil-
lance [35,56]. However, given at least some potential for
sampling design and reporting practices to affect viral detec-
tion estimates, we encourage researchers to publish data at
the lowest spatial, temporal and phylogenetic scale associated
with sampling and to provide data at such scales to facilitate
these future analyses.

Lastly, our analysis of longitudinal studies found signifi-
cant spatial and temporal variation in some bat virus data.
This implies spatio-temporal sampling is likely important to
make inference about bat virus spillover. Although sampling
over space and time is challenging, especially for highly
mobile animals like bats, sampling can be informed by
spatio-temporal variation in prevalence and seroprevalence
and analyses of spatio-temporal autocorrelation [20,57].
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Greater variation over space can require more fine-scale
spatial sampling, and greater variation over time can require
more fine-scale temporal sampling. Spatio-temporal designs,
such as stratified random sampling or rotating panels, can
help capture spatial and temporal variation in virus shedding
while also addressing some logistical challenges [13,58,59].
The increased use of such approaches, especially in the
understudied regions identified from our analysis, will help
improve understanding bat virus dynamics and how spil-
lover risk varies over time and space.
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