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A growing body of research indicates that cities can support diverse bee
communities. However, urbanization may disproportionately benefit exotic
bees, potentially to the detriment of native species. We examined the influ-
ence of urbanization on exotic and native bees using two datasets from
Michigan, USA. We found that urbanization positively influenced exotic—
but not native—bee abundance and richness, and that this association
could not be explained by proximity to international ports of entry, preva-
lence of exotic flora or urban warming. We found a negative relationship
between native and exotic bee abundance at sites with high total bee
abundance, suggesting that exotic bees may negatively affect native bee
populations. These effects were not driven by the numerically dominant
exotic honeybee, but rather by other exotic bees. Our findings complicate
the emerging paradigm of cities as key sites for pollinator conservation.
1. Introduction
Exotic species introductions have accelerated in recent decades alongside
increases in international commerce [1–3]. Exotic species can cause biodiversity
loss [4,5], biotic homogenization [6] and changes to ecosystem function [4].
Among the most widely established exotic species is the European honeybee—
Apis mellifera Linn.—which has been introduced worldwide for pollination and
honey production [7,8]. Other bee species have also been introduced beyond
their native ranges, both purposefully and accidentally [9,10]. While exotic bees
can provide important pollination services, they may also compete with native
species for resources or spread pathogens to native species [6,10–13]. This is con-
cerning given that native bee populations are declining in some areas [14–16].
To date, studies of the effects of exotic bees on native bees have focused primarily
on eusocial exotics, and less so on solitary exotics (but see [10]).

Little is known about the ecological determinants of exotic bee colonization
and spread. However, there are several ways urbanization could facilitate exotic
bee establishment. First, exotic bee introductions often occur accidentally via
international commerce [10]. As trading nodes with international ports of entry
(IPOE), cities may be a frequent introduction point for exotic bees, thus increasing
establishment via high propagule pressure [17]. Second, most exotic bees are
cavity-nesting [9], presumably because this nesting strategy facilitates long-
distance transport and introduction via the movement of occupied nest substrate
[10].Multiple studies have found increased prevalence of cavity-nesting beeswith
urbanization [18–20], likely because the built environment provides suitable nest
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sites for these species [18]. Thus, exotic bees may thrive in
urban areas due to their nesting behaviour. Third, urban
warming [21] may favour a suite of bee species different from
that present in less urbanized areas [22]. This could allow for
increased dominance of exotic species whose thermal tolerance
better matches warmer urban conditions (e.g. [23]). Finally,
exotic bees often show foraging preference for exotic flowering
plants [11], and cities can be richer in exotic plants than their
surroundings [24–26]. However, the abundance of managed
species in cities, such as honeybees, is likely more related to
management intensity, rather than preferred resource avail-
ability. Nonetheless, cities might support non-honeybee
exotics via increased abundance of preferred floral resources.

Despite evidence that cities support exotic bees [27,28],
limited research has shown that urbanization positively
influences exotic bee populations (but see [29]), or explored
the underlying drivers of this association. Recently, several
authors have suggested that cities may be important sites
for bee conservation [30–32]. Given this emerging paradigm,
and the fact that cities are predicted to continue expanding
worldwide [33], we urgently need to understand how urban-
ization influences the establishment and spread of exotic
bees, and associated impacts on native bees.

In this study, we address the following questions:

(1) Are exotic bee abundance and richness positively associ-
ated with increased urbanization?

(2) Is the relationship between exotic bees and urbanization
mediated by (i) proximity to registered IPOE, (ii) preva-
lence of exotic plants, (iii) urban warming and/or
(iv) nesting strategy?

(3) Do different exotic bee species demonstrate similar
responses to urbanization?

(4) Is there evidence for negative effects of exotic bees on
native bees?

2. Material and methods
Ourdatasetwas compiled from two field studies conductedwithin
southeast Michigan, USA [34,35]. Bees were sampled at 41 farms
and community gardens, with 26 sites sampled in 2014 and 15 in
2017. Monthly from June to August, we sampled bees using
bowl traps and netting and conducted floral surveys. Data loggers
at each site collected hourly temperature data. For details of survey
methods, see electronic supplementary material.

We assessedurbanization at each site as the proportionof devel-
oped landwithin each of four concentric buffers, using theNational
Land Cover 2011 database [36] following the approach described
in [37] (see electronic supplementary material, table S1). Among
the four radii, 500 m was the most predictive for exotic bee abun-
dance and richness and was used in all subsequent analyses. We
also measured the distance from each site to the nearest registered
IPOE (electronic supplementary material).

Statistical analyses were conducted in R v. 3.5.1 [38]. Because
honeybees occur mainly in managed colonies in the study region,
we considered them separately from other exotic bees in all
analyses. Since honeybees were treated differently in netting pro-
tocols between studies (electronic supplementary material), we
used only trap data in analyses that included honeybees.

We tested the effect of urbanization on per-site exotic and
native bee richness and abundance using generalized linear
models (GLMs) fit with a Poisson distribution (negative binomial
if data were overdispersed) and log-link function. Study year and
proximity to IPOE were included as predictors in these models.
We evaluated the relationship between urbanization and the
abundance of four widespread non-honeybee exotics (species
found at ≥10 sites) using the same framework. We were inter-
ested in whether urbanization disproportionately favoured
exotics, so we evaluated proportional abundance and richness
of exotic bees and exotic flowering plants. To do so, we included
total abundance or richness as an offset in the model. We evalu-
ated the effects of additional putative drivers using likelihood
ratio tests and AICc.

To assess the effect of exotic floral resources on the bee fauna,
we considered each monthly observation separately and used
generalized linear mixed models (GLMMs) with site as a
random effect and proportional richness or cover of exotic
plants as a fixed effect. Total floral richness, urbanization and
year were also included as predictors in these models (electronic
supplementary material).

To test whether nesting strategy could account for the corre-
lation between exotic bees and urbanization, we assessed the
responses of native cavity-nesting and non-cavity-nesting bee
abundance and richness to urbanization using GLMs.

We evaluated the effect of exotic bee abundance on native
bee abundance using GLMMs with native bee abundance as
the response variable; exotic bee abundance, urbanization and
floral richness as fixed effects; and site as a random effect. Effects
of exotic bees on natives are likely to be density-dependent [39],
with stronger negative effects when total population density is
higher [40]. Thus, we assessed the relationship between native
and exotic bee abundance separately at sites with high versus
low bee abundance (electronic supplementary material). To test
the robustness of our findings, we considered a range of cut-
offs for separating high-abundance from low-abundance sites
[25–50 bees/sampling period for comparing non-honeybee
exotics and natives; 10–40 bees/sampling period for comparing
honeybees and natives (smaller numbers because only trap
data are included; electronic supplementary material)], and, for
each cut-off, fit models for both high- and low-abundance sites.
3. Results
We found 14 exotic bee species, comprising 20% of all bee
species collected [41]. The percentage of exotic bees collec-
ted per site ranged from 0 to 40% (mean ± s.d. = 16 ± 14%;
figure 1), while exotic bee species richness ranged from 0 to 9
(mean ± s.d. = 3 ± 2) per site (electronic supplementary
material, table S2). The European honeybee—the only actively
managed bee species in the study area—was the most abun-
dant exotic species, comprising 58% of all exotics, and
occurring at 18 of 41 sites (30 of 41 when including netting
data). Non-honeybee exotics belonged to four families: Colleti-
dae (two species, 50% of individuals), Megachilidae (eight
species, 34%), Andrenidae (one species, 11%) and Halictidae
(two species, 5%) (electronic supplementary material, figures
S1 and S2). Proportional abundance of exotic bees was higher
in 2017 (29%) than 2014 (14%).

The absolute and proportional abundance and richness of
exotic bees significantly increased with urbanization, while
native and total bee abundance and richness were unaffected
(figure 2a and table 1). Abundance of each widespread wild
exotic showed a qualitatively similar response to urbanization,
indicating that the overall relationship between urbanization
and exotic bee abundance was not driven by a single species
(table 1; electronic supplementary material, figure S3).
However, honeybees showed no response to urbanization
(figure 2a).

Cavity-nesting bees comprised 6% of native bees and 57%
of non-honeybee exotics. More urbanized sites supported
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Figure 1. Map of study sites with proportional abundance of native and exotic bees. Greyscale represents degree of urbanization. Geographical location of nearby
sites is offset to prevent overlap of pie charts. (Online version in colour.)
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more exotic and native cavity-nesting bees, although this
relationship was much stronger for exotics. While exotic
cavity-nester richness was positively related to urbanization,
native cavity-nester richness was not (table 1).

Urbanization was positively related to proximity to the
nearest IPOE (LM: R2 = 0.53, F1,39 = 45.8, p < 0.001). When both
proximity to IPOE and urbanization were included as model
predictors, only urbanization had a significant effect on exotic
bee richness and abundance and including both measures
increased AICc. However, proportional non-honeybee exotic
abundance was negatively related to proximity to IPOE
(table 1). Similarly, urbanization and minimum temperature
were positively related (LM: R2 = 0.32, F1,39 = 17.9, p < 0.001),
but minimum temperature had no independent effect on
exotic bee richness or abundance (electronic supplementary
material, table S3).

The positive relationships between urbanization and
exotic bee richness and abundance were not mediated by
exotic plants. Neither raw nor proportional richness or
cover of exotic plants were correlated with urbanization (elec-
tronic supplementary material, table S5). Moreover, while
exotic bee abundance and richness were positively related
to total floral resource availability, they were not influenced
by proportional richness or cover of exotic plants (table 1).

Exotic bee abundancehadnoeffect onnative bee abundance
(β = 0.01 ± 0.02, p = 0.39). However, at high-abundance sites,
there was a significant negative relationship between non-
honeybee exotic and native bee abundance not seen at
low-abundance sites (figure 2b; electronic supplementary
material, table S5). The relationship between honeybee abun-
dance and native bee abundance was qualitatively similar;
however, the negative relationship between honeybees and
native bees was generated by a single observation (figure 2c;
electronic supplementary material, table S6) and should be
interpreted with caution. The negative relationship between
native and wild exotic bee abundance at high-abundance sites
was not due to correlation between exotic abundance and any
other measured driver of native bee abundance (electronic
supplementary material, table S6).

4. Discussion
Urbanization alters the composition of biotic communities by
creating a matrix of habitats distinct from natural ecosystems
[42,43]. In this study, urbanization correlated with increased
prevalence of exotic bees, via increases in exotic bee abun-
dance and richness rather than declines in native bees. The
association between urbanization and exotic bees was not
mediated by exotic floral resource availability, proximity to
IPOE or urban warming.

The lack of relationship between exotic bees and exotic
plant prevalence contradicts other studies suggesting that
exotic bees preferentially visit exotic plants [44–46]. However,
96% of exotic bees we collected were from generalist species;
their success in their introduced range may derive from the
ability to feed on a wide range of plants [47]. Because we
did not assess bee diet, our findings do not demonstrate
that exotic bees do not prefer exotic plants. They do, however,
indicate that the success of exotic bees in cities is not due to
increased abundance of exotic floral resources.

Most of the exotic bees we collected nest in cavities; the
additional nesting substrate provided by urbanization may
facilitate these species [18]. Indeed, the abundance of native
cavity-nesting bees also increased with urbanization, though
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this response was weaker than that of exotic bees, suggesting
that nesting preferences alone cannot account for exotic bee
success in cities. In sum, the increased prevalence of exotic
bees in cities is largely attributable to trait-matching between
exotics and urban environments (e.g. cavity-nesting habit).
We found no evidence that proximity to IPOE increases
exotic bee abundance or richness, but the limited scope of
our study does not allow us to definitively evaluate the role
of propagule pressure in exotic bee success in cities.

The observed negative correlation between native and
exotic bees at sites supporting high total bee abundance—
but not at low-abundance sites—suggests density-dependent
effects of exotics on natives. Negative effects of exotic bees
on natives may be due to competition for food or nest sites
[9,48,49], or apparent competition mediated by shared patho-
gens [9,50]. Intriguingly, we found that wild exotic bee
abundance accounted for more deviance in native bee
abundance than did honeybee abundance. The strength of the
relationship between wild exotic and native bee abundance is
surprising, given that (1) studies measuring the effect of
exotic honeybees on native bees rarely demonstrate popu-
lation-level consequences [12] and (2) effects of non-eusocial
exotic bees on native bees are understudied. Alternatively,
environmental filtering, operating differently on native versus
exotic bees, may be responsible for the observed relationship.
Conclusively determining whether the observed relationship
indicates that wild exotic bees exert more influence than
honeybees on natives, or results from collinearity with some
unassessed driver of bee abundance requires further study.

Recent findings that cities can maintain diverse bee
communities [31,32,37,51] has increased interest in cities as
targets for bee conservation [30–32]. While promoting bee-
friendly management of urban land is vital to protecting
pollinators, this study highlights the need to think critically
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about the bee communities supported by urban environ-
ments. While urbanization can increase bee beta-diversity
by supporting a different suite of species from those found
outside cities, this may come at a cost to native species.
Our research suggests that, globally, urbanization may
homogenize bee communities by increasing the dominance
of a small number of cosmopolitan, synanthropic species.
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