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We optimize radiotherapy (RT) administration strategies for treating low-
grade gliomas. Specifically, we consider different tumour growth laws,
both with and without spatial effects. In each scenario, we find the optimal
treatment in the sense of maximizing the overall survival time of a virtual
low-grade glioma patient, whose tumour progresses according to the exam-
ined growth laws. We discover that an extreme protraction therapeutic
strategy, which amounts to substantially extending the time interval between
RT sessions, may lead to better tumour control. The clinical implications of
our results are also presented.
1. Introduction
Diffuse WHO grade II gliomas, commonly referred to as low-grade gliomas
(LGGs), are a histologically and genetically heterogeneous subgroup of primary
central nervous system tumours. They encompass approximately 5–10% of all
primary brain tumours in adults and have a moderate incidence rate (about
1/100 000 person-year). Compared with high-grade gliomas (WHO grades III
and IV), they occur mostly in patients between ages 35 to 44 years and have
a median survival time of approximately 13 years after diagnosis using aggres-
sive treatments [1]. LGGs also account for the majority of pediatric central
nervous system tumours [2]. The 2016 WHO classification [3] redefines grade
II gliomas with respect to morphological and molecular tumour alterations,
the latter ones displaying a higher correlation with prognosis and therapy
response [4]. Although primary brain tumours very rarely metastasize, approxi-
mately 70% of LGGs eventually progress towards a more malignant type such
as anaplastic astrocytoma (WHO grade III) and secondary glioblastoma (WHO
grade IV glioma), thus becoming fatal. This is specifically observed in those of
astrocytic origin (oligodendrocytic being the other origin). Therefore, different
therapeutic modalities are required at a certain point, which usually involve
neurosurgery, radiotherapy (RT), chemotherapy or a combination of these [1].

Management of LGGs is controversial because they very often remain indo-
lent during a significant fraction of their natural history. This is due to a
relatively slow proliferation coupled with a mild diffusively infiltrative pattern,
and so, owing to the brain’s plasticity, functionalities affected by the presence of
the tumour may partially be relocated to healthy regions, thus causing subtle
neurological symptoms, whose severity does not manifest until tumour cell
density exceeds some threshold. When this last process occurs a malignant
transformation is triggered, whose median time after diagnosis ranges from
2.7 to 5.4 years [5]. Recent evidence supports that the early use of surgery
results in a better outcome than the traditionally followed ‘watch and wait’
approach [6]. Equally, although treatment administration is usually aimed at
the total elimination of tumour cells, most LGGs are rarely completely curable.
Thus, current treatment focuses on increasing the patient’s survival time,
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diminishing symptoms and reducing harmful side effects that
affect a patient’s quality of life.

It is now well known that immediate RT after surgery
increases the duration of response (progression-free survival),
but does not seem to improve overall survival [1]. The standard
RT treatment involves administration of a total dose of 54 Gydis-
tributed over the course of six weeks (typically 1.8Gy daily
doses, five days per week). Toxicity associated with RT constitu-
tes an important constraint. The most frequent side effects
include fatigue, weakness, skin disorders, inflammation of the
irradiated area, immunodeficiency, nausea, drowsiness and diz-
ziness [7,8]. In addition, in themedium and long term, cognitive
impairment eventually occurs due to damage of the normal
brain parenchymatissue. Although, in clinical practice, radiation
beams are intensity modulated and distributed in such away as
to be primarily focused onto the tumour area, healthy tissue cells
are also affected to some extent. The toxicity of, and tolerance to,
RTon healthy tissue has been reviewed in detail [9], and those of
the central nervous system entail severe risks for health when
reaching certain dose levels. Specifically, for the brain, a maxi-
mum dose below 60Gy implies a probability of 3% necrosis
[10]. This is the reason why in clinical practice this maximum
total dose is not normally exceeded.

Mathematical modelling has the potential to help in
identifying LGG patients who may benefit from RT and in
developing specific optimal fractionation schemes for selected
patient subgroups. Most of the mathematical research on glio-
mas has been focused on the study of high-grade gliomas,
with special emphasis on glioblastoma [11–24]. Models specifi-
cally devoted to LGG growth have also been proposed [25–31].
The theoretical approaches have resorted to either ordinary
or partial (reaction–diffusion-type) differential equations.
The effect of RT alone or with chemotherapy on gliomas has
also been studied, both in LGGs and high-grade gliomas
[15,32–41]. In LGGs, response to different therapeutic modal-
ities is often described in terms of a number of undetermined
parameters that can be fitted to individual patient data, with
good qualitative agreement [35]. More recently, in [39], a
simple spatialmodelwas developed todescribe the knownphe-
nomenology of the response of LGGs to RT including the
clinical observations from [42]. An alternative explanation to
the phenomenon has been put forward in [37] using a model
that included tumour and oedema compartments.

As mentioned above, the total maximum dose with which
the brain can be irradiated is not administered in a single ses-
sion, but is fractionated into several (typically 30) smaller
doses. One particular dose strategy, known as extended (or
protracted) therapy, consists of increasing the time between
doses. Extended therapy is especially suitable for LGGs.
This is due to the fact that it allows the healthy tissue to
recover in the time that elapses between doses, since this
time is considerably longer than the time between doses of
a standard scheme. In addition, some studies have shown
that in LGGs, at any time, most tumour cells are not prolifer-
ating [43], and therefore they would be considerably less
sensitive to RT. This fact suggests that a greater spacing
between doses would achieve greater efficacy of the treat-
ment. We seek to address the veracity of this hypothesis
through in silico modelling. Specifically, in [40], the authors
proposed that an ‘extreme protraction’ therapeutic strategy
(i.e. substantially enlarging the time interval between RT frac-
tions) could lead to better tumour control. They based their
dose scheduling assuming a logistic tumour growth law
(without including any spatial dependence). One of the objec-
tives of the present article is to generalize this strategy to
other growth laws and to also incorporate the role of space.

Our plan in this paper is as follows. First, in §2, we establish
the methods. Thus, we formulate the mathematical model and
we establish the optimization problem for different tumour
growth laws (exponential, Gompertz, logistic, Skellam and
Fisher–Kolmogorov equation). In §3, we solve the previous pro-
blems, finding the optimal therapeutical protocols and discuss
the expected gain as a function of the parameters for each
equation. Explicit formulae are found providing the spacing
between doses as a function of the biological parameters of
the tumour. Moreover, we suggest a suboptimal protocol that
could be easily applied in clinical practice as it does not
depend on the values of the parameters or the growth law.
Finally, in §5,wediscuss thebiological implicationsof our results
and summarize our conclusions.
2. Methods
2.1. Formulation of the mathematical model
Tumour growth modelling can be tackled at various levels. One
first, very simple, approach is to focus on the temporal evolution
of the tumour volume (or its total mass) and, thus, one could
employ well-known ordinary differential equations (ODEs) that
essentially incorporate the role of proliferation and competition
for resources, as reviewed in [44,45]. For LGGs, this is a possible
path to follow to partially circumvent the complexities associated
with their spatial heterogeneity (which is, nonetheless, much
lower than in high-grade gliomas). In the present work, we are
interested in maintaining the approach sufficiently simple
but, at the same time, to capture one key physiopathological
aspect of LGGs, their cellular density, as this plays a prominent
role in their malignant progression. To this end, we begin by
considering a non-negative function u = u(t) that represents a
cell density at time t≥ 0 that has been spatially averaged over
a sufficiently large domain that includes the tumour region.
The dynamics of u(t) is governed by the following ODE:

du
dt

¼ r

a
u 1� u

K

� �ah i
, u(0) ¼ u1, (2:1)

where ρ and K denote the proliferation rate and the tissue carry-
ing capacity, respectively, and α⩾ 0 is a parameter that accounts
for the crowding effect strength, with respect to K (the maximum
cell density). The explicit solution of equation (2.1) can be found
in appendix A.

Critically, the solution of (2.1) takes specific forms under
certain limits. Specifically, these are:

(i) exponential growth

K ! 1 ) u(t) ¼ u1ert, (2:2)

(ii) Gompertz growth

a ! 0 ) u(t) ¼ elog (u1) e
�rt
, (2:3)

(iii) logistic growth

a ! 1 ) u(t) ¼ u1
u1 þ e�rt(1� u1)

: (2:4)

See figure 1 for a comparison of the growth curve forms.
To further include spatial effects during LGG progression we

define a n-dimensional spatial domain, B, with boundary ∂B and
we will use diffusive–proliferative models, such as the Skellam
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Figure 1. Comparing the considered growth curves; see legend for details. The
values of the parameters are ρ = 0.007 and u1 = 0.1. (Online version in colour.)

Table 1. Values of the biological and clinical parameters used in this
study. The cell densities are expressed in units of the carrying capacity K.

variable description values references

ρ proliferation rate 0.003–0.01 d−1 [26]

D diffusion

coefficient

0.0025–0.02 mm2 d−1 [50]

d dose per fraction 1.8 Gy [51]

N total number of

doses

30 [43]

S survival fraction 0.8–0.9 [39]

u1 initial cell density 0.01–0.3 etimated

u� critical cell density 0.3–0.6 estimated
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model and the Fisher–Kolmogorov equations (see [11,13,27,39,
46–49]), which are given, respectively, by

ut ¼ DDuþ ru, u(x, 0) ¼ u0(x), x [ B
n � ru ¼ 0, x [ @B

)
(2:5)

and

ut ¼ DDuþ ru(1� u), u(x, 0) ¼ u0(x), x [ B
n � ru ¼ 0, x [ @B,

)
(2:6)

where D and ρ are the diffusion and proliferation coefficients,
respectively, and n is the unit normal vector to the boundary,
∂B. Namely, in each case, the domain has zero-flux boundary
conditions, meaning that no tumour cells are able to leave the
domain in accordance with the fact that gliomas very rarely
metastatize. Note that u still represents a tumour cell density,
albeit with no spatial averaging.

The explicit solution of equation (2.5) is shown in
appendix A, whereas, for the Fisher–Kolmogorov model (2.6),
we resort to numerical methods to calculate the solution,
although, for a one-dimensional spatial scenario, it would
alternatively be possible to apply the effective particle
method to this equation, as described in [27]. The biological
and clinical parameters used throughout this paper are
summarized in table 1.

Finally, these different kinetics between equations (2.2), (2.3),
(2.4), (2.5) and (2.6) could indicate different LGG conditions in
different patients.

2.2. Optimization problem
Damage to both cancer and normal tissues caused by ionizing
radiation can be estimated using the standard linear–quadratic
model [52],

S(d j) ¼ e�aid j�bid2j , (2:7)

where dj is the radiation dose given at time tj and the parameters αi
and βi (i = t, n) are, respectively, the linear and quadratic coefficients
for tumour (i = t) and normal (i = n) cell damage. Thus, S(dj) corre-
sponds to the survival fraction of cells that are not damaged by RT.

In our specific investigation into LGG, our goal is to optimize
the treatment strategy in order to delay the malignant transform-
ation of tumour into a high-grade glioma, while controlling the
disease symptoms. Thus, we design the therapy to maintain
the tumour density, given by equations (2.2)–(2.6), below a criti-
cal level u* for the longest time possible, i.e. to find the time, Tmt,
as large as possible, such that

u(t) � u�, 8t [ (0, Tmt], (2:8)
for equations (2.2)–(2.4) and

max
x[B

u(x, t) � u�, 8t [ (0, Tmt], (2:9)

for equations (2.5) and (2.6). We call Tmt the ‘time to malig-
nant transformation’. This general approach was previously
considered in [40].

We solve this optimization problem for the number of doses
N, irradiation times {t j}

N
j¼1 and doses {d j}

N
j¼1. Specifically, we fix

the number of radiation doses to N = 30 and doses per fraction
to dj = 1.8 Gy, which are typical values for most extended RT pro-
tocols for these tumours. Thus, our only optimization parameter
will be the time spacing between doses. Henceforth, we will
consider only the case when doses are equispaced:

D ¼ t jþ1 � t j:

In figure 2, we present the situation where there is a uniform
schedule of fractionated irradiation, i.e. the first fraction is given
on day zero, the second fraction on day Δ, the third on day 2Δ
and so on, with the Nth fraction being given on day (N− 1)Δ.
Define u1, u2,…, uN to denote the tumour cell density immedi-
ately before the administration of RT and u10, u20,…, uN0 the
tumour cell density immediately after RT, i.e.

u0i(t
þ) ¼ Sui(t�), i ¼ 1, 2, . . . , (2:10)

where S is the survival fraction for each of the given doses,
and t− (and t+) denotes the time just before ( just after) the
irradiation that takes place at time t. Figure 2 illustrates
these facts. Finally, we define the improvement in time to
malignant transformation as the time to malignant transform-
ation for the optimal spacing between doses ΔOpt, Tmt(ΔOpt),
minus the time to malignant transformation for the ‘standard’
choice Δ = 1, T(1):

DTmt ¼ Tmt(DOpt)� T(1): (2:11)

See figures 3–7 for a better understanding of these concepts.
3. Results
Here, we simply state the final formulae, which we use and
illustrate. Full derivation details can be found in appendix B.
3.1. Results for proliferative models
3.1.1. Exponential model
We start our results with the simplest case: the exponential
growth model. Solving explicitly equation (2.2) and using
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the recursion formula (2.10), we get a recursive equation pro-
viding the tumour density after every dose (figure 3a). Thus,
the time to malignant transformation is given by

Tmt(D) ¼ (N � 1)Dþ 1
r
log

u�
u0N

� �
, (3:1)

with u0N given by equation (B 6) with j =N.
It is straightforward to check that, except for an interval of

measure zero,

dTmt(D)
dD

¼ 0, 8D . 0:

Thus, for the exponential model, the change in temporal
spacing between doses does not represent any gain in time
to malignant transformation with respect to standard therapy
(figure 3a).

3.1.2. Gompertz model
Solving equation (2.3) and using the recursion formula, as in
the previous case, we get a recursive equation providing the
tumour density after every dose dj (figure 3b). The time to
malignant transformation is, thus,

Tmt(D) ¼ (N � 1)Dþ 1
r
log

log (u0N)
log (u�)

� �
, (3:2)

with u0N given by equation (B 11) when j =N.
As in the previous case, it is straightforward, but

tedious, to derive dTmt(Δ)/dΔ (see equation (B 14)). However,
we note that dTmt(Δ)/dΔ is positive for the values of the
parameters considered in the present work, which means
that the optimum value for Δ within this interval is
reached exactly on its border (figure 3b), where the border
is defined as the largest value of Δ for which the therapy is
completed before the tumour reaches the critical value u�.
Hence, we derive

Dopt � � 1
r
log

log u�
log Su�

� �
: (3:3)

Equation (3.3) provides a simple solution to the Gompertz
model optimization problem, which is quite accurate in the
range of parameters of interest.

3.1.3. Logistic model
As previously mentioned, the optimization for the
logistic model was studied in [40]. Here, we briefly discuss
this result to make our study self-contained (figure 3c). In
the range of parameters of interest (0 , u1 , u� , S , 1)
and for N≫ 1, it is possible to find an approximation of Δopt:

Dopt � 1
r
log

1=S� u�
1� u�

� �
: (3:4)

Details can be found in appendix B.3.

3.2. Results for Skellam model
We now consider two different initial conditions for equation
(2.5): (i) Dirac delta and (ii) Gaussian initial conditions. Full
derivations can be found in appendix B.4.

3.2.1. Dirac delta initial condition
Intuitively, and as shown in appendix B, it can be seen
that the maximum density for each instant of time is
obtained at the origin, x = 0 and, therefore, we get the
following expression:

u(t) ¼ u1
(4pDt)n=2

ert

from the complete solution, equation (B 20).
Using this formula iteratively as in appendix B, we can

construct a uniform schedule of fractionated irradiation.
Equally, we wish to find the best choice of Δ providing the
maximum Tmt given by equation (2.8). Furthermore, we are
interested in the range of values of Δ for which the therapy
can be completed before the tumour density reaches u�.
Choosing Δ above (and perhaps below) this range leads to
a suboptimal use of therapy and to smaller values of the
objective function, Tmt.

The time to malignant transformation Tmt is given by

Tmt ¼ (N � 1)D� n
2r

W � ru02=nN

2pdDu2=n�

 !
, (3:5)

where W is the Lambert function [53]. Critically, we are not
able to analytically solve for the optimum value for Δ as
derived from dTmt(Δ)/dΔ = 0; instead we have to resort to
numerical methods to calculate the value of Δopt.

Figure 4 shows an example computed directly from
equation (2.5) in one dimension with doses given at equispaced
times (according to equation (B 21)) showing the existence of a
single globalmaximumTmt given byequation (2.8). An interest-
ing aspect that allows us to analyse the Skellam model is the
influence of the diffusion coefficient on the Tmt curve versus
the Δ spacing; that is, this model gives us information on how
the optimal therapy is influenced by the tumour’s infiltrative
characteristics. Figure 4 illustrates this variability by presenting
different Tmt curves, which can be simulated from the Skellam
model in one dimension and considering the initial Dirac delta
condition. In these curves, all the parameters have been fixed
except for the diffusion coefficient, D, which takes values
between 0.0025 and 0.1mm2 d−1. The differences between
these graphs are notable for two reasons and can be explained
from the analytical expression of time to the malignant
transformation, equation (B 30).

First, for n = 1, the higher the diffusion coefficient, the
greater the value of the time until the malignant transformation
associated with the spacing of the standard therapy. Explicitly,
the standard therapy has unit time spacing (Δ = 1 day). Accord-
ing to equation (B 31) and given that we are only varying the
value of the diffusion coefficient, this difference is due exclu-
sively to the different values that the argument of the
Lambert function, W, takes (figure 4).

Second, there is a significant difference in the gain in Tmt of
the optimal spacing compared to the standard, this gain being
greater for smaller values of D (table 2). From a biological
point of view, the model predicts that, for a fixed proliferation
rate, low-grade tumours with small diffusion rates (low cell
infiltration into the healthy brain parenchyma) benefit most
(in terms of survival) from the optimized therapy.

In order to analyse the influence of the proliferation rate
on the Tmt curve and on the optimum spacing, Δopt, all the
parameters have now been fixed, except the proliferation
rate, taking this values between 0.0045 d−1 and 0.01 d−1.
A remarkable behaviour, observed in figure 5, is that the opti-
mal spacing is lower in tumours with higher proliferation
rate. This seems a logical result since the faster the tumour



Table 2. Summary of Tmt gain for the Skellam model in one dimension
with an initial Dirac delta condition. Proliferation rate is fixed (ρ =
0.007 d−1). Only the diffusion coefficient is allowed to vary.

D (mm2 d−1) Δopt (days) gain in terms of Tmt (days)

0.0025 53 ≃1055
0.0035 55 ≃675
0.005 44 ≃372
0.01 38 ≃201

Table 3. Summary of results for the Skellam model in a dimension with
the initial Dirac delta condition, considering different proliferation rates and
with the fixed diffusion coefficient (D = 0.007 mm2 d−1).

ρ (d−1) Δopt (days) gain in terms of Tmt (days)

0.0045 59 ≃299
0.007 40 ≃262
0.009 33 ≃256
0.01 31 ≃261

Table 4. Summary of results for the Skellam model with the initial
Gaussian condition for one, two and three dimensions.

spatial
dimension Δopt (days) gain in terms of Tmt (days)

One dimension 33 ≃86
Two dimensions 41 ≃248
Three dimensions 55 ≃556
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grows, the more likely it is for the tumour to undergo
malignant transformation before the end of therapy (figure 2b).

It is observed that Tmt(Δ = 1) is very sensitive to the rate of
proliferation. Namely, the greater ρ is, the smaller Tmt(Δ = 1) is.
An explanation for this fact is that the time of regrowth in
equation (B 30) is shorter for higher proliferation rates (table 3).
3.2.2. Gaussian initial condition
Here, we will consider an initial Gaussian condition,

u(x, 0) ¼ u0(x) ¼ u1e�x2=s, (3:6)

instead of a Dirac delta initial condition. This condition
implies that the tumour initially follows a Gaussian profile,
whose width is controlled by the parameter σ. This scenario
is more realistic than the Dirac delta-type condition since
the detection of a macroscopic tumour with these character-
istics is possible. The solution of equation (2.5) with the
initial condition given by (3.6) is presented in appendix B.2.
In the same way as was done for the initial Dirac delta con-
dition, we consider only the density at x = 0. Critically, Tmt

once again cannot be calculated analytically and we have to
resort to numerical methods to obtain it (figure 6).

In this case, we are most interested in how space dimen-
sions influence the information provided by the model.
Fundamentally, the gain in Tmt is greater in three dimensions
when compared with two dimensions and, analogously, Tmt

is greater in two dimensions when compared with one
dimension (table 4 and figure 6). In addition, an important
variation in the optimal spacing is observed depending on
the spatial dimension considered.
3.3. Results for Fisher–Kolmogorov equation
Finally, we consider the Fisher–Kolmogorov equation, which
constitutes a generalization of the logistic equation. When dif-
fusive effects are small, both models provide similar results.
Thus, we seek to illuminate the influence of diffusion on
optimal therapy times.

Figure 7a shows the results of the time tomalignant transfor-
mation Tmt for the Fisher–Kolmogorov equation in one
dimension fordifferent spacingbetweendoses.This result is simi-
lar to that obtained with the logistic equation (equation (2.4)).
Figure 7b illustrates how Tmt depends on the diffusion coeffi-
cients. It is observed that, despite there being a variation of up
to an order of magnitude in the diffusion coefficient, the curves
remain similar. This is particularly true in the monotonically
increasing region, which is the pertinent region for determining
an optimal therapy. In view of this, it can be stated that
the Fisher–Kolmogorov equation suggests that the infiltrative
character of the tumour can be neglected, at least for the range
of values of the diffusion coefficient characteristic of LGGs.
4. Applications to clinical practice
As shown in the previous sections, it seems that allowing a
spacing between doses of greater than 1 day is beneficial
for patients, as a gain is obtained in terms of time to the
malignant transformation.

However, fundamentally, which tumour growth law is cor-
rect remains controversial. Furthermore, as illustrated in the
analysis and shown in figures 3–7, optimizing the exact dose spa-
cing is delicate because slightly increasing the dose separation
beyond optimal results in a worse prognosis compared to the
standard treatment. For these reasons, the application of the opti-
mal protocol for each patient could be difficult to implement
in clinical practice. Thus, we suggest that although the dose
spacing should be increased beyond one day, which is the
standard routine, the chosen protocol should not be pushed
towards complete optimality, for conservative reasons.

Onedifficulty,which canbeovercome, is that, in clinical prac-
tice, the values of some parameters are not easy to be calculated.
Critically, choosing optimal conditions is heavily dependent on
these values, specifically, the critical tumour density, u�. How-
ever, this can be conservatively estimated since tumour volume
is (roughly) related to average cell density and, so, the critical
tumour density will be linked to a critical tumour volume, V�.
Thus, the initial tumour volume,V1, can be estimatedusingmag-
netic resonance imaging techniques. Crucially, even if the exact
value of V� is not known, it is clear that V�.V1. We can make
a conservative choice by establishingV�¼V1; even if sometimes
this value could be far from the real one, errors produced by
overestimating V� are avoided.

Furthermore, with periodic control, it is possible to moni-
tor the tumour growth evolution. For example, after the first
RT dose and accompanying tumour volume reduction another
RT dose would be administered when the tumour volume is
close to V1, thereby defining Δ. A basic scheme can be seen
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Figure 8. (a) Basic treatment schedule. (b) Treatment adaptation if radiotherapy resistance, or faster growth, occurs. (Online version in colour.)

(a) (b)

500 1000 20001500 2500

t (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

500 1000 1500 2000

t (days)

u(
t)

0

0.1

0.2

0.3

0.4

0.5

0.6

u(
t)

Tmt = 1.6
Tmt = 1.8
Tmt = 3.2
Tmt = 4.6

D = 1
D = 60
D = 34
D = 56

Tmt = 4.2
Tmt = 3.9
Tmt = 5.2
Tmt = 6.2

D = 1
D = 79
D = 56
D = 76
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in figure 8a. This protocol is easily modifiable, since it can
occur that after some doses of RT tumour cells develop RT
resistance and, thus, the tumour does not respond uniformly
to the treatment over time. In this case, the critical value, V�,
would be reached before the time Δ. With a periodic control,
a new time between doses Δ0 < Δ can be recalculated and the
treatment can be adapted, as in figure 8b.

To demonstrate this idea, simulations were performed
and illustrated in figure 9. Specifically, we compared four pro-
tocols assuming a fixed law growth and fixed values for the
parameters. The four simulations we compare are

— Standard protocol, Δ = 1.
— Optimal protocol for a wrong u�, i.e. u*,wrong where

u*,wrong = 1.05u*; Δ = Δ0
opt.

— Suboptimal protocol, Δ = Δsubopt < Δopt.
— Optimal protocol Δ = Δopt.

In figure 9, it is possible to see two examples of these differ-
ent protocols. In figure 9a, Gompertz growth is assumed.
In this case, the worst scenario in terms of survival is the
standard protocol, as the time to malignant transformation is
1.6 years. Of course, the best protocol is the optimal one,
with a time to malignant transformation equal to 4.6 years.
However, with an overestimation of only 5% of the critical
tumour density, the resulting time to malignant transformation
would have been 1.8 years, which is better than the standard
protocol but worse than the suboptimal protocol, which
provides a time to malignant transformation of 3.2 years.

Similar results are seen in figure 9b, with the additional
note that, in this case, the 5% critical tumour overestimation
simulation is worse than the standard protocol, as the time
to malignant transformation is 3.9 versus 4.2 years, respect-
ively. The suboptimal protocol also gives a benefit compared
to the standard one (5.2 years) and, even if it is not the optimal
dose spacing (6.2 years), it provides a close approximation.
5. Discussion and conclusion
5.1. Medical applications
The primary aim of this work was to improve the efficacy of
RT for the management of LGG using different mathematical
models. Thus, the results of §3 provide a theoretical support
for extremely protracted therapies for LGG. Notably, the
results have a clear biological meaning. Since tumour
regrowth is known to be faster for small tumour densities,
which is called the accelerated repopulation phenomenon, it is
preferable to leave the tumour density to grow, while keeping
its damage to the surrounding healthy brain parenchyma
under control (particularly if eloquent areas are affected).
Our mathematical models (except the exponential model)
capture this phenomenon.

Our results can further be extended to include the
knowledge that radiation treatment is most effective on pro-
liferating cell populations. Thus, if we were able to time the
dosage with reference to the cell cycle our treatments
would be more effective. Although not presently accounted
for in our model, such effects may be incorporated by includ-
ing a quiescent population along with any of the models of
proliferative cells studied in this article.

Critically, taking the time spacing Δ above the optimal
value in any of our models, leads to a sharp drop of the gain
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in time to the malignant transformation and even aworse out-
come than the choice of Δ = 1 day. This is why we suggest a
suboptimal protocol that could be applied in clinical practice.
The result of mis-estimating the parameter values, or the
growth law, when calculating the optimal time spacing
between doses can be avoided using the suboptimal protocol
that is proposed in this paper, which is not dependent on par-
ameter values or growth laws. The time spacing between doses
depends on just the tumour volume that is a measure that can
be quantified with the current imaging techniques.

Protracted therapies are, of course, quite a radical
suggestion, thus, there is little research done to support our
predictions. Ongoing phase II clinical trials will try to deter-
mine whether protracted RT doses may exhibit a significant
benefit on both progression free survival and overall survival
in newly diagnosed LGG adult patients. Moreover, we expect
that, inspired by the present study, more sophisticated math-
ematical models will be needed to account for the observed
results in LGG patients.
6:20190665
5.2. Conclusion and future works
In this article, we compared a numberofmodel equations (expo-
nential, Gompertz, logistic, Skellam and Fisher–Kolmogorov
equations),which arewidely usedwhenquantifying the kinetics
of LGGs. Specifically, we have investigated optimal dose inter-
spacing in RT protocols for LGGs, under the assumptions of
equal doses per fraction and fixed spacing between doses.
As each model uses a different functional form and captures
specific characteristics of the growth of LGGs, the results
based on each of the models share certain behaviours, but at
the same time they present several differences.

Some of these particularities even point to some disagree-
ment. Specifically, a given model can suggest guidelines for
action in clinical practice, while another model suggests a
totally different set of guidelines. For example, in the case
of the exponential model, there is no benefit in increasing
the temporal spacing between doses greater than 1 day. How-
ever, this result differs radically from those provided by the
other models considered in this study. Indeed, the logistic
model indicates a certain gain in Tmt is made by taking a
time spacing, Δ > 1. Namely, an optimal therapy requires
approximately 60 days to pass between consecutive doses.
The Gompertz model yields qualitatively similar results to
those of the logistic model. However, quantitatively there
are significant differences, the main one being a greater
gain in time until the malignant transformation of the opti-
mal spacing compared to the unit spacing. Still, it should
be pointed out that the use of extremely protracted schemes
would be of special interest for pediatric LGG patients,
since one of the complications associated with RT toxicity is
the manifestation of cognitive disability later in life. Employ-
ing longer time spacings between doses is expected to
significantly reduce the occurrence of such secondary effects.

One limitation of our work is that we are, currently,
restricted to equispaced doses. However, one could take a
much more granular view of, at one extreme, varying the
specific days of the week at which dosage occurs. The ques-
tion then becomes a much larger optimization problem.
Although we expect the problem to be analytically intractable,
accompanying simulations should be quite forthcoming and
will be considered as part of our future work. However, it
should be noted that we do not foresee that subweekly
variations would have a large impact on our results, which
often suggest multiple weeks are missed between doses.

The diffusive–proliferative models are a way of introducing
another relevant characteristic of LGGs: their infiltrative charac-
ter. After using an initial condition given by a highly localized
tumour applied to the Skellammodel, we conclude that the vari-
ation in thediffusion coefficient,D, decisively influences both the
gain of the optimized therapy versus the standard one, aswell as
the time to malignant transformation associated with unit spa-
cing. On the other hand, the observed dependence of the
optimal spacing with the diffusion coefficient, although if it
exists, is not relevant. Thus, therapy optimization does not
depend strongly on the diffusion coefficient, even though
therapy gain does. In addition to the influence of the diffusion
coefficient on Tmt, the role of the proliferation rate has also
been analysed. From this last analysis, it can be concluded that
the value of the proliferation rate does have a decisive influence
on the value of the optimal spacing and that, in contrast to vari-
ations of the diffusion coefficient, there are no significant
differences in the gain inTmtwhen theproliferation rate is varied.

Another interesting result obtained in this work is
provided by the Skellam model with Gaussian initial
condition. Namely, with fixed values for diffusion and prolifer-
ation rate, the model shows a marked effect of dimensionality.
Specifically, gain in Tmt is highest in the three-dimensional
case. Similarly, the Fisher–Kolmogorov equation yields a
revealing result. Specifically, the time to malignant transform-
ation depends weakly on the diffusion coefficient. Our
conclusion is that, to a good approximation, the problem can
be studied without taking into account the effects of diffusion,
at least for the diffusion coefficient values pertinent to LGGs.
Of course, it could be argued that if the diffusion coefficient
changes (increases) as the LGG progresses into a high-grade
glioma, such an approximation may be questionable.

Finally, as a future extension of this work, by adding a
healthy tissue population one could increase the number of
doses and run the treatment for longer times. This ismotivated
by our previous work [54], where estimates of the retreatment
radiation tolerances of the spinal cord at different times after
initial treatment where proposed. In the present work, healthy
tissue has only been considered through the limitation of the
total dose administered. A possible avenue to explore consists
of taking into account the healthy brain tissue through the
evolution of the fraction of survival of healthy cells and their
recovery when the doses are sufficiently spaced over time. It
should be noted that since the recovery of healthy tissue is con-
siderably smaller compared to that of tumour tissue, it is only
necessary to regard the healthy tissue recovery in protracted
therapies such as those analysed here. Another extension
would encompass both the concomitant action of RT and che-
motherapy. As shown in [55], the outcome of LGG patients is
highly variable when single-modality treatment strategies of
standard RT versus primary temozolomide chemotherapy
are administered. An open problem is whether it would be
possible to generalize the framework presented here to such
a therapeutic scenario. Finally, including radio-resistant cells
in the model would be another possible extension, that could
be done along the lines presented in [56]. We hope that the
results obtained in this article will stimulate further research
for identifying optimal treatments for LGG patients.
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Appendix A. Explicit solutions
Explicit solutions will be used throughout this paper to
reduce the number of approximations. Such solutions are
commonly derived using standard techniques [57].

The general solution of (2.1) is

u(t) ¼ u1
u1
K

� �a
þ e�rt 1� u1

K

h ia� �h i�1=a
: (A 1)

The formal solution of the Skellam model (2.5) in infinite
space is given by

u(x, t) ¼ ert

(4pDt)n=2

ð
Rn

e�(x�a)2=4Dtu0(a) da, (A 2)

where n is the dimension considered.
Appendix B. Calculating time to malignant
transformation
The time to malignant transformation, Tmt, will be found in
the case of each tumour growth model as the total treatment
time, Tt, plus the time that elapses until the critical tumour
density, u�, is reached from the tumour density obtained
when the therapy is finished, u0N, which is denoted by Tr:

Tmt ¼ Tt þ Tr ¼ NDþ Tr: (B 1)

Keep in mind that equation (B 1) is only valid when the
tumour density, u(t), remains below, or equal to, the critical
value, u�. It may happen, for spacings between sufficiently
large doses, that the critical density is reached before the end
of the treatment. In this case, we will find the last session, j,
for which u � u�. In this case, the time to malignant transform-
ation will be given by

Tmt ¼ jDþ T j
r ,

where T j
r is the time that elapses until the density u� is reached

starting from u0j.
B.1. Exponential model
Using the recursion formula (2.10) and equation (2.2), we get
a recursive equation providing the tumour density after every
dose tj, dj:

u01(t) ¼ Su1(t) (B 2)

u02(t) ¼ Su2(t) ¼ Su01 e
r(t2�t1) ¼ S2u1 erD (B 3)

u03(t) ¼ Su3(t) ¼ Su02 e
r(t3�t2) ¼ S3u1 e2rD (B 4)

..

.
(B 5)

u0j(t) ¼ Su j(t) ¼ Su0j�1 e
t j�t j�1 ¼ S ju1 e(j�1)rD: (B 6)

Thus, the time to malignant transformation is given by
equation (3.1).
Wenoted, in §3.1.1, that dTmt(Δ)/dΔ = 0, 8D . 0.However,
this does not mean that Tmt is stationary with respect to Δ.
Critically, because of its piecewise nature it can have both a
zero-derivative and be monotonically decreasing (figure 3a).
B.2. Gompertz model
This timewe combine equations (2.3) and (2.10) to get a recursive
equation providing the tumour density after every dose tj, dj:

u01(t) ¼ Su1(t) (B 7)

u02(t) ¼ Su2(t) ¼ Su01
e�rD ¼ Se

�rDþ1ue
�rD

1 (B 8)

u03(t) ¼ Su3(t) ¼ Su02
e�rD ¼ S1þ e�rDþ e�2rD

ue
�2rD

1 (B 9)

..

.
(B 10)

u0j(t) ¼ Su j(t) ¼ Su0j�1
e�rD ¼ S

P j�1

k¼0
e�krD

ue
�(j�1)rD

1

¼ Sg j ue
�(j�1)rD

1 , (B 11)

where the geometric progression is expressed as follows:

g j ¼
Xj�1

k¼0

e�krD ¼ e�jrD � 1
e�rD � 1

: (B 12)

Thus, the time to malignant transformation is given by

Tmt(D) ¼ (N � 1)Dþ 1
r
log

log (u0N)
log (u�)

� �
, (B 13)

with u0N given by equation (B 11) with j=N.
It is straightforward to show that

dTmt(D)
dD

¼ N � 1þ 1
u0N logu0N

du0N
dD

, (B 14)

where

du0N
dD

¼ Sg j ue
�NrD

1 log S
e�rD(e�NrD � 1)

(e�rD � 1)2
� N e�NrD

e�rD � 1

� ��

� (N � 1) log u1 e�(N�1)rD
�
:

The expression (B 14) is positive for the values of the par-
ameters considered in the article, which means that the
optimum value for Δ within this interval is reached exactly
on its border, where the border is defined as the largest
value of Δ for which the therapy is completed before the
tumour reaches the critical value u�.

Since equation (3.2) is valid while u(t)≤ u* and u0j gives
the tumour density after the radiation doses, this means
that the condition for this scenario to hold is (figure 2)

u0N=S � u�: (B 15)

Figure 3b shows a simulation computed from equation (2.3),
with doses given equally spaced in time and according to
equation (2.10). This picture shows the existence of a single
global maximum in the time to malignant transformation,
given by equation (2.8). It is possible to calculate this maxi-
mum quantitatively by inserting equation (B 11), for j =N,
into equation (B 15) and solving for Δ:

SgN�1ue
�(N�1)rD

1 ¼ u�: (B 16)

Using formula (B 12) and defining α = e−ρΔ, after some alge-
bra, we obtain

P(a);aN logSu1�aN�1 logu1�a logSu� þ logu� ¼ 0: (B17)
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In the range of parameters of interest, i.e. 0,u1,u�,S,1,
it is straightforward to prove that the previous equation has
at least one root. Thus, we can get an estimation for the
value of the root by taking into account that α < 1 and N≫ 1
and thus equation (B 17) becomes

�a log Su� þ log u� � 0

and from here

a � log u�
log Su�

,

which, finally, leads to the result in equation (3.3).
 if
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B.3. Logistic model
For this case, as in the exponential model, the general formula
for the tumour density corresponding to the jth irradiation
can be calculated:

u0j(t) ¼
u1S j e(j�1)rD

1þ Su1(erD � 1)[(S j�1 e(j�1)rD � 1)=(S erD � 1)]
: (B 18)

Thus, for this model, the time to malignant transformation is
given by

Tmt(D) ¼ (N � 1)Dþ 1
r
log

u�(1� u0N)
u0N(1� u�)

� �
(B 19)

and, for the parameters of the model,

dTmt(D)
dD

. 0, 8D . 0,

which means that the optimum value for Δ within this inter-
val is reached again exactly on its border. As in the Gompertz
model, the condition u0N=S � u� must be satisfied, and thus
we obtain the following algebraic equation:

u1bN 1
u�

� 1
� �

þ u1bN�1 S� 1
u�

� �
þ b(u1 � 1)þ 1� Su1 ¼ 0,

where β = eρΔS. In the range of parameters of interest
(0 , u1 , u� , S , 1) and for N≫ 1 it is possible to find an
approximation of Δopt:

Dopt � 1
r
log

1=S� u�
1� u�

� �
:

B.4. Results for Skellam model

B.4.1. Dirac delta initial condition
Combining the Dirac delta initial conditions, u(x, 0) = u1δ(x),
with (A 2) generates the solution of equation (2.5)

u(x, t) ¼ u1 ert

(4pDt)n=2
e�x2=(4Dt), (B 20)

where n refers to the spatial dimension. Such a solution rep-
resents the tumour density at each point x and at each time t.
From this solution, it can be seen that the maximum density
for each instant of time is obtained at the origin, x= 0, i.e.
u(t) =maxx∈B{u(x, t)} = u(0, t). Since we are interested in the
maximum value of the density, in what follows we will take
the value of x= 0 and, therefore, we get the following expression:

u(t) ¼ u1
(4pDt)n=2

ert:
Consider again figure 2 in the situation where there is a uniform
schedule of fractionated irradiation, i.e. the first fraction is given
on day zero, the second fraction on day Δ, the third on day 2Δ
and so on, with the Nth fraction being given on day (N− 1)Δ.
Define u1, u2,…, uN to denote the tumour cell density immedi-
ately before the administration the RT and u01, u02,…, u0N the
tumour cell density immediately after RT, i.e.

u0i(x, t
þ
j ) ¼ Sui(x, t�j ), i ¼ 1, 2, . . . , (B 21)

where i is the number of fractions and thus, from figure 2 and
using formula (B 20), it is straightforward to get the following
recursive iteration:

u01 ¼ Su1, (B 22)

u02 ¼ Su2 ¼ S
u01

(4pDD)n=2
erD ¼ S2

u1
(4pDD)n=2

erD, (B 23)

u03 ¼ Su3 ¼ S
u02

(4pDD)n=2
er(2D�D) ¼ S3

u1
(4pDD)n

e2rD, (B 24)

..

.
(B 25)

u0k ¼ Suk ¼ S
u0k�1

(4pDD)n=2
er((k�1)D�(k�2)D)

¼ Su1
S erD

(4pDD)n=2

� �k�1

: (B 26)

Thus, given D, ρ, S and u�, we wish to find the best choice of Δ
providing the maximum Tmt given by equation (2.8). Further-
more, we are interested in the range of values of Δ for which
the therapy can be completed before the tumour density reaches
u�. Choosing Δ above (and perhaps below) this range leads to a
suboptimal use of therapy and to smaller values of the objective
function, Tmt.

We can compute explicitly the time Tr in equation (B 1)
from the equation

u�
u0N

¼ erTr

(4pDTr)
n=2 : (B 27)

This is done using the Lambert function [53], W, defined by
z =W(z ez), which is useful to solve certain transcendental
equations. Thus, the solution of (B 27) is given by

Tr ¼ � n
2r

W � ru02=nN

2pnDu2=n�

 !
, (B 28)

with u0N given by equation (B 26) with k =N,

u0N ¼ S erD

(4pDD)n=2

� �N�1

Su1: (B 29)

Therefore, the time to malignant transformation Tmt is given by

Tmt ¼ (N � 1)D� n
2r

W � ru02=nN

2pdDu2=n�

 !
: (B 30)

The optimum value for Δ is derived from

1� n
2r

W(z)
1þW(z)

� �
2r� 1

D

� �
¼ 0, (B 31)

where z ¼ �ru02=nN =u2=n� 2pnD. Since it is not possible to solve
equation (B 31) explicitly in terms of Δ we have to resort to
numerical methods to calculate the value of Δopt. From
equation (B 28), we can obtain the regrowth time for different
spatial dimensions. Thus, for one, two and three spatial
dimensions, the regrowth time is reflected in table 5.



Table 5. Re-growth time in one, two and three dimensions for the
Skellam equation with a Dirac delta initial condition.

spatial dimensions Tr

One dimension (�1=2r)W(�ru02N =u
2
�2pD)

Two dimensions (�1=r)W(�ru0N=u�4pD)
Three dimensions (�3=2r)W((�r=6pD)(u0N=u�)

2=3)
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B.4.2. Gaussian initial condition
Solving equation (2.5) with the initial condition given by (3.6)
we obtain the following analytic solution:

u(x, t) ¼ u1 ert
s

4Dtþ s

� �n=2

e�x2=(4Dtþs): (B 32)

In the same way as was done for the initial Dirac delta
condition, we consider only the density at x = 0,

u(t) ¼ u1 ert
s

4Dtþ s

� �n=2

, (B 33)

which will be the point of highest tumour density. Again, it is
possible to calculate the iterative formula,

u0k ¼ S erD
s

4DDþ s

� �n=2
" #k

u1: (B 34)

The elapsed time Tr can also be calculated from the following
relation:

u�
u0N

¼ erTr
s

4DTr þ s

� �n=2

: (B 35)

Unfortunately, this time cannot be calculated analytically and
we have to resort to numerical methods to obtain it.
ce
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