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There is still a significant gap between our understanding of neural circuits
and the behaviours they compute—i.e. the computations performed by these
neural networks (Carandini 2012 Nat. Neurosci. 15, 507–509. (doi:10.1038/nn.
3043)). Cellular decision-making processes, learning, behaviour and memory
formation—all that have been only associated with animals with neural
systems—have also been observed in many unicellular aneural organisms,
namely Physarum, Paramecium and Stentor (Tang & Marshall2018 Curr.
Biol. 28, R1180–R1184. (doi:10.1016/j.cub.2018.09.015)). As these are fully
functioning organisms, yet being unicellular, there is a much better chance
to elucidate the detailed mechanisms underlying these learning processes
in these organisms without the complications of highly interconnected
neural circuits. An intriguing learning behaviour observed in Stentor roeseli
(Jennings 1902 Am. J. Physiol. Legacy Content 8, 23–60. (doi:10.1152/ajple-
gacy.1902.8.1.23)) when stimulated with carmine has left scientists puzzled
for more than a century. So far, none of the existing learning paradigm
can fully encapsulate this particular series of five characteristic avoidance
reactions. Although we were able to observe all responses described in the
literature and in a previous study (Dexter et al. 2019), they do not conform
to any particular learning model. We then investigated whether models
inferred from machine learning approaches, including decision tree,
random forest and feed-forward artificial neural networks could infer and
predict the behaviour of S. roeseli. Our results showed that an artificial
neural network with multiple ‘computational’ neurons is inefficient at mod-
elling the single-celled ciliate’s avoidance reactions. This has highlighted the
complexity of behaviours in aneural organisms. Additionally, this report will
also discuss the significance of elucidating molecular details underlying
learning and decision-making processes in these unicellular organisms,
which could offer valuable insights that are applicable to higher animals.
1. Introduction
Since the 1700s, many behaviours observed in lower unicellular organisms,
such as Physarum, Paramecium or Stentor, have been successfully demonstrated
to satisfy many of the existing learning paradigms, from simple non-associative
[1–5] to more complex associative models [6,7]. These observations have left
scientists puzzled. To what extent do these organisms possess an awareness
of their surroundings? Is it at all comparable to that experienced by higher
animals? Herbert Jennings—one of the most influential biologists in the field
of behaviours in aneural organisms—published some very detailed written
accounts of the unique response seen in the single-cell ciliate Stentor roeseli
upon mechanical or chemical stimulation [8]. In particular, when stimulated
with carmine particles (figure 1), the organisms were described to perform a
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Figure 1. A sketch of carmine particles introduced to the buccal cavity of a
S. roeseli. Illustration of the experiment from Jennings’ paper [9]. Carmine
particles are released over the mouth of a S. roeseli that are attached to a
surface via its tube and holdfast. (Online version in colour.)
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Figure 2. Series of five avoidance reactions observed in S. roeseli. This is
Vance Tartar’s illustration of the five reactions of S. roeseli stimulated by car-
mine in the order described by Jennings [11]. As long as the stimulus is still
present in the surrounding environment, these five reactions are: (a) no
response—at rest. (b) Bending away from the source. (c) Transient stop of
cilia beating, reversal of spiralling direction. (d ) Strong full contraction. (e)
Detachment and swim away. (Online version in colour.)
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series of five characteristic observable avoidance reactions in
order to remove themselves (or ‘to leave’) from the noxious
stimulus, provided that the particles were persistently present
in the surrounding environment. This complicated sequence
of reaction or avoidance behaviours was acknowledged as
one of ‘the most intricate behaviours so far recorded in uni-
cellular animals’ by Dennis Bray [10]. The five reactions are
generally seen to occur in a particular order (figure 2),
albeit with several variations. These hierarchical avoidance
behaviours indicate that the internal state of the organism
has changed to respond differently to the same stimulus. In
this study, we have considered this hierarchical avoidance
reaction of Stentor as a consequence of cell decision-making
process at each stage and investigated it. Jennings was able
to follow the same organism through multiple rounds of
stimulations and show that sometimes, the typical response
order is not strictly followed, or that time taken to switch
between different avoidance reactions varies widely from
one organism to another. He was also able to demonstrate
that these differences in response are not due to fatigue,
and thus concluded that the organism had performed
some form of complex learning—an altered response due
to prior experience [8]. We will not be discussing this
aspect of Jennings’ work.

Multiple attempts to characterize this intriguing behav-
iour were later carried out, some of which challenged
Jennings’ proposition [12,13]. However, some of these
subsequent experiments used a related but more motile
species—S. coeruleus. Thus, the exact Jennings’ observations
were not seen and hence the avoidance behaviours were
considered irreproducible. In an earlier work [14], S.P. and
colleagues developed a video-microscopy experimental
paradigm and used S. roeseli to duplicate Jennings’ exper-
iments. This study verified Jennings’ findings of a complex
hierarchy of avoidance behaviours, which indicated a com-
plex decision-making process underlying the behaviours.
These earlier studies were able to demonstrate that the
observations in S. roeseli did not conform to any existing
learning model for single-cell organisms—they did not
indicate habituation nor adaptive sensitization (which may
require more than a lifetime to acquire!). Staddon had earlier
suggested that it could be operant behaviour—behaviour
‘guided by its consequences’, and proposed some possible
mechanisms, yet, no concrete conclusion was made [15].

Since there is no current learning model that can fully
explain the series of avoidance reactions or cell decision-
making process in S. roeseli, we examined if the decision ‘to
leave’ could be predicted from time spent performing each
of the avoidance reactions using models based on decision
tree, random forest and artificial neural network (ANN)
machine learning algorithms. ANNs have proven their
power with notable successes in applications across numer-
ous fields, including modelling complex cognitive activities
in higher animals [16,17]. We set out to explore how effective
ANNs are at predicting S. roeseli’s behaviour, and are particu-
larly interested to find out the number of computational
neurons required for an ANN to be proficient at predicting
the behaviour observed in a single-celled organism.
2. Replication of Jennings’ original experiment and
heterogeneity in Stentor roeseli’s behaviour

We replicated Jennings’ experiment and validated the
complexity of the observed behaviours by Dexter et al. [14].
Upon stimulation with red-fluorescent latex beads, we
were able to observe all of the five avoidance reactions
described by Jennings (electronic supplementary material,
video-1). Electronic supplementary material, figure S1
shows our simple experimental set-up. When unstimulated,
Stentor do not show any behavioural changes (electronic
supplementary material, video-2). This is important to
note because we want to assert that the hierarchical behav-
ioural response that we see is only after stimulation with the
beads.

We used a light microscope to observe and record the be-
haviour of S. roeseli and a gravity-based water reservoir was
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Figure 3. Example observations of S. roeseli’s different behavioural responses
upon stimulation with polystyrene beads. (a) At rest: S. roeseli is fully
extended with cilia beating to generate a vortex current. (b). Bending. (c)
Transient halting of cilia beating (arrow). (d,e) Full contraction after encoun-
tering the fluorescent beads. ( f ) The organism slowly extended after
contraction until full length is reached. (g,i) Tube abandonment and leaving.
(Online version in colour.)
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used for pulsed bead stimulations. Since observations pro-
vided by Jennings were only a qualitative description via
words and sketches, with experimental methods not being
documented in detail, all observations were subjected to
our own interpretation as illustrated in figure 3. The high
level of heterogeneity in S. roeseli’s behaviour upon stimu-
lation noted by Jennings [8] was also detected. The order of
the series of reaction is not always the same as that illustrated
in figure 2. In many instances, halting and reversing in
direction of cilia beating took place before obvious bending
was seen, but contraction always preceded leaving. The
extent to which bending movements were performed varied
massively. Generally, each of the five responses was repeated
for a while before the organism decided to move on to
the next, with large differences in the number of repeats
for each response between organisms. Moreover, many
individual S. roeseli did not demonstrate all five reactions,
with some omitting bending, and others immediately detach-
ing. Occasionally, some S. roeseli immediately contracted
upon stimulation. However, this could have been a reaction
to the strong water pressure from releasing the beads into
the environment.

Performing the experiment repeatedly with absolute
consistency of control variables was challenging. This may
or may not have affected the behaviour of S. roeseli across
experiments. For instance, experiments typically involved
recording over five sessile S. roeseli simultaneously due to
time limitations. Thus, it can be hard to distinguish if contrac-
tion of these organisms was a response to stimulation or
due to collision with others swimming in close vicinity.
Additionally, the amount of beads released into the environ-
ment for each experiment was, although roughly the same,
not exact. In five out of 188 organisms that we recorded,
we could not attribute the contractions to stimulation by
beads, hence we removed those observations from the
machine learning models.

Analysis of the video recordings was not always
straightforward. Cilia movement was only clearly observa-
ble when the organisms were positioned correctly in the
plane of focus. Quite often, the organism bent in multiple
directions throughout the course of the experiment, and
therefore, their cilia were not always observable. Moreover,
the reversal of cilia beating is usually accompanied by a
twist or slight bending, which could lead to potential
mis-classification of response if cilia were not observable.
Another factor that could impact the quality of input
variables is that the videos collected are of different
length (see Material and methods). In an attempt to miti-
gate these factors, experiments where these issues were
more pronounced were discarded from analysis. Being
aware of all the complications and the wide variation in
the behaviours of S. roeseli, we were extremely cautious
and very careful to make the most consistent and quantitat-
ive analysis possible.
3. Stentor avoidance behaviour does not fit into
any existing learning paradigms, including
operant behaviour

Operant behaviour is described as a form of goal-directed
behaviour. This learning model suggests that S. roeseli’s
decision of switching from one response to the next is
underpinned by a mechanism that ‘compute[s] the relative
importance of time [spent repeating a particular response]
and concentration [of the noxious substance in its vicinity]’
[15]. Staddon suggested a mechanism whereby the five
reactions were graded according to their cost (energy expen-
diture ± forgoing the opportunity to obtain further food),
with each successive reaction only occurring above a certain
threshold concentration of noxious beads. Additionally,
each threshold elevates as the reaction continues to occur—
i.e. a form of habituation—and eventually, will overtake
that of the next reaction in the series, resulting in a switch
in behaviour. However, this seems to imply that the organism
needs to go through the whole sequence of five reactions in
the exact order every time it is stimulated. Yet, this was not
always the case in our experiments. There were multiple
instances where the first two or three stages were skipped,
or the order of reactions was not followed. Staddon also
mentioned that the above mechanism was just one of the
many possibilities one could come up with. Ultimately, he
conceded that the exact operant behaviour mechanism
could not be verified without further physiological and
behavioural analysis.



Table 1. Stentor roeseli behaviours. Behaviours are summarized in a symbol sequence, as described in figure 3. A comma (,) separates behaviours of different
organisms in the same experiment. Days on which the data is collected are listed. Videos for each experiment are available on Mendeley; see electronic
supplementary material, table S1 for access information.

date exp no. duration (s) pre-stimulation behavioural sequence

6 Feb 2019 1.1 225 n.a. BR, BL, BL, RBC

1.2 712 r(0 : 5) BRCL, BRCL, BRCBCL, BRCBRCL,

BRCBRCL, BRCL, BRCBRCL, BRCL, BRCL, BRCBRC

1.3 168 rB(1 : 17) BRCL, RCL

8 Feb 2019 2.1 840 n.a. BCRL, BRL, RBRB, BRCBRC

2.2 677 rB(0 : 36) BRCL, BRL, BRCL, BRCL, BRL

2.3 526 r(0 : 7) BRCL, BRCL, BL, RBL, BRCL, BRCL, RBCBRL, BRCBRCL, BRL, BRL, BL, BCL, BL

11 Feb 2019 3.1 174 r(0 : 11) RBCL

3.2 760 rB(0 : 9) RCBRCL, BRCL, RBRB

3.3 822 rB(0 : 11) BRCL, BRL, BRL, BRL

12 Feb 2019 4.1 1248 rB(0 : 10) L, BL, BRCL, BRL, BRBRL

4.2 1141 r(0 : 13) BRL, RBRB, BRL, RBRBC, BRBRCBR, BRBR, BRBRL, BRL, BRBR

22 Feb 2019 5.1 191 r(0 : 5) BRL

5.2 169 rB(0 : 12) RBCL, RBRBL

5.3 308 r(0 : 11) RBL

26 Feb 2019 6.1 388 r(0 : 6) BRCBRC, RCRBRC, CRCL

6.2 543 rB(0 : 7) BRL, BRCBR, BCRBCRBL, BRCBRL, BRL, BRL, BCRCRCL, BRCBRCRC,

6.3 607 rB(0 : 8) BRCBRC, BRCRCR, BRBRCR

27 Feb 2019 7.1 579 r(0 : 7) BCRL, BCRBCRC, RBCRBCL, BCRBCRCL, BCRBRCL, BRCRCL,

BCL, BRCL, BCRCR, BRCL, BCRCL, BCRBCRBCL, BCRBCRC

7.2 708 n.a. BCRCRC, CBRC, BCRCL, CRCRC, BCRCBRCL, BRCRC,

CBRCL, BCRCL, CRBCRBCRCL, CBRCRC, RCBRCRCL, RCRC, BRL, BRC, CRCL

7.3 944 n.a. BRCL, CBCRCR, BCRCL, CBCRCL, BRBCL, CBCRCL, CBRCL, CBCRCR, BCRCRCL,

BCRC, CRC, BCRCL, RCBCRL, RCBCL, BRCL, BCRCL, CRCL, BRCBRCL

28 Feb 2019 8.1 238 r(0 : 12) RBCL

8.2 933 r(0 : 9) BCRCL, BCRCR, BRCRCL

8.3 719 r(0 : 7) BRCL, BCRCL, BCRCL, BRCL, BCBCRCL, BCRCL, BCRCL, RL

8.4 702 rB(0 : 7) RBCL, RCBCL, BCRCL, CRCL, CL, CRBCL, BCRCL, BCRL, BCL, BCL

8.5 949 rB(0 : 11) BCRCL, RCRCL, BCRCL, CRC, CBCR, CBCL, BCL, CRCL, BCRCL, CRCL, CRCL, BCRCL

4 Mar 2019 9.1 852 rB(0 : 7) BRL, RBCL, CRCL, CRC, CRCL, CRCL

9.2 765 n.a. BCL, RBC, BRL, CRCRC, RL

9.3 865 n.a. BCL, BCRCR, BRCR, CBRC, BRC, RCL, BCRL, BRCL, BRCL, BRCL

9.4 704 r(0 : 11) RC

5 Mar 2019 10.1 964 n.a. RBCL, RCRC, BRCL, BRCR, BCR, RCR, BR
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4. Modelling Stentor roeseli’s avoidance
behaviour using machine learning approaches

We decided to use the time (in seconds) spent performing
each of the avoidance reactions described by Jennings as fea-
tures to train our machine learning models. This includes the
duration of (1) being at rest, (2) bending, (3) cilia reversal and
(4) contraction (electronic supplementary material, video 1).
Detachment was used as an outcome in our model, and so
the fifth feature included was (5) number of contractions
observed. There are many more features that can be extracted
from the raw data collected from analysing the videos, such
as dynamics of contraction and retraction, time taken for
each contraction or order of events taking place, etc. Nonethe-
less, as the dataset is relatively small, it is not appropriate to
use too many features to train the models. A summary of
compiled raw data that were used in the machine learning
analysis can be found in table 1 and links to the videos of
all organisms are given in electronic supplementary material,
table S1.

The correlations between these features were investigated
(figure 4). The results showed that contraction time and
number of contractions are highly positively correlated,
which is to be expected as the longer the organism spent in
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Figure 4. Correlation between five input features and output. The five input features that were used in the analysis are time spent at rest (Rest), bending (Bending),
halting and reversing cilia (Cilia), contraction (Contraction_time) and number of contractions (Contraction_number) and output is determined as whether or not the
organism detached and swam away (Leave). The correlation plot shows Contraction_time, Contraction_number and Cilia being negatively correlated (orange/light
pink) to the outcome (in order of decreasing correlation strength—indicated by the decrease in the colour darkness). (Online version in colour.)
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the contraction stage, the more opportunities they would have
to perform contractions. With respect to the outcome ‘Leave’,
the duration of contraction and cilia reversal stages are
the most negatively correlated features, with the number of
contractions having a slightly less negative correlation.

The first classification model was based on the decision
tree algorithm. The tree-like flowchart (figure 5) was gener-
ated, with each internal node representing a ‘test’ on an
attribute, and the outcome of the test—the decision—is dis-
played on the branch. The decision is made at each branch
until it comes to the termination point. At each node, data
points are initially segregated based on all input variables
individually, and the split that generates the most homo-
geneous classes will be chosen and displayed. Thus, the
decision tree model identifies the significance hierarchy of
input features used by the model after being trained. Figure 5
shows the result from decision tree analysis, the condition to
split the observations at each node is written. For each obser-
vation at each node, if the answer to the condition stated is
‘yes’, it is branched to the left, otherwise (i.e. ‘no’) branched
to the right. Those observations with Contraction_time
greater than or equal to 0.29 (after normalization), they are
classified as 0 (i.e. not Leave), with a probability of 0.88.
Those with Contraction_time shorter than this threshold, if
their time spent in Cilia Reversal is greater than or equal to
0.5 (after normalization) are also classified as 0. Only those
with Contraction_time shorter than 0.29, and Cilia time
shorter than 0.5 are classified as 1 (Leave) with a probability
of 1.00. Thus, the result implies that organisms spent a long
time performing contractions and reversing cilia tend to be
classified as ‘not Leave’.

The second model we used was random forest. It is a
different tree-based model, in which multiple trees are
generated at the same time instead of the single tree
approach that decision tree uses. Each tree will categorize
a subset of the training dataset based on a random selection
of input features, but only the variable with the highest
association with the target will be chosen. The predictions
generated from this collection of decision trees will be
analysed further and the class of highest ‘votes’ will be
chosen as an overall result. Random forest model also
allows variable importance to be assessed and extracted in
the format of a ranking (figure 6). The mean decrease Gini
measures the average reduction in purity of splitting
events. Features that are highly correlated with the outcome
seem to contribute more to the variation, hence, usually
found most useful for prediction as they tend to help
splitting mixed nodes into those with higher purity
(indicated by Gini index). Here, the top three variables
chosen by the model are, again, time spent in contraction,
cilia reversal and number of contractions, in order of
decreasing importance.
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The algorithms performed by decision tree are relatively
clear, as we can examine the computations generated by the
model, while random forest is more complicated with a big
forest of deep trees. To gain a full understanding of the
decision process by examining each tree is almost impossible.
Although these approaches are easy to interpret and provide
straightforward visualizations, their level of depth in inferring
relationships and patterns from the dataset is relatively poor.
Since they mainly pick out variables that have the most signifi-
cant impact on making predictions, they fail to capture other
finer and more subtle details from the training dataset invol-
ving the rest of the input variables. Although the first two
reactions in the series of five were not useful predictors
in the decision tree model, this does not imply that these
behaviours do not serve some function to Stentor.

Hence, feed-forward neural networks were used to
further investigate the series of response in S. roeseli. These
networks are made up of structured layers of computational
neurons called ‘perceptrons’ (figure 7), mimicking actual
biological input and activation architecture of real neurons.
An input layer takes in information from all training features,
which are then passed on to hidden layer(s). There can be
more than one hidden layer, and the perceptrons architecture
can be customized. The more hidden layers there are, with
highly intricate connecting algorithms, the more complex
the network is, and hence the ‘deep’ learning. These layers
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Figure 7. Schematic of an ANN architecture. This particular ANN has an input layer with five perceptrons (circles) for five input features; two hidden layers: the first
one with six perceptrons, and the second one with three perceptrons; and one output layer with one perceptron for binary classification outcome. Circles with
number 1 are bias nodes that are added in order to increase the freedom/flexibility allowing the model to perform best at learning the dataset. Without bias
nodes, output of each layer is just the multiplication of input values to corresponding weights. (Online version in colour.)

Table 2. Metrics used to evaluate performance of three multilayer neural network models.

model 1 model 2 model 3

hidden layer architecture 1 hidden layer

6 nodes

3 hidden layers

20, 10, 6 nodes respectively

2 hidden layers

9, 18 nodes respectively

accuracy (%) 58.93 64.29 58.93

F1 score 0.4091 0.2857 0.4889

specificity 0.5952 0.7619 0.5238

sensitivity 0.5714 0.2857 0.7857

AUC (%) 63.2 66.2 73.0
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then perform computations that cannot, yet, be understood.
The output of one layer is used as an input for the next
layer. Eventually, it will reach the final output layer, where
the predictions are made.

Three feed-forward models were compiled with different
hidden layer architecture and complexity (table 2). Briefly,
the collected dataset (188 observations) was scaled and ran-
domly split into training (70%) and test dataset (30%). A
down-sampling method was applied to the training dataset
to ensure a 1 : 1 ratio between two classes (‘Leave’ and ‘Did
not leave’), avoiding potential problems (such as over-fitting)
caused by imbalanced data. The new training dataset is then
shuffled before being used to train the models. A 10-fold
cross-validation with 10 repetitions was used to train the
models.

After being trained, the performance of these models on a
novel dataset can be evaluated using several different
metrics. Some of these are summarized in table 2, as well
as being demonstrated through the receiver operator curves
(ROC) curves (figure 8). Accuracy implies the ratio of the
number of correct predictions out of all predictions made,
and therefore, it seems like the higher the accuracy, the
better the performance intuitively. Yet, this is not always
the case, especially if statistical tests show that it is not signifi-
cant, or if the dataset is imbalanced. F1 scores are one of the
most popular metrics used for the evaluation of machine
learning algorithms. It is a measure of the model’s precision
and robustness. Generally, the higher the F1 score, the
better the performance, as it shows that not only could the
model make predictions with adequate accuracy, but it also
did not miss out too many difficult instances. Other evalu-
ation metrics include the model’s sensitivity (i.e. true
positive rate or TPR) and specificity (can be interpreted by
false positive rate or FPR), which can be summarized into
ROC curves (figure 8). TPR indicates the proportion of class
1 samples that were correctly classified, whereas FPR indi-
cates the proportion of samples classified as class 0 that are
false positives. When the ROC curve is above the diagonal
line, it means that the proportion of correctly classified
samples in class 1 is greater than the proportion of samples
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that were incorrectly classified as class 0. The area under this
curve (AUC) is particularly widely used as an evaluation
metric for binary classification problems, which is very appli-
cable in our experiment. The AUC helps to compare different
ROC curves for multiple machine learning models, and there-
fore, provides a measurement of model performance. Typically,
the higher the AUC value, the better the performance.

Taking all these metrics into account, we have concluded
that model 3, with the average level of network architecture
complexity (of the 3), was the best model used for inferring
meaningful patterns from the S. roeseli behavioural dataset
to make predictions. It is important to emphasize that a
simple ANN like model 1 is of no benefit. Even the best
model (with the highest F1 score) can only produce roughly
59% accuracy. Yet, these ANNs contain many more ‘neurons’
than the organism—S. roeseli is a single-cell aneural ciliate.
What does this really mean? How we can unravel the
mechanistic details and computations that a highly complex
brain does when we are not yet able to fully understand
what a simple organism like Stentor is doing?

These results suggest a high level of complexity in
the behaviours of S. roeseli in response to external
stimulation. It cannot be fully explained by habituation, sen-
sitization or operant behaviour. Our machine-learning based
models, though impressive in modelling activities of neural
systems like the brain [16,17], have been largely unsuccessful
when applied here. Some machine learning approaches, such
as ANN and random forest, are considered to be greedy
algorithms and are often criticized for over fitting, yet in
our case we do not observe an accuracy of above 59% in
our test dataset even with a complex ANN architecture.

We realize that the prediction of ‘Leave’ is not an impli-
cation of complete understanding of the decision-making
process and we did not intend to infer the implication in
this work. It is probably reasonable to select any of the
behaviours as the outcome to predict cell decision-making
process but ‘Leave’ is the most appropriate choice because
it is downstream of the other responses and therefore the
maximum number of potential predictor variables are
available. Its strong implication is that if an organism decides
to ‘Leave’ after the sequence of behaviours, an internal
decision-making process has occurred.

Stentor is not the only example of a unicellular organism
displaying learning behaviours; many more aneural organ-
isms [5,7,18–20] have been extensively studied, leading to
surprising results. For example, the slime mould, Physarum,
has also taught us immensely on the ability of single-cell
organism to exhibit learning [21,22]. Even the pathways
regulating Escherichia coli’s chemotaxis behaviour—possibly
the most well-characterized pathway in biology to date—
has taught us many critical lessons that can be applied to
higher organisms, including humans, which also helped to
develop general biological principles.

But the most critical aspect of all the above studies,
including ours, is ‘can invertebrates learn?’. This cannot
and will not be answered unless we all agree on the taxon-
omy of learning. Unfortunately, nothing has changed since
McConnell’s extensive review of invertebrate learning [23],
where he laments that there is no ‘systematics’ in behaviour
and that comparative psychology is still awaiting its
Linnaeus. He asserts that unless we define ‘learned
responses’ and ‘unlearned responses’ we cannot explore the
question of what learning is.

A true definition of ‘learning’ in single-cell organisms
has to be able to explain both Innate response and Enactivism
[24] arguments. The innate response argument suggests that
an organism always comes with a highly complex pattern
of ready-made responses and ‘learning’ is what the environ-
ment imposes on this ready-made system. On the other hand,
the enactivism argument posits that an organism creates its
own reality through dynamic interaction with their environ-
ment, assimilating information about the outside world into
their own ongoing dynamics, not in a reflexive way, but
through active inference, such that the main patterns of
activity remain driven by the system itself.

For the lack of proper definition of learning yet, if we
agree that these aneural organisms exhibit complex internal
decisions leading to fascinating behaviours, our question is,
how do they do it without possessing the complex neural net-
works of higher animals? The ability of Stentor to perform
complex internal decisions based on environmental factors
and respond appropriately is what we attempted to probe
and capture in this study. Hence we have chosen a simple
unambiguous observable decision ‘Leave’ as the outcome
of the complex decision-making process in Stentor and
attempted to capture the (nonlinear) relationships between
the parameters of different avoidance reactions as a machine
learning model. Our attempt was not to unravel the molecu-
lar details from these inferred patterns of relationships
between the parameters through machine learning.

Exploring the mechanistic details underpinning these
behaviours can indeed reveal profound insights into how
neural circuits function in higher animals. Bray has argued
extensively in his book ‘Wetware: a computer in every living
cell’ [10] how a system of protein molecules can perform all
the tasks needed for a cell to sense and respond to its environ-
ment. The switching in behaviour of S. roeseli indicates an
adaptational change in its internal state—i.e. the state of
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existing internal molecular networks (since the timescale is
too short to allow for modifications in gene expression).
The organism is changed by its previous experience, imply-
ing some form of memory. Molecular networks in single-
cell organism and neural circuits in higher animals may
have been independent evolutionary events but may also be
fundamentally related. Subsequent work by Gilles Laurent
and others have reinforced this idea for neurons and other
cells, that is, identifying the molecular players and under-
standing their dynamics will deepen our knowledge of
what living systems are doing.

Here comes the immense power of studying underlying
mechanisms in lower single-cell organisms. These ANNs,
however, can be further developed, both by improving
the experimental design and establishing more fine-tuned,
advanced models. Our training dataset was relatively small
and highly imbalanced. We addressed this issue by applying
down-sampling method, however, it resulted in an even
smaller set. It would be much more beneficial to have a
bigger dataset of higher control and filming quality, as
these directly impact the performance of the ANNs. Equally,
these ANNs can be further developed to a higher level of
complexity, with better suited and tuned parameters to
increase their performance. This would allow more features
to be extracted from the raw data. The best source to search
for guidance to improve computer-based models is from
our understanding and knowledge of the underlying biology
[25]. We also do recognize that perhaps the accuracy
measures can be improved with more training data but it is
not within the scope of the study because the study dwells
on a central question of how difficult it is to interpret the
decision-making process of a single aneural cell.

We recognize and realize that it is not a trivial task.
The extended ANN models that we are proposing would
be based on Boltzmann machines [26–28]. We chose the
Boltzmann machine approach to more traditional ANN
models because Boltzmann machines can indicate what
exact features are important and can help in the interpretation
of models. Wang et al. [28] present an example case where it is
actually being used to identify interpretable deep learning
models to understand cellular and molecular disruptions in
the human brain in schizophrenia. It can do this because it
can encapsulate gene, protein and any other molecular com-
ponents and their inferred and real network of interactions.
These encapsulated networks can be perturbed and the out-
come of the perturbation can be scored and weighted. This
will eventually enable us to unravel ‘molecular wiring’ that
may be responsible for the cell decision process. We hope
this explanation clarifies our approach.

How do we accurately predict and come up with mechan-
istic insights for the decision-making process of Stentor to
understand basal cognitive process is something we hope
to investigate in future studies. We hope that this study
illustrates the limitations of our understanding of cellular
decision-making processes, which will stimulate further
discussion and work not only in our laboratory but also in
the wider community. It is probable that the internal
decision-making process can indeed be simple but neverthe-
less we are not able to capture it with our simple model with
‘Leave’ as the main attribute.

We now know that learning and memories are required
even at the single-cell level. All living cells must have an
awareness of their immediate environment to a certain
extent. Components of the immune system, like macrophages
or neutrophils, are constantly required to learn and form
memories [29]. We are now in a much better position to
study these intriguing behaviours in aneural organisms, or
single-cell behaviours generally, which were undreamt of
by scientists like Jennings a hundred years ago. With the
abundance of advanced biochemical and genetic tools, we
are able to unravel the molecular circuits inside these single
cells in much more detail. These results are then combined
with computational simulation and computer-based artificial
intelligence, creating a powerful synergistic effect which will
one day decode the mystery behind these observations. One
might question the validity of using ANNs in modelling
biological molecular networks. Despite many differences in
details, general principles and properties are still shared
[10]. This research contributes significantly to our ultimate
goal of elucidating general principles of computations
taking place in the brain [30]. Nonetheless, the biggest
drawback of this approach is, indeed, its black-box
nature. There have been multiple efforts recently to open
this black box and reveal the computations performed by
ANNs [31,32].

As Richard Feyman’s famously said—whether it be ANN
computations or living cellular behaviours—‘What I cannot
create, I do not understand’. Our work is just an initial
quest in that direction. We are excited to share these results
with the wider community and hope that this study illus-
trates the limitations of our understanding of cellular
decision-making processes, which will stimulate further
discussion.
5. Material and methods
5.1. Stentor roeseli source and maintenance
Cultures of S. roeseli were purchased from Sciento (Manchester,
UK) approximately every week over a period of one month.
Sciento harvested the organisms from a pond on the property
of Whitefield Golf Club (83 Higher Lane, Whitefield, Manchester,
UK). In the laboratory, S. roeseli was maintained in well-aerated
glass flasks in pond water, which were kept mainly in the
dark, with partial sunlight. All behaviour experiments were
performed on organisms purchased no more than 7 days
beforehand.
5.2. Micro-stimulation apparatus and set-up
Custom-built apparatus to deliver controlled pulses of poly-
styrene beads directly near the mouth of the organism was
used. A small clamp was placed next to the microscope. The
microinjection glass needle was loaded with the suspension
of fluorescent-red latex beads (fluorescent-red, carboxylate-modi-
fied polystyrene beads in aqueous suspension with 0.1% NaN3
(Sigma-Aldrich; mean diameter 2 µm)) and connected to an elev-
ated reservoir of distill water. The needle was then held next to
the microscope by the clamp.

One drop of S. roeseli culture was placed on a glass slide for
each observation. The droplet culture was allowed to settle down
for few minutes. The microinjection needle was positioned
next to the mouth of the organism by hand, and its position
was adjusted as needed throughout the experiment using the
clamp. Short pulses of beads were generated as a gravity flow
with the opening and closing of a two-way stopcock connected
to the bottom of the reservoir, or adjusting the height of
the reservoir.
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5.3. Microscopy
All images were acquired using a Leica MZ16F Stereoscope
equipped with a 11.25× objective lens and a QImaging Retiga
2000R monochrome camera. Images were collected at a rate
of 15 frames per second for time lapse experiments, using
an exposure time of 16.184 ms using Micro-Manager [33]. All
microscopy experiments were performed at the Imaging Facility,
Zoology Department, University of Cambridge.
 g.org/journal/rsif
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5.4. Video analysis
Twenty-nine collected videos were analysed and investigation
was performed on 188 individual organisms. Detailed descrip-
tion of the behaviours of S. roeseli was recorded along with the
corresponding time in the video. A video would be terminated
if: (1) all sessile S. roeseli ‘decided’ to leave and swam away,
or (2) the specimen dried out even though there were still
organisms being attached to the piece of algae.
 erface

16:20190410
5.5. Modelling
Raw data collected from video analysis were converted into time
spent (1) at rest, (2) bending, (3) reversing cilia, (4) contraction, (5)
number of contractions and (6) leave (or did not leave). These data
were then scaled and randomly split into a training dataset (70%)
and a testing dataset (30%). A down-sampling method was
applied to the training dataset to ensure a 1 : 1 ratio between
two classes (‘Leave’ and ‘Did not leave’). New training dataset
is then shuffled before being used to train the models.

All modelling was done using R Studio.
Decision tree and random forest models were compiled using

rpart, randomforest (respectively), and caret packages in
R. A 10-fold cross-validation with 10 repetitions were used to
train the models.

Feed-forward neural networks were compiled, trained and
evaluated using the Keras package.

Data accessibility. All videos are available to download from Mendeley
and the links to download are given in electronic supplementary
material, table S1. Processed information from all the videos that
were used in the machine learning models are given in table 1.
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