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Abstract

In the most recent years, an extraordinary research effort has emerged to disentangle osteoarthritis 

heterogeneity, opening new avenues for progressing with therapeutic development and unravelling 

the pathogenesis of this complex condition. Several phenotypes and endotypes have been proposed 

albeit none has been sufficiently validated for clinical or research use as yet. This review discusses 

the latest advances in OA phenotyping including how new modern statistical strategies based on 

machine learning and big data can help advance this field of research.
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INTRODUCTION

Osteoarthritis (OA) is among the most prevalent and debilitating chronic diseases 

worldwide, affecting predominantly older adults (1, 2). There has been significant effort to 

develop therapies to improve care for OA patients both from the symptomatic perspective 

and from the point of view of structure modification. Despite that, no therapies have been 

proven to modify disease progression or proven to be highly effective for symptomatic 

relief, other than joint replacement for advanced disease, leading to profound 

disappointment among researchers, patients and clinicians.

The contemporaneous evidence-based management of OA is based on non-pharmacological 

and pharmacological therapies, with surgical intervention reserved for patients with severe 

disabling symptoms who have not improved with non-surgical interventions (3). However, 

despite numerous treatment options being available, outcomes for patients with OA are 

usually suboptimal and patients remain vulnerable to the clinical consequences of the 
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disease on pain and physical function (4). An important aspect of OA is its extraordinary 

interpatient variability in clinical and structural manifestations (5, 6). This heterogeneity 

may be one of the major factors associated with the complexity of OA and with the 

difficulties to identify one-fits-all therapeutic strategies.

Major advances in the physiopathology and manifestations of OA have occurred in the last 

decade, revealing the variety of potential molecular and cellular changes that can be involved 

in the joint destruction process. It has been demonstrated that all joint tissues can be affected 

(7), which occurs in different extents across patients and results in an array of possible 

structural OA manifestations (e.g. variable degrees of inflammation, meniscal lesions, bone 

damage, etc.). In addition, the pain experience can be caused by different factors including 

the peripheral joint pathology and extra-articular sources of pain such as psychosocial 

factors and neural mechanisms (8). New therapies have been developed that target pain but 

not structure including inhibitors of nerve growth factor (NGF) such as the anti-NGF 

monoclonal antibody tanezumab (9, 10). Interventions targeting many of these structural 

pathologies and pain mechanisms have been tested in trials but none to date have been 

approved as structural or disease modifying therapies.

One reason for the failure of clinical trials testing therapeutics intended for structure 

modification in OA is that it is unclear at present which patients would be most suitable for a 

specific therapy. For example, the failure of bisphosphonates to slow OA progression might 

have been due to enrolling any patient with symptomatic OA rather than selecting patients 

with greater subchondral bone turnover (11). In order to address the heterogeneity of OA to 

improve clinical research and trials, a new model of understanding OA based on a 

phenotype-guided approach is needed. Recently, a significant research effort has emerged 

aimed to define a classification of OA phenotypes for the purpose of better identifying 

individuals at higher risk of progression and to better delineate OA subpopulations caused 

by distinct risk factors and disease mechanisms that would be suitable for targeted treatment 

and prevention strategies.

Other medical fields are more advanced than OA when it comes to disease phenotyping such 

as chronic obstructive pulmonary disease (12) and heart failure (13). A classification of 

phenotypes has been achieved in these fields, defining disease subtypes within the spectrum 

of the condition. In this regard, such classifications are only relevant and clinically useful if 

they can inform on differences in underlying pathophysiology, clinical outcomes or 

management. For example, heart failure is recognized as being divided into two main types 

according to a patient’s left ventricle ejection fraction (i.e. percentage of blood that comes 

out of the heart with each contraction), which can be reduced or preserved and is associated 

with differences in systemic and local mechanisms, risk factors, natural history and 

treatment options (14). Another example is the field of oncology. Diseases such as breast 

cancer used to be seen as the same condition across different patient groups. It is now known 

that breast cancer is a heterogeneous condition with varied molecular pathophysiology, such 

as the presence/absence of biomarkers including hormone-receptors and the HER2 protein 

(15). Patients are now treated and have their prognosis estimated according to these 

biomarkers which delineate disease subtypes with particular behaviors.
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In knee OA, for example, clinically distinct subtypes exist such as medial and lateral 

tibiofemoral OA and patellofemoral knee OA, and potentially many others. However, the 

understanding of how this affects treatment decisions and prevention strategies is still in its 

infancy. Identifying specific OA phenotypes and endotypes can inform both prognosis and 

guide therapeutic development for this prevalent disease, with the potential of positively 

impacting patient care. This review summarizes the latest progress on phenotyping/

endotyping OA research and includes a discussion on novel methodologies for phenotyping 

based on machine learning and big data.

APPROACHES FOR OA PHENOTYPING

A phenotype can be understood as the composite observable characteristics of an individual 

that result from genetic combined with environmental factors. Subgroups of patients that 

have similar clinically observable characteristics are considered to represent a phenotype. 

Division of patients into discrete subgroups or subtypes is sometimes referred to as 

stratification. Prognostic phenotyping is the identification of subgroups that are more likely, 

within a specified period of time, to reach a specific outcome of interest (e.g., disease 

progression defined by deterioration in joint structural features and worsening pain) (Figure 

1). Prescriptive phenotyping aims to define subgroups more likely to respond to a specific 

intervention with an outcome of interest (e.g., improved pain or function). Identifying 

subgroups by prognostic and prescriptive phenotyping (e.g., using prediction models) is 

necessary to meet the goals of precision medicine, defined as “treatments targeted to the 

needs of individual patients on the basis of genetic, biomarker, phenotypic, or psychosocial 

characteristics that distinguish a given patient from other patients with similar clinical 

presentations”(16).

Another concept that has emerged from phenotyping studies in chronic conditions such as 

asthma is the term “endotype”(17). Unlike phenotypes, which are based on clinical 

characteristics that are not necessarily connected to an established pathophysiologic 

mechanism of disease, an endotype “is a subtype of disease defined functionally and 

pathologically by a molecular mechanism”(17). It is important to note that a given OA 

phenotype (e.g. medial tibiofemoral OA) may be common to multiple endotypes (i.e., 

different mechanisms leading to the same manifestation). The importance of identifying 

endotypes for targeted treatment has gained much attention particularly from the point of 

view of drug discovery, where identifying the right target is key for success.

How to best subset OA into phenotypes and endotypes and whether certain subsets are of 

any clinical value is an important issue that has not yet been fully addressed but is under 

active investigation. A commentary was written in 2009 (18) by three notable figures in OA 

research in response to an article suggesting that “primary” or idiopathic OA could be 

divided into subsets consisting of genetic defects, menopause-associated estrogen deficiency, 

and aging (19). The authors of the commentary, Ken Brandt, Paul Dieppe, and Eric Radin, 

eloquently argued that dividing OA into primary and secondary subsets is not useful since 

“all OA is secondary” and that any attempt to subset OA had to take into account the fact 

that OA is largely a condition driven by the response to mechanical stress on the joint. They 

suggested that subsetting OA should be done on the basis of the mechanical abnormalities 
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responsible for OA in a group of individuals that could include joint trauma, neuromuscular 

factors that affect the ability to absorb loading, congenital or developmental anatomic 

abnormalities causing joint incongruities or postinfectious. They also noted that it will be 

important to consider the large number of confounding variables involved.

Like other chronic heterogeneous conditions, there are multiple genetic and environmental 

factors that increase the risk of developing the joint changes characteristic of OA, clinical 

manifestations of pain and loss of function, and progression to end-stage disease (20, 21). 

There is a critical need to accurately define the various factors that could contribute to 

phenotypes and subgroups of OA from a large number of potentially important variables 

(Figure 2). It is becoming clear that simply defining OA phenotypes based on risk factors 

(for example posttraumatic OA, obesity-related OA, age-related OA, postmenopausal OA, 

genetic OA, mechanical OA) is far too simplistic. Many individuals have more than one risk 

factor and, as already noted in the case of mechanics, there are shared mechanisms among 

risk factors with mechanical factors likely contributing to all OA. For phenotyping to be 

successful, datasets with a diverse set of variables and well-defined outcomes are needed. 

This may include various socio-demographic factors and clinical, imaging, and biochemical 

marker measurements in addition to mechanical measures. In some cases, genetic and 

“omic” data (transcriptomic, proteomic, metabolomic, microbiomic), or data from histologic 

analysis of tissue samples may be needed that will allow for more precise phenotyping.

Various types of analysis can be used to define phenotypes using clinical and biological data, 

which are discussed below in the “Big data/ machine learning for OA phenotyping” section. 

Latent class analysis was used to cluster clinical and imaging data from the Osteoarthritis 

Initiative (OAI) database and four clusters were identified that represented mild OA, mild 

OA with areas of denuded bone that the authors called “classical OA”, and two severe OA 

groups of “aggressive OA” with larger areas of denuded bone and a high prevalence of 

progression with one of the two latter groups exhibiting more lateral involvement (22). 

Variables that were significantly different among clusters included BMI, alignment, and 

history of trauma which again emphasizes the importance of mechanics in OA.

A recent systematic review of OA phenotypes published in 2016 examined the current 

evidence for groups of variables that would distinguish OA phenotypes (23). This review 

identified six phenotypes from 24 published studies that included: 1) chronic pain phenotype 

with central sensitization; 2) inflammatory phenotype; 3) metabolic syndrome phenotype; 4) 

bone and cartilage metabolism phenotype; 5) mechanical (malalignment) phenotype; and 6) 

minimal joint disease phenotype. It is not clear how meaningful these phenotypes might be 

clinically or if they could be used for attempts at stratifying patients for clinical trials. A 

“metabolic syndrome phenotype” may simply represent individuals with obesity and OA. 

The association between metabolic syndrome and OA has not been well established and, 

after controlling for BMI, the correlations between OA and features of the metabolic 

syndrome are not significant (24). As mentioned above, all OA has a mechanical component 

and so it is unlikely to represent a distinct phenotype and all OA has involvement of bone 

and cartilage also making it unlikely to represent a distinct phenotype.
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There has been much interest in defining an inflammatory phenotype or endotype in OA as 

well as a bone phenotype. Methodologies that can be used to better define an inflammatory 

phenotype include imaging (e.g., ultrasound or MRI) to detect synovitis (25, 26), blood 

levels of high sensitivity CRP and IL-6 (27–29), soluble macrophage markers (CD14 and 

CD163 in the synovial fluid and CD163 in serum) (30) and transcriptome data from 

peripheral blood leukocytes (31). Defining a bone phenotype would likely include imaging 

of osteophytes and subchondral sclerosis using radiographs and bone marrow lesions 

detected by MRI. However, since these are common features of OA, it is difficult to envision 

how they would define a distinct bone phenotype. Biomarkers of bone turnover such as 

urinary CTX-1, urinary NTX-1, serum PINP, and serum osteocalcin could be used to 

provide additional data on bone turnover (32, 33). Attempts to utilize inflammatory and 

bone phenotypes for targeted therapy, as well as the use of additional biomarkers, will be 

discussed below.

CURRENT STATE OF OA PHENOTYPING

Endotypes/mechanistic subgroups

As discussed above, endotypes are disease subtypes resulting from differences in specific 

pathobiological mechanisms. Research so far has suggested the existence of a few possible 

endotypes that will be discussed in this review. However, there may be many others that are 

not included herewith. In this regard, pre-clinical studies are key to understand how different 

etiologies such as post-traumatic and age-related OA may be associated with differences in 

disease pathophysiology and expression.

A structural endotype related to ageing or cell senescence has been suggested by a few 

studies, primarily in pre-clinical models (34, 35). Not only greater OA severity but 

differences in gene expression and pathways represented by these genes have been observed 

in older mice compared to younger mice in an injury-induced OA model (36), suggesting 

that the same OA model may result in different phenotypes depending on age. Defining a 

senescence endotype in human OA may be important as drugs for treatment of OA called 

senolytics are being developed that target and kill senescent cells in the joint (37).

There is an active interest in defining an inflammatory endotype that would have a shared 

mechanism related to a specific cytokine that could be targeted for therapy. Given the role 

for cytokines in OA this could be of value in advancing OA treatment as well. Supporting 

the existence of an endotype with increased inflammatory characteristics, Attur et al showed 

the existence of two subgroups of knee OA patients with different gene expression profiles 

in peripheral blood leukocytes. In this study, clinical and structural outcomes were worse in 

the subgroup with higher production of IL-1β compared to the subgroup with lower levels 

(31). However, whether targeting specific anti-cytokine therapies to an inflammatory OA 

phenotype would be useful remains unproven. A recent phase 2 trial of an anti-IL1α/β 
antibody lutikizumab in patients with knee OA and synovitis detected by MRI showed 

limited improvement in pain scores and no change in synovitis in the treated group 

compared to placebo controls (38). This does not necessarily mean that targeting the 

inflammatory phenotype will not be successful but rather that inhibition of IL-1 may not be 
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the right target. Other potential endotypes include ones associated with metabolic factors 

(39, 40) and hormonal dysregulation (41, 42).

Pain endotypes have also been investigated. Individuals with or at risk of knee OA who 

displayed greater features of sensitization such as pressure pain sensitivity and temporal 

summation experienced worse clinical outcomes in cross-sectional studies (43–45) and were 

more likely to develop incident persistent pain after two years in a recent longitudinal 

analysis (46, 47). Presence of psychological characteristics such as pain catastrophizing has 

additionally been shown to negatively influence pain outcomes (48). Identifying individuals 

with those characteristics and tailoring pain therapies to each patient’s needs may be vital to 

achieve better clinical outcomes.

Prognostic subgroups

Heterogeneity in long-term OA outcomes has been highlighted by a number of recent 

studies using trajectory analysis. This statistical methodology uses a data-driven approach to 

identify clusters of people following different trajectories in a given outcome over time. 

Using trajectory analysis, we have recently shown that a minority of knee OA individuals 

(around 1 in 10) experience medial cartilage thickness loss assessed on MRI over 2 years 

(49), which is consistent with other studies using radiographs for outcome assessment (50, 

51). This subgroup had greater odds of experiencing concurrent pain progression and 

requiring total knee replacement. Importantly, this subgroup could be identified with 

relatively good accuracy by a set of baseline clinical and disease characteristics. Other 

studies have also defined prediction models to identify knee OA progression (52–54) and 

incident knee OA with fast progression (55); however, there were different definitions of 

progression in these studies, such as an increase in Kellgren Lawrence grade (KLG) (52) and 

a reduction in medial joint space on radiographs (54). It should be highlighted that 

prediction models in most of these studies used characteristics that can be easily obtained 

through the clinical history, physical examination or radiographic assessment to facilitate 

their use in clinical practice or research using clinical datasets.

Other subgroups have been defined according to trajectories of clinical progression (56–59). 

Clear differences in prognosis have been shown, with the majority of individuals following a 

stable course over several years with mild to moderate symptoms, while others experience a 

more severe disease course with persistent intense pain and disability or significant decline 

over a few years. We have previously summarized these studies as well as the baseline 

characteristics that more frequently predicted worse trajectory outcomes (60). These 

included high BMI, lower education, more severe symptoms and radiographic disease at 

baseline, psychological factors (use of passive coping strategies and depression) and 

presence of other comorbidities including concomitant hip pain (60).

Defining individuals most likely to develop OA and the subgroup of individuals with OA 

most likely to exhibit structural progression within a selected time frame (rapid progressors) 

for both observational studies and clinical trials is extremely important. Latent class analysis 

of MRI variables collected at baseline from individuals without radiographic OA in the 

Multicenter Osteoarthritis Study, including cartilage damage, bone marrow lesions, meniscal 

tears, meniscal extrusion, synovitis, and effusion, was used to determine the odds of 
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developing incident radiographic OA in 4 subgroups (61). As might be expected, those in the 

subgroups with more severe lesions were at greater risk than those with mild lesions. 

Radiographic criteria for progressor vs non-progressors by measurement of change in joint 

space width on plain films includes the OARSI-OMERACT criteria (62). These criteria were 

used to select progressors and non-progressors for a urine metabolomics study of 

participants in the Intensive Diet and Exercise for Arthritis (IDEA) trial that analyzed the 

metabolomics data using OPLS-DA, a commonly employed method for analysis of such 

high dimensional multicollinear data (63). OPLS-DA distinguished the metabolite profile of 

radiographic progressors from non-progressors and found a panel of metabolites that 

associated with radiographic progression (63).

Biochemical markers, measured in serum, plasma, urine or synovial fluid, represent 

measures that can provide important information for phenotyping. To date no single marker 

has been found to be sufficient for diagnosis or prognosis in OA. A study from the 

Foundation for the NIH (FNIH) OA biomarkers Consortium, examined 18 biomarkers 

measured at baseline, 12 and 24 months in 194 participants from the OAI study (64). Eight 

catabolic biomarkers (urine (u) c-terminal crosslinked telopeptide type II collagen (uCTXII), 

uC2C-Human Urine Sandwich Assay (HUSA), type I collagen cross-linked N-telopeptide 

(uNTXI), c-terminal crosslinked telopeptide of type I collagen α and β (uCTX1α and 

uCTXIβ, respectively), serum (s) hyaluronic acid (sHA) and c-terminal crosslinked 

telopeptide type II collagen (sCTXI)) and one anabolic marker, N-terminal pro-peptide of 

collagen IIA (sPIIANP), were shown to be the best predictors of pain and radiographic 

progression over 48 months. These and newer biomarkers under development may be useful 

to define phenotypes most likely when used in combination with other data such as imaging 

and clinical data.

Treatment response subgroups / prescriptive phenotyping

There is an increasing understanding and awareness that optimal effects of OA treatments 

might be attained by personalizing care according to clinically relevant characteristics which 

is a goal of precision medicine. Clinical trials can be used to investigate variations in the 

extent patients improve or fail to improve with a given treatment, while observational studies 

cannot differentiate the effect of the intervention from the disease natural history without an 

appropriate control. Most analyses investigating subgroup effects of interventions in OA 

have been post-hoc and exploratory. For example, there is a great interest to identify 

subgroups of patients in whom biomechanical interventions may be more effective, which 

has been highlighted as a research priority by the National Institute for Health Care and 

Excellence (65). It has been shown, in an underpowered analysis from a clinical trial, that 

unloading shoes alleviate knee pain in a significantly greater extent in patients with more 

severe structural disease (KLG 3 or 4) than those with milder disease (KLG 2) compared to 

conventional shoes, and that this may be mediated by a decrease in peak knee adduction 

moment (66). Baseline disease severity, represented by higher baseline knee pain scores (at 

least 70 in a 0–100 scale), was also significantly associated with a greater response to intra-

articular glucocorticoid injection after up to 4 weeks compared to placebo injection (67).
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There is also interest in determining if a bone phenotype exists in OA that might be 

responsive to agents that act on bone such as the antiresorptive bisphosphonates. Selecting 

OA patients with bone marrow lesions in a clinical trial of the bisphosphonate zoledronic 

acid resulted in reduction in pain and the size of the bone marrow lesions in the treatment 

group compared to the placebo group over 6 months but not over 3 or 12 months (68). An 

individual patient data meta-analysis is underway to investigate whether particular patient 

subgroups are more likely to benefit from bisphosphonates than others (69).

Trajectory analysis has been used to investigate heterogeneous response following exposure 

to interventions (70). Lee et al found four patterns of response to exercise over 12 weeks 

among knee OA patients, with over 70% of patients displaying early improvement while a 

minority experienced delayed improvement (15%) or no improvement (10%). Individuals 

with poorer physical and psychosocial status at baseline were more likely to follow an 

unfavorable trajectory. These findings highlight that early treatment is vital to reduce pain 

and disability and suggest that appropriate patient stratification may be needed to triage 

patients according to their likelihood of improvement with a given intervention. In other 

words, it would be helpful for clinicians to be able to differentiate patients who are likely to 

improve with safer and cheaper interventions, such as exercise and diet, from those who may 

need additional interventions (likely more complex and expensive) or a higher level of care. 

Currently, new OA models of care, characterized by a multi-disciplinary and holistic 

approach to personalize the therapeutic plan, have been implemented in several countries 

(71). At present, a decision support tool to identify persons with OA who would benefit the 

most from those programs and who would be best targeted by specific interventions is 

lacking.

Prescriptive phenotyping can also be used to identify individuals more likely to experience 

serious side effects from interventions. A subgroup of patients receiving anti-NGF 

experience more rapid progression of their structural changes which is a serious concern that 

could limit its use unless those at higher risk of this adverse effect can be identified before 

treatment is initiated (72). A recent exploratory study attempted to do just that using a panel 

of serum biomarkers in an attempt to phenotype participants in the tanezumab trials who 

were most at risk of developing a rapidly progressive OA phenotype (73).

BIG DATA/ MACHINE LEARNING FOR OA PHENOTYPING

Data sets in medicine are becoming ever larger, and in order to utilize these vast amounts of 

data, researchers need to look beyond traditional statistical methodology. Enter machine 

learning, where a computer learns from a variety of examples, eventually “learning” to 

classify new information based on these inputs (74). There are many names for machine 

learning methodologies, including artificial intelligence, artificial neural networks, deep 

learning, support vector machines, decision trees, etc. Machine learning algorithms can be 

supervised, unsupervised, or somewhere in between.

Only recently have these methodologies begun to impact the world of OA research (75). A 

variety of machine learning methodologies initially utilized primarily for image analysis in 

OA (76–78), are being increasingly applied to large datasets, often including detailed 
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imaging, biochemical biomarker, and genetic/genomic information, for the purpose of 

identifying important OA subgroups (79–82). Of course, no method is a panacea, and 

analysis of large datasets can also generate seemingly meaningful results which are in fact 

spurious artifacts. As datasets become ever larger, and incorporate more complex objects, it 

becomes increasingly important to link confirmatory analysis with the scientific discovery 

process, while incorporating study design and subject area expertise.

Unsupervised learning

There are many alternative approaches to the validation and discovery of novel phenotypes 

(e.g., latent class methods, Bayesian approaches, factor analysis, etc.). A variety of tools are 

available for exploring clusters within data, all of which have positive and negative aspects, 

particularly in the high dimension and relatively low sample size setting (83). For example, 

cluster analysis (i.e. data segmentation) attempts to group items into clusters, such that items 

within a cluster are more closely related than those in different clusters. Once identified, 

these clusters are frequently arranged into a hierarchy to represent similarity among clusters. 

Principal components analysis and related methods attempt to reduce dimensionality in a 

dataset, thus providing more interpretable clusters, similar to the goals of latent class 

analysis (a subset of structural equation modeling) and factor analysis. Regardless of 

methods used, clusters can be readily identified in large datasets; the central challenge is to 

determine whether identified clusters are actually important in such unsupervised analyses. 

SigClust is an example of a novel method for hypothesis testing of clusters in high 

dimensions (84, 85), which can be used in conjunction with subject area expertise to 

determine whether identified clusters are likely important.

Supervised learning

In contrast to data-driven clustering, supervised machine learning methods are based in 

hypotheses, but take advantage of the computer’s ability to utilize high dimensional data, 

beyond what is often possible using traditional statistical methods. One approach, described 

by J.S. Marron and colleagues, is Object Oriented Data Analysis (OODA (86, 87)). OODA 

attempts to understand the data structure, determine appropriate data objects, and choose an 

appropriate analysis for the situation. Whereas in a typical analysis, the experimental unit 

may be a number or a set of numbers (i.e., a vector), OODA allows assessment of more 

complicated data objects, such as images or large multivariable datasets with repeated 

observations. Through consideration of all of the variables related to a given observation as a 

single data object, potential biases related to variable selection are alleviated, while 

providing a more complete picture using all available data.

Some of the OODA methods developed by Marron and colleagues include Distance 

Weighted Discrimination (DWD) and the Direction-Projection-Permutation (DiProPerm) 

test, which can be utilized in the setting where the classes are known, for example when 

validating previously hypothesized phenotypes, or comparing progressors and non-

progressors. DWD is a linear discriminant analysis method allowing maximal separation of 

data points by class (88), which has been utilized in OA (78, 81), and is particularly suited to 

cases where the dimension of the data vector exceeds the number of samples (i.e., a large 

number of measurements relative to the sample size). The difference between two 
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distributions obtained using DWD can then be tested for statistical significance using the 

DiProPerm test (89). DiProPerm ensures statistical specificity of the hypothesis test for two 

previously defined populations by first finding a separating direction (e.g. DWD), then 

projecting the data and using a one dimensional summary of the separation (e.g. the 

difference of the means). Statistical significance is obtained by a permutation approach, 

where the class labels are randomly shuffled and the DWD direction and projections are 

recomputed, giving a null distribution whose quantiles are used to compute p-values. This 

powerful machine learning method treats the overall vector of features as a single data 

object, so there is no requirement for adjustment for multiple comparisons.

Examples of applied machine learning in OA

Our group has applied DWD and DiProPerm to the publicly available OA Initiative FNIH 

Biomarkers Consortium dataset to assess differences between non-progressors and 

progressors by both radiographic (rKOA) and pain criteria (81). We found that, among 597 

observations and 73 variables, the grouped baseline MRI variables contributed more (z score 

range 10.28–11.62) to the difference between progressors and non-progressors than did 

demographic and clinical variables (z score =1.47) or biochemical markers (z score =2.43). 

In addition, specific baseline variables (Western Ontario and McMaster Universities 

Osteoarthritis Index [WOMAC] pain, sPIIANP, and lateral meniscal extrusion) were higher 

among non-progressors, while uCTX-II, bone marrow lesions, and osteophyte number were 

higher among progressors; features that might inform phenotypes. In support of the validity 

of our methods, the published FNIH biomarkers study (64) also found sPIIANP was higher 

in non-progressors and uCTX-II was the strongest biomarker predictor of progression in the 

same dataset. The consistency of the results is reassuring, but notably, we were able to 

identify all of these associations in a single machine learning based analysis, rather than 

numerous studies focused on one or only a few features.

Strengths and limitations

Machine learning methodologies provide several advantages, including the ability to treat all 

available data as a single data object in high dimensional space, thereby obviating the need 

to adjust for multiple comparisons in some cases. All variables, even when there are 

hundreds or thousands of variables, can be considered together, reducing bias related to 

variable selection. A single analytic model can simultaneously identify a number of key 

variables or contributors to outcomes of interest. Limitations include the inherent limitations 

of the dataset (the analysis is limited to what is available), issues of generalizability which 

requires both internal and external validation, and the need for further analyses to determine 

the importance of the associated variables. These approaches, as currently described, are 

akin to genome-wide association study (GWAS) in that they provide several variables (i.e., 

single-nucleotide polymorphisms (SNPs)) of interest, but further “functional” assessments 

are needed to confirm and characterize the importance of those variables to the disease 

process both in the discovery cohort and in external populations.
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FUTURE DIRECTIONS

The field of OA phenotyping has evolved significantly, with multiple studies aiming to 

identify phenotypes based on different OA aspects (e.g. clinical, structural, laboratory and 

aetiologic phenotypes) and employing different methodologies. A framework to guide future 

research is underway and will hopefully help to optimize efforts in this field. As highlighted 

in this review, efforts in OA phenotype research should focus on one or more of three main 

goals: identify those individuals at higher risk of progression; identify those more likely to 

benefit from a given existing treatment; and identify specific pathological processes (i.e. 

disease mechanisms representing specific endotypes) for targeted treatment, potentially with 

new agents/treatment strategies. Ultimately, all approaches aim to achieve improved clinical 

outcomes for individual OA patients. In addition, there is a widely recognized discordance 

between structural involvement and symptomatic disease in OA, and phenotypes are likely 

to be more helpful if defined according to a specific perspective (i.e. structural damage and 

pain mechanisms) to inform treatment strategies. There is a need to identify those 

individuals in whom structural and clinical progression are coupled and those in whom they 

are dissociated.

Research investigating phenotypes in other joints such as the hip, hand, foot and spine has 

lagged far behind that of knee OA and should also be the focus of future studies. Different 

OA phenotypes are likely to exist in joints with different pathophysiological drivers (knee 

vs. thumb base vs. hip), although risk factors that are common to more than one joint may be 

implicated in a phenotype of multiple joint OA (90).

Most evidence on the presence of phenotypes/endotypes so far come from single or few 

studies and lack validation. Further research is needed to validate previous findings and to 

assess their implications for clinically important outcomes and clinical trial design. In this 

regard, the availability of high-quality data, ideally longitudinal and from different 

populations, is key for OA phenotyping research. Efforts to combine datasets from existing 

OA cohorts/previous clinical trials are likely to be helpful by providing larger datasets for 

the identification and validation of phenotypes. In addition, imaging and/or laboratory 

biomarkers may be useful to define clinically relevant phenotypes. Nonetheless, to increase 

the uptake of proposed phenotypes and translation into practice, phenotypes should be 

recognizable using easy to obtain patient data (either clinical, imaging or laboratory).
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Figure 1. 
Examples of different types of phenotypes and endotypes and their potential uses.
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Figure 2. 
Factors and manifestations that could contribute to OA phenotypes/subgroups.
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