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ABSTRACT Immunotherapy is playing an increasingly important role in the treatment of tumors. Different from the traditional direct killing

or excision therapies, immunotherapy depends on autologous immunity to kill tumor cells and tissues by activating or enhancing

the body’s immune system. Large numbers of recent studies suggest that low-frequency HIFU can not only enhance the intensity

of  the  body’s  anti-cancer  immune  response,  but  also  improve  the  efficiency  of  immunotherapy  drug  delivery  to  strengthen  the

effects of tumor immunotherapy. The focused ultrasound (FUS) destructs the tumor and simultaneously generates tumor debris

and tumor-associated antigens, which enhances the immunogenicity of the tumor and stimulates the immune cells, inducing the

body’s  immune  response.  Microbubbles  are  clinically  used  as  a  contrast.  As  a  matter  of  fact,  the  addition  of  microbubbles  can

reinforce  the  destructive  effect  of  FUS  on  the  tumor  and  activate  a  stronger  immune  response.  The  combined  application  of

ultrasound and microbubbles can more effectively open the blood brain barrier (BBB), which is beneficial to improving the intake

of  immune  cells  or  immunotherapy  drugs  and  exerting  a  positive  influence  in  the  lesion  area.  Currently,  microbubbles  and

nanoparticles are commonly used as gene and drug carriers. Using ultrasound, the immune-related gene or antigen delivery itself

can enhance the immune response and improve the efficacy of the immunotherapy.
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Introduction

Malignant tumors are one of the main diseases that seriously

threaten human life. The therapeutic regimens commonly

used in clinic include surgery excision,  radiotherapy,  and

chemotherapy. As several traditional treatment means, they

can  treat  the  primary  cancers  very  well  although  their

drawbacks, such as uncontrolled recurrence and metastasis,

cannot be ignored in the practical application, so new cancer

therapeutic  methods  need  to  be  developed  urgently1.

Immunotherapy, a new type of cancer treatment, does not

kill the cancer cells directly. By activating or enhancing the

human  immune  system,  the  cancer  immunotherapy

eradicates  the  cancer  cells  or  tissues  depending  on

autoimmune function2. The target of this method aims at the

autologous  immune system instead of  the  cancer  cells  or

tissues3. Cancer immunotherapy has received wide attention

because of its great clinical application value4.

The  functions  of  the  immune  system  are  mainly

manifested  in  three  aspects:  defense,  stabilization  and

immune  surveillance.  Once  these  functions  are  out  of

balance, immunopathological reactions occur5. Immunity of

the  body  can be  roughly  divided into  two kinds:  specific

immunity  and  non-specific  immunity.  Non-specific

components  need  not  be  exposed  beforehand  and  can

respond immediately, effectively preventing the invasion of

various pathogens.  Specific  immunity is  developed in the

lifetime of the body, and is specific to a certain pathogen6.

Dendritic  cells  (DCs)  are  the  most  powerful  antigen

presenting  cells  and  can  efficiently  absorb,  process  and

present  antigens.  Immature  DCs  have  strong  migration

ability. Mature DCs are at the center of initiation, regulation

and maintenance of immune response, and can activate the

initial  T  cells  effectively7.  An  effective  immune  response

includes  three  procedures8:  (1)  The  DCs  capture  tumor

antigens and process them inside acquiring “mature signals”

to activate the immune response for the antigens. (2) DCs

present  antigenic  information to  the  immature  T cells  in

lymphoid tissue and make them activated, which initiates the

specific immunity of the human body. If the DCs presenting

antigens are activated by immature signals, the T cells will be

induced  to  create  tolerance  and  consequently  resist  the
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immune response.  (3)  The  activated  T cells  infiltrate  the

cancer  tissue,  specifically  recognize  and  kill  cancer  cells.

However, tumor cells possess the nature of immune escape,

which makes them avoid the recognition and attack from the

immune  system  by  multiple  mechanisms,  so  it  is  very

difficult  to  eradicate  the  tumor  cells  or  tissues  via  the

autoimmune  system  of  the  human  body.  Eradication  of

tumors by means of stimulating the autoimmune system is

very promising for anticancer treatment9,10. Currently, tumor

immunotherapy  mainly  includes  the  following  types:

enhancing a specific immune system11,  tumor vaccine12,13,

and adoptive cell transfer (ACT)14.

Ultrasound (US) is defined as a kind of mechanical wave

with a frequency over 20 kHz and cannot be detected by the

human ear. Aside from medical imaging, US also performed

well in the treatment field15. In recent years, many studies

indicate  that  US can be  used  to  promote  the  anti-cancer

immune  response  of  the  human  body16,17.  Focused

ultrasound (FUS) can not only create thermal effects but also

create  mechanical  effects  or  cavitation  effects18.  The

mechanical effects or cavitation effects can increase the anti-

cancer immune response of the host body19. Theoretically,

these  effects  can  be  classified  by  various  US  parameters.

Cavitation  effect,  as  one  of  the  main  mechanical  effects,

usually occurs at low frequency, high intensity and low duty

cycle20.  The  thermal  effects  of  US  often  occur  at  high  to

moderate  intensity  and  longer  duty  cycles,  and  they  are

generally  used  in  combination  with  thermosensitive

formulations21.  Genes and antigens are delivered into the

cancer cells or tissues adopting US, which can also activate

the anti-cancer immune response20,22. The force exerted on

the cell membrane when the microbubble is broken by US

directly delivers the substance to the cell, evading each kind

of natural barrier23. By this means, one can deliver the cancer

antigen and the antigen-encoding gene to immune cells, and

the gene that stimulates the immune response can be also

delivered to the cancer cells24,25. In this paper, we focused on

activation of the anti-tumor immune response using low-

frequency high-intensity focused ultrasound (HIFU).

Low-frequency HIFU

Biological effect of low-frequency HIFU

US is generally considered safe for imaging in vivo except for

two  side  effects26-28:  thermal  and  mechanical  effects

(including  sonoporation).  However,  these  two  adverse

factors for medical imaging are very important to treatment

using US.  Thermal  effects  depend on the  absorption and

accumulation of US energy. The intensity of US, irradiation

time, and biological properties of tissue are the main three

factors that determines the amount of heat29. The dose of US

has  a  very  strong relevance with thermal  and mechanical

effects. At a low intensity, the ratio of apoptosis to lysis is

high,  and  with  the  increasing  of  intensity,  lysis  becomes

predominant over apoptosis and directly causes cell to death.

More effective induction of apoptosis is obtained if paused

modulation is used with a longer pause than the irradiation

time30,31.  Accounting for the degree of membrane damage

and the capacity of repairing the damage, the death of a cell

can be divided into three modes, instant lysis, necrosis, and

apoptosis32,33.  Figure 1  shows the correlation between the

degree  of  membrane  damage  caused  by  US  and  the

corresponding cell  death mode34,35.  Although some of the

damaged  cells  can  successfully  self-repair  and  eventually

survive,  the  process  of  US  irradiation  will  speed  their

apoptosis or necrosis36.

Cavitation effect

The mutual effects between microbubbles and US can easily

lead  to  the  cavitation  effect37.  Microbubbles  oscillate

symmetrically and linearly at a low powered US field, which

implies  an  opposite  tendency  of  the  expansion  and

compression of a microbubble38. According to the different

dynamic behaviors of bubbles,  cavitation effects of an US

wave  can  be  divided  into  stable  cavitation  and  inertial

cavitation39,40.  If  the  sound  intensity  of  US  is  weak,  the

cavitation nucleus is enlarged in the negative pressure stage

of sound pressure, and then compressed and reduced in the

positive pressure stage41. In other words, the bubble vibrates

radially with the balanced radius of sound frequency, which

is  called  steady  state  cavitation.  When  the  bubbles  are

compressed under greater pressure to a certain degree, the

density of mixed gas inside the bubbles will increase, and it is

difficult  for  the  bubbles  to  continue  being  compressed42.

However, because of the inertial push from the surrounding

fluid, the increasing speed of pressure on the bubble wall is

still very fast, even surpassing the compression speed of gas

 
Figure  1     Schematic  presentation  shows  the  correlation  of

membrane damage, repair or not, and mode of cell death.
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inside  the  bubble.  Under  such  a  condition,  bubbles  will

collapse,  and the intensity is  determined by the inertia of

inward-pushing  fluid43-45.  That  is  defined  as  inertial

cavitation.  The  cavitation  effect  induced  by  ultrasound-

mediated  microbubble  destruction  can  directly  damage

tumor cells  and cause  obvious  ultrastructural  changes  in

tumor neovascularization, which can lead to mitochondrial

swelling, myeloid degeneration, and cytoplasmic cavitation of

endothelial cells promoting apoptosis46,47. If the cavitation

effect is very strong, the walls of small tumor blood vessels

can  be  damaged,  which  will  activate  endogenous  or

exogenous  coagulation,  and  induce  thrombosis  in  blood

vessels leading to large-area capillary embolization, blocking

the  nutritional  supply  of  cancerous  tissue  cells,  and then

causing the necrosis of local tumor cell48. Lethal cavitation

effects can directly lead to lysis and death of tumor cell. All

these provide a theoretical basis for the direct treatments of

tumor with ultrasonic microbubbles49-51.

Medical application of low-frequency HIFU

Low-frequency  HIFU  is  widely  used  clinically  for  drug

delivery,  fractured bone and cartilage,  nerve  stimulation,

inf lamed  tendons,  wound  heal ing  and  l igaments

repairing52,53. Compared with the thermal therapy of high-

energy US, the non-thermal effects of low-frequency HIFU

mainly  display  in  the  mechanical  stimulation induced by

microbubbles, microjets, cavitation and acoustic steaming54-57.

In fact,  low-frequency FUS can reach deep into the body,

which  allows  precise  local  treatment  and  avoids  possible

disadvantageous side effects to surrounding healthy tissues58.

In  the  nanomedicine  field,  US  stimulus  has  shown great

application prospects such as strengthening extravasation of

nanoparticles  through  blood  capillaries,  increasing  cell

membrane permeation, inducing an anti-tumor immunity

and so on59,60. Immunotherapy can be classified into active

immunotherapy and passive immunotherapy61. Both these

two disease treatment strategies can be reinforced by low-

frequency HIFU62.

The  blood  brain  barrier  (BBB)  is  a  protective  barrier

system between blood and brain tissue, which is composed of

endothelial cells, basal membrane, and glial cell podocytes of

brain capillaries63. The BBB allows nutrients needed by brain

tissue  to  pass  through,  avoids  causing  brain  damage  by

effectively  preventing  some  foreign  bodies  and  large

molecules  from  passing  through,  and  stopping  harmful

substances in the blood from invading the brain64. Because of

the filtering effect, the BBB affects the deliver ability of drugs

and  antibodies  to  brain  tissue  in  almost  all  intracranial

neurological  diseases,  which  limits  many  drugs  and

antibodies to low concentrations when entering the brain

from the blood, making it difficult to apply the due effect65,66.

Currently, there are three main strategies for delivering drugs

to the brain67. One is to compound new small molecules that

can reach the brain tissue,  but  only a  few diseases  can be

treated with small molecules. The second is to deliver drugs

to the brain by using invasive catheters, but a local puncture

can  easily  damage  brain  tissue.  Third,  noninvasive  and

reversible opening of the BBB, and such an idea has attracted

increasing attention. It has been one of the research focuses

for scientists to open the BBB by combination of FUS and

MB68.  The  mechanism  can  be  explained  as  follows69,70:

(1) US waves cause microbubbles to expand and collide in

capillaries, and the larger microbubbles expand and fill the

capillary lumens, leading to the mechanical dilation of blood

vessels,  which results in the opening of tight connections.

(2)  Pressure  changes  in  capillaries  induce  biochemical

reactions that trigger the opening of the BBB. (3) Microbubble

vibration can reduce local blood flow and lead to transient

ischemia,  triggering  the  opening  of  the  BBB.  (4)  US

irradiation causes the burst of micro-bubbles, resulting in

local  high-speed  turbulence  and  jet  flow,  and  these

mechanical  effects  also  participate  in  the  opening  of  the

BBB71. Figure 2 shows the FUS-induced BBB opening and its

potential  effect  in  CNS  immune  modulation  and

immunotherapy72.  So  far,  there  have  been  many  clinical

reports about using low-frequency HIFU to open the BBB,

such as the delivery of tumor-targeted drugs, gene vectors

and analgesics73,74.

Low-frequency HIFU induced tumor
immune response

The primary mechanisms of low-frequency HIFU mediated

immune response are as follow75,76: (1) After the irradiation

of  low-frequency  HIFU,  both  the  tumor  debris  and  the

released  relating  cancer  antigens  can  work  as  a  cancer

vaccine, enhancing the immunogenicity. (2) The treatment

of low-frequency HIFU on the tumor lesion can induce Th1

reaction,  which  leads  to  significant  changes  of  cellular

immunity, strengthening the activity of DC and cytotoxic

lymphocytes. (3) The treatment of low-frequency HIFU can

balance the immunosuppressive action induced by the tumor

microenvironment. The three effectors above can effectively

stimulate the anti-cancer immune response of the human

body. Currently, there is abundant literature for preparing

tumor lysates  from tumor samples  aiming to activate  the

anti-tumor  response77.  The  tumor  lysates  are  loaded  on
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cytotoxic  T  lymphocytes  (CTLs),  which  will  enhance  the

killing activity aiming to cancer cells. Many literatures have

given the detection and analysis methods of related immune

parameters, such as cytokine detection, chemokine detection

and so on78.

Compared  with  high-frequency  HIFU,  low-frequency

HIFU can reserve the antigens more efficiently, stimulate the

DCs’  infiltration  and  maturity  in  situ,  which  triggers  a

stronger  immune  response79.  In  addition,  the  different

scanning  ways  of  low-frequency  HIFU  also  affect  the

immunotherapy  effect78.  In  diseased  tissue,  the  sparse

scanning  mode  can  reserve  antigens  better,  and  be  more

effective  than  the  intensive  scanning  mode59,80.  Yang

et al.81 discovered very early that FUS can stimulate the anti-

cancer  immune  response.  They  treated  neuroblastoma

C1300  mice  with  HIFU,  and  the  same  cancer  cells  were

inoculated  again  in  the  mice  after  the  ablation  of  cancer

tissue. Comparing with mice that were not inoculated for

cancer  cells  in  the  initial  stage  or  the  mice  that  were  not

treated with HIFU, they found that the proliferation rate of

the  re-inoculated  tumor  cell  after  HIFU  treatment  is

significantly  decreased.  Many  subsequent  studies  also

indicated that the tumor debris treated with FUS can induce

the tumor specific immune response, so the tumor debris

after  FUS treatment  can be  taken as  effective  anti-tumor

vaccine56,60,81-88.  A  summary  of  the  HIFU  anti-cancer

response is displayed in Figure 389.

Studies showed that the adoptive transfer of immune cells

activated  with  low-frequency  HIFU  also  has  very  good

effect90.  After treating H22 cancer-bearing mice with low-

frequency HIFU for 14 days, the T cells were taken out and

then adoptively  transferred  into  other  mice  bearing  H22

cancer91. The experimental data indicates that CD3+, CD4+,

the ratio of CD4+/CD8+, CTL cytotoxicity, and the secretion

of IFN-γ and IFN-α of the mice after low-frequency HIFU

treatment all  increase  significantly.  After  transferring the

activated T lymphocytes to the cancer-bearing mice, both the

tumor infiltration T lymphocytes and IFN-γ secretory cells

increased significantly. Table 1 shows the overview of recent

clinical research on immune effects after the irradiation of

 
Figure 2   Schematic showing FUS-induced BBB opening with its potential effect in CNS immune modulation and immunotherapy. Adapted

from reference 72.
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FUS92-99.

Combined treatment strategies

Immunotherapy assisted by microbubbles and
low-frequency HIFU

Cavitation effect is the important physical foundation of US-

enhanced drug delivery and US-guided gene transfection100.

One  can  deliver  drugs  or  transfect  genes  by  using  the

cavitation  effect  of  US,  and  assist  the  tumor  cellular

immunotherapy101.  Microbubbles  are  commonly  used  as

gene or drug barriers. The US microbubble contrast agent

can  enhance  the  cavitation  effect,  improve  drug  delivery

efficiency, and increase local drug concentration when the

drug is loaded on the microbubbles102. The simplest method

using  microbubbles  to  deliver  the  active  substance  is  co-

injection103.  Microbubbles  and  the  active  substance  are

mixed in some solution in vitro, and US irradiation promotes

the delivery in vivo. However, the potential problem of co-

injection is that the distribution of microbubbles and active

substance in vivo is not exactly the same, which leads to the

decrease  of  drug  availability104.  A  better  method  is  to

conjugate the microbubbles with the active substance, and

this  method can ensure  the  same bio-distribution of  two

conjugating objects, improve the local concentration of the

active  substance,  and  decrease  drug  dosage105.  The

combination of targeted microbubbles and US afford a more

complex and efficient delivery system. Such a therapeutic

system possesses site specificity and cell  specificity,  which

activates the immune system more efficiently104,106. Figure 4

shows the use of US with mRNA-loaded microbubbles, in

which  the  mRNA-loaded  microbubbles  implode  upon

exposure to US and sonoporate the DCs107. As a result, both

antigen and DC-modulating proteins are produced by DCs,

which can lead to antigen presentation and T-cell activation.

Many  of  the  studies  on  microbubbles  for  drug  and  gene

delivery  have  used  commercially  available  US  imaging

contrast agents or similar bubbles equipped with targeting

ligands  on  the  surface  or  bubbles  complexed  with  active

substances108,109.

Even without any active agent, microbubbles still possess

potential as immune response triggers110. In recent research,

the  effect  of  SonoVue  microbubbles  was  examined  in

combination  with  focused  US  on  solid  CT-26  tumors  in

mice111.  Intravenous injection of microbubbles came first,

and  then  irradiation  of  US  on  the  tumor  followed

immediately. Compared with results treated with only US,

the combined therapeutic strategy distinctly decreased the

tumor growth. Infiltration of immune cells increased in the

tumor tissue, in which the CD8+CTL and CD4+non-Treg

levels are included. As for the immune cells, microbubbles

have also been commonly used to promote the permeability

of the BBB under the irradiation of US112. And the natural

killer cells moving through the BBB come at a much higher

extent than if only US was used113,114.

Microbubbles, usually taken as carriers of delivering genes

and  antigens  in  immunotherapy,  also  have  some

 
Figure 3   Summary of HIFU-induced anti-cancer response, in which STAT means signal transducer and activator of transcription, and TAA

means tumor-associated antigens. Adapted from reference 89.
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disadvantages115,116. Firstly, the diameter of microbubbles is

generally  in  the  range  2−5  μm,  the  tumor  tissue  can  be

penetrated  effectively  without  the  irradiation  of  US.

Secondly, the half-life period of microbubbles is relatively

Table 1   Overview of described immune effects after irradiation of FUS in clinical studies

Year Authors Patient information Ultrasound parameters Key observations

1998 Maders-bacher et al. 5 patients with
clinically localized
prostate cancer

Frequency: 4.0 MHz
Focal length: 2.5, 3.0, 3.5, 4.0 cm
Acoustic intensity:
1,260−2,200 W/cm2

Exposure time: 4s on followed by
12s off for re-positioning.

Consistent HSP-27 expression was observed
at the border zone of thermonecrosis in vivo,
with highest levels occurring at 2-3 h
following transrectal HIFU

2004 Wu et al. 16 patients with
solid malignancies
(osteosarcoma,
hepatocellular
carcinoma, renal
cell carcinoma

Frequency: 0.8 MHz
Focal length: 135 mm
Acoustic intensity: 5,000−20,000
W/cm2

Exposure time: variable
Therapeutic time: 2.5−8 h
(median: 5.2 h)

Both the circulating CD4+ lymphocytes and
the ratio of CD4+/CD8+ increased in patients
after receiving HIFU

2004 Kramer et al. 6 patients with
prostate cancer

Frequency: 4 MHz
Focal length: not provided
Acoustic intensity: 1,260−2,000
W/cm2

Exposure: 4 s per location

A significant upregulation of HSP-72 and
HSP-73 at the border lesion after HIFU
treatment in prostate cancer patients

2007 Wu et al. 23 patients with
biopsy-proven
breast cancer

Frequency: 1.6 MHz
Focal length: 90 mm,
Acoustic intensity: 5,000−15,000
W/cm2

Exposure time: 45-150 mins
(median: 1.3 h)

All tumors treated with HIFU stained positive
for epithelial membrane antigen and HSP70.
No tumors treated with HIFU stained positive
for CD44v6, MMP9, or PCNA

2008 Zhou et al. 15 patients with
solid malignancies

Frequency: 0.8 MHz
Focal length: not provided
Acoustic intensity: 5,000−20,000
W/cm2

Exposure time: 0.78-3.62 h
(mean: 2.74 h)

Patients exposed to complete or partial HIFU
ablation experienced a reduction in serum
immunosuppressive cytokine expression
levels, with nonmetastatic patients
experiencing lower expression levels as
compared with metastatic patients. VEGF,
TGF-β1, and TGF-β2 were significantly
reduced following HIFU treatment

2009 Lu et al. 48 female patients
with biopsy-proven
breast cancer

Frequency: 1.6 MHz
Focal length: not provided
Acoustic intensity: 5,000−15,000
W/cm2

Exposure time: 45-150 mins
(mean: 1.3 h)

Neoplasms treated with HIFU expressed
elevated NK cells as well as CD3+, CD4+,
CD8+, and B lymphocytes in the ablated
periphery TILs positive for granzyme, FasL,
and perforin were also greater in response to
HIFU as compared with untreated control
tumors

2009 Xu et al. 23 female patients
with biopsy-proven
breast cancer

Frequency: 1.6 MHz
Focal length: not provided
Acoustic intensity: 5,000−15,000
W/cm2

Exposure time: 45-150 min total
time

A significant increase in infiltration and
activation of macrophages and DCs in HIFU-
treated tumors, compared to controls

2013 Wang et al. 120 patients with
uterine fibroids
(subserosal,
intramural myomas,
infertility, recurrent
pregnancy loss)

Frequency: 0.8 MHz
Focal length: not provided
Acoustic intensity: 400 W/cm2

Exposure time: 24 h or 72 h

120 patients were divided into two groups,
HIFU group and myomectomy group. Serum
levels of IL-6 and IL-10 increased after
treatment in both groups. Peak IL-6 and IL-10
levels were significantly lower in the HIFU
group than in the myomectomy group. In
contrast, IL-2 level decreased significantly in
the myomectomy group compared to the
HIFU group at 24 h post-operation
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short in vivo, which is not beneficial to gene or drug delivery.

One other potential problem is their complex preparation

method, and much pretreatment is needed before use. The

disadvantages  above  have  limited  the  application  of

microbubbles in immunotherapy to a certain extent117.

Nanoparticles for low-frequency HIFU cancer
immunotherapy

Nanoparticles have high surface area to volume ratio and

advantageous  delivery  kinetics,  and  can  be  well  used  in

clinical  diagnosis  and  treatment  including  tumor

immunotherapy  according  to  their  unique  physical  and

chemical properties118. The size of nanoparticles are ranging

from 1nm to 100nm119. The design of nanoparticles can be

customized for a special application through modulating the

properties of nanoparticles such as size, shape and charge120.

According  to  the  permeability  and  retention  effect  of

nanoparticles,  early  researchers  payed much attention to

nanoparticle  delivery  on tumors,  which  could  be  further

reinforced by conjugating tumor-targeting antibodies to the

nanoparticles120-122.  Nowadays these delivery methods are

still  commonly adopted in clinical  application, and many

research  groups  also  put  the  natural  bio-distribution  of

nanoparticle into use for cancer immunotherapy123.

The release of  the drug can be triggered from different

nanocarriers  via  the  cavitation effects  or  radiation forces

induced  by  US  waves124.  Nanoparticles  have  played  an

important  role  in  ultrasound-mediated  drug  and  gene

delivery125,126.  Compared  with  microbubbles,  the  major

advantage of nanoparticles is that they can be made small

enough to extravasate effectively from the leaky vasculature

of  some  tumors,  and  the  main  disadvantages  are  their

complex preparation,  instability  and toxicity127.  Figure  5

shows the schematic of targeted gold nanoparticle (GNP)

drug releasing and the enhancement of delivery through the

BBB in US irradiation128.

Many  experimental  results  show  that  targeted  US

microbubbles  can greatly  improve the accuracy of  tumor

diagnosis, having the advantages of safety, efficiency, good

targeting,  and  strong  controllability  in  the  treatment  of

tumors129.  Although the  application prospect  of  targeted

microbubbles is exciting, there are still several points worth

paying attention to:  (1) Strengthening the binding ability

between  microbubbles  and  ligands,  and  reinforcing  the

binding strength between ligands and receptors are the basis

for microbubbles to be targeted130. Although the antibiotin-

biotin  complex  is  currently  the  most  effective  targeted

binding system, antibiotin is subject to endogenous biotin

competition131. The main source is egg white or bacteria and

other extrinsic proteins with immunogenicity, which may

lead  to  a  rejection  reaction  in  clinical  application.  In

addition, antibiotin is a kind of large molecular cation that is

prone to  form immune complexes  in  the  renal  basement

membrane with high anion concentration in the body132.

Therefore,  a  more  ideal  ligand  connection  method  is

needed133. (2) The construction of targeted microbubbles is

 
Figure 4   Schematic of the use of US with mRNA-loaded microbubbles. Adapted from reference 107.

 
Figure 5   Schematic of the targeted GNP-drug release and the

enhanced delivery through the BBB in US irradiation. Adapted

from reference 128.
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tedious and time-consuming, and their stability and target

seeking efficiency in vivo needs to be improved134. (3) The

key technology of targeted microbubbles carrying drugs and

genes needs to be improved135,136.  It is necessary to better

protect  bioactive  substances  from  shear  flow  or  enzyme

degradation during microbubble  rupture  before  entering

cells137.  (4)  In  order  to  improve  the  targeting  ability  of

microbubbles,  researches  on  tumor  immunity  should  be

further  improved138.  (5)  There  are  some  dangers  in  the

application of ultrasonic microbubbles139. The drug particles

carried by microbubbles are easily ingested by the liver and

spleen140.  In this case, adverse reactions of different drugs

may be relatively large141,142.  In addition to microbubbles

that  may  cause  microembolism  and  toxicity  in  blood

circulation, the potential risks caused by cavitation nuclei

and cavitation effects should not be ignored143.

The advent of targeted US microbubbles is a revolution in

the development of US medicine144.  With the continuous

improvement and optimization of construction technology,

and the rapid development of related imaging technology,

targeted US microbubbles will  be increasingly accelerated

into clinical  applications,  and drugs and gene therapy for

tumors will certainly make gratifying progress145,146.

Low-frequency HIFU enhanced effect of
checkpoint inhibitor therapy

Checkpoint blockade antibodies, such as PD-1 and CTLA-4,

have  demonstrated  high  efficacy  for  some  extracranial

tumors147-150.  Preclinical  and  anecdotal  clinical  evidence

showed benefits  from treatment of  brain malignancies by

using checkpoint blockade antibodies151. FUS has been used

for delivery of antibodies to the brain to treat some diseases,

thus,  it  can  be  arguably  concluded that  FUS also  has  the

potential  to  promote  the  concentrations  of  immune-

modulating antibodies at the desired site148,152-154. Besides the

delivery of antibodies, the BBB can be opened with FUS to

deliver larger vehicles for drugs and genes, such as liposomes,

polymers, polymeric nanoparticles, and virus. The capability

of targeted delivery of gene vectors opens up possibilities for

altering immune stimuli within the diseased tissue155.

Checkpoint inhibitor (CI) immunotherapy is playing an

important role in the treatment of cancer, but for a subgroup

of  patients,  this  treatment  is  ineffective  or  even a  failure

because of drug resistance156-158. To improve the CI therapy

effect, many concerted efforts are conducted through the use

of multiple CIs or use of CIs in combination with other anti-

cancer  agents.  In  2017,  the  important  first  report  on  the

efficacy  of  combining  US  with  CI  immunotherapy  was

published by Silvestrini et al159.  Their work examined the

impact of ablation coupled with aPD-1 and toll-like receptor

agonist therapy (CpG). For the case of a single treated tumor,

the growth rate of distal tumor is faster using combination

therapy than that of aPD-1+CpG only, unless the drugs were

administered before ablation. In this paper, an finding was

that when two tumors were treated rather than one, abscopal

effects were achieved such that the additional non-ablated

tumor  underwent  regression,  and survival  was  improved

relative to drug-only treatment. In addition to suggesting the

potential of local thermal ablation to affect the treatment of

metastatic  disease,  this  highlights  the  complexity  of  local

treatment on immune effects in that they can be deleterious

as well as complementary.

In 2019, Bulner et al.160 reported the use of “anti-vascular”

ultrasound-stimulated microbubble (USMB) treatment in

combination  with  anti-PD-1  CI  therapy.  Longitudinal

growth studies along with acute experiments were conducted

by using colorectal cancer cell line CT26 to assess ultrasound-

induced anti-tumor immune responses. The results indicated

that USMB+anti-PD-1 treatments significantly reinforced

tumor growth inhibition and animal survival compared with

monotherapies. The ability of anti-vascular USMBs increased

the  anti-tumor  effects  of  CI  therapy,  but  did  not  clearly

support  a  T  ce l l -dependent  mechanism  for  the

reinforcement.

Conclusion and perspectives

Tumor is  a  systemic  disease.  The  ideal  method of  cancer

treatment  is  to  remove  local  tumors  without  damaging

normal tissues, and to activate the whole body's anti-tumor

immune response161. In recent years, many exciting research

results  have  been  achieved  in  the  field  of  tumor

immunotherapy, which bring great hope for the advanced or

terminal  cancer  patient162.  Due  to  the  high  degree  of

heterogeneity and specificity of the human immune system,

current immunotherapy is  not perfect  yet,  and cannot be

commonly applied in clinical treatment163,164.

US  has  a  good  prospect  in  the  treatment  of  diseases,

especially in tumor ablation and drug delivery165. The use of

US alone or the delivery of immune stimulants by US can

induce an anti-tumor immune response166. The mechanical

and  cavitation  effects  produced  by  FUS can  enhance  the

host's anti-tumor immune response, and deliver genes and

antigens  to  cells  to  activate  the  anti-tumor  immune

response101.  Compared  with  HIFU  at  high  temperature

aiming for ablating cancer tumor, low-frequency HIFU at

low  temperature  can  protect  antigen  more  effectively,
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stimulate invasion and maturation of DCs in situ, and trigger

stronger immune response167.  Non-thermal effect of low-

frequency HIFU can inhibit the growth and reproduction of

cancer cells, damage DNA, and promote apoptosis. After the

treatment with low-frequency HIFU, DCs could be recruited

to  aggregate  into  the  damaged  tumor  areas,  and  mainly

concentrated in the surrounding of the denatured areas168.

The  combination of  low-frequency  HIFU and immunot-
herapy has better results than immunotherapy alone169.

M a n y  m e c h a n i s m s  o f  u l t r a s o u n d - m e d i a t e d

immunotherapy have not been fully understood and need to

be further studied78,170. First, many factors should be taken

into consideration in tumor immunotherapy,  such as  the

patient’s cancer type, genetic background, gender, age and so

on. According to the action sites, indications and mechanism

of  dif ferent  therapeutic  drugs,  appropriate  drug

combinations can be reasonably designed in the treatment of

diseases.  Secondly,  low-frequency  HIFU  at  a  lower

temperature can induce a stronger immune response171,172.

However, the high-temperature HIFU is more effective for

tumor  ablation  and  curing  primary  diseases,  so  the

advantages  and  disadvantages  of  tumor  ablation  and

immunotherapy  should  be  carefully  weighed when using

HIFU.  In  addition,  as  a  carrier  of  genes  or  antigens  in

immunotherapy,  microbubbles  are  also  complicated  to

prepare  with  full  consideration  of  the  half-life  and

penetration efficiency of carriers162. It is undeniable that with

the  gradual  thorough  research  on  the  mechanisms  of

immunotherapy,  HIFU  ablation,  microbubble-mediated

drug  delivery  and  other  mechanisms,  the  combined

treatment  of  US  and  immunotherapy  has  a  very  broad

prospect.
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