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Measured field electron emission (FE) current–voltage Im(Vm)
data are traditionally analysed via Fowler–Nordheim (FN)
plots, as lnfIm=V2

mg versus 1/Vm. These have been used
since 1929, because in 1928 FN predicted they would be
linear. In the 1950s, a mistake in FN’s thinking was found.
Corrected theory by Murphy and Good (MG) made theoretical
FN plots slightly curved. This causes difficulties when
attempting to extract precise values of emission characterization
parameters from straight lines fitted to experimental FN plots.
Improved mathematical understanding, from 2006 onwards,
has now enabled a new FE data-plot form, the ‘Murphy–Good
plot’. This plot has the form lnfIm=Vð2�h=6Þ

m g versus 1/Vm,
where η≅ 9.836239 (eV/ϕ)1/2 and ϕ is the local work function.
Modern (twenty-first century) MG theory predicts that a
theoretical MG plot should be ‘almost exactly’ straight. This
makes precise extraction of well-defined characterization
parameters from ideal Im(Vm) data much easier. This article
gives the theory needed to extract characterization parameters
from MG plots, setting it within the framework of wider
difficulties in interpreting FE Im(Vm) data (among them, use of
‘smooth planar emitter methodology’). Careful use of MG plots
could also help remedy other problems in FE technological
literature. It is suggested that MG plots should replace FN plots.
1. Background
Field electron emission (FE) occurs in many technological
contexts, especially electron sources and electrical breakdown. A
need exists for effective analysis of measured FE current–voltage
[Im(Vm)] data, to extract emission characterization parameters.
These include: parameters that connect field to voltage; the field
enhancement factors (FEFs) often used to characterize large-area
field-electron emitters (LAFEs); and parameters relating to
emission area and area efficiency (the latter being a measure of
what fraction of emitter area is emitting significantly). This article
proposes a simple new method for FE Im(Vm) data analysis, and
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urges its widespread adoption. This method, the Murphy–Good (MG) plot, is in principle more precise

than the traditional Fowler–Nordheim (FN) plot. The article represents one individual small part of a
much wider project, partly outlined elsewhere [1], that aims to put FE theory onto a better scientific
basis, by (among other things) improving the precision of interpretation of FE experimental data.

To develop MG-plot theory efficiently, some preliminary discussion and refinement of traditional FN
theory is needed. FN plots were introduced by Stern et al. [2] in 1929. They have the form ln{Im=V2

m}
versus 1/Vm (or equivalent using other physical variables), and are used because the original 1928 FN
equation [3] implied that FN plots of experimental data should be straight lines, with characterization
data derivable from the slope and intercept.

However, in 1953, Burgess, Kroemer & Houston (BKH) [4] found a mathematical mistake in 1928
theoretical work by Nordheim [5], and a related physical mistake in FN’s thinking. FN had assumed
[3] that image-force rounding could be disregarded, and treated the electron tunnelling barrier as
exactly triangular (ET). BKH showed that rounding was much more important than FN had thought
and Nordheim had calculated, and that (for emitters modelled as planar) it is necessary to base
analyses on planar image-rounded barriers (often now called ‘Schottky–Nordheim’ (SN) barriers).
Corrected analysis inserted a ‘barrier form correction factor’ into the exponent of the original 1928 FN
equation, and led to much higher tunnelling probabilities (typically, by a factor between 250 and
500 [1]). This correction factor is generated by an appropriate value of a special mathematical function
(SMF) v(x) now known [6] to be a special solution of the Gauss hypergeometric differential equation.
The Gauss variable x is the independent variable in this equation.

The Nordheim parameter y used in older FE discussions is given by y = +x1/2, but its use
in mathematical contexts can now be recognized as illogical––when a function is the solution of a
differential equation, mathematics does not normally represent it as a function of the square root of
the independent variable in the equation. The use of y (rather than x [=y2]) in FE literature is due to
an unfortunate arbitrary choice (separate from the above mistake) made by Nordheim in his 1928
paper. Although y is useful as a modelling parameter in some theoretical discussions, hindsight
indicates that choosing to use x [=y2] in 1928 would have proved better mathematics (and better for
discussing FE Im(Vm) data).

In 1956, Murphy and Good (MG) [7] used the BKH results to develop a revised FE equation. (See [8]
for a treatment that uses the modern ‘International System of Quantities’ (ISQ) [9]). The zero-temperature
version of their equation is called here the Murphy–Good (MG) FE equation. This equation is an adequate
approximation at room temperature.

The MG FE equation gives the local emission current density (LECD) JMG
L in terms of the local work

function ϕ and local barrier field FL. It is clearest to start from the linked form

JMG
L ¼ t�2

F JSNkL , ð1:1aÞ

JSNkL ¼ af–1F2exp
–vFbf3=2

FL

" #
, ð1:1bÞ

where a [≅1.541434 µA eV V−2] and b [≅6.830890 eV−3/2 V nm−1] are universal constants [10], often
called the first and second FN constants, vF is the value of v(x) that applies to the SN barrier defined by
ϕ and FL, and tF is the corresponding value of an SMF t(x) defined by

t(x) ¼ v(x)–
4
3

� �
x
dv
dx

: ð1:2Þ

JSNkL is called the kernel current density for the SN barrier, and can be evaluated precisely when ϕ and FL are
known.

The correction factor vF is field-dependent (see below). This causes theoretical FN plots predicted by
the MG FE equation to be slightly curved, rather than straight. This, in turn, causes very significant
problems of detail and the need for related procedures, when attempts are made to give well-defined
precise meanings to the slope and intercept of the straight line fitted to an FN plot of experimental
data. These interpretation procedures involve correct choice of fitting point [11,12] and application
of a chord correction [12]. This article shows how to eliminate these particular problems, by finding a
plot form that the MG FE equation predicts to be ‘almost exactly’ linear.

An ideal FE device/system is one in which the measured current–voltage Im(Vm) characteristics are
determined only by unchanging system geometry and by the emission process (see [13], and below).
If curvature in an FN plot taken from an ideal FE device/system is due to physical reasons (such as
small apex radius of curvature, or––with a LAFE––statistical variations in the characteristics of



r
3
individual emitters), then use of an MG plot will not be able to straighten out this kind of curvature,

though it should be a useful step forwards.
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2. Some general issues affecting field emission current–voltage
data analysis

In fact, three other major problems affect both FN-plot and MG-plot interpretation, and need discussion.
The FN and MG derivations disregard the existence of atoms and model the emitter surface as smooth,
planar and structureless. This smooth planar emitter methodology is unrealistic, but creating reliably better
theory is very difficult, although there are some atomic-level treatments, e.g. [14,15]. When applying a
current–density equation to real emitters, this weakness can be explicitly formalized, as follows.

To recognize both this difficulty and all other factors omitted in deriving equation (1.1b), the present
author has replaced t–2F in equation (1.1a) by an ‘uncertainty factor’ λ of unknown functional behaviour
(see [16] for recent discussion). I now write JEMG

L ¼ lJSNkL , and call the revised equation (and variants using
other physical variables) the Extended Murphy–Good (EMG) FE equation. My current thinking [17] is that
(for a SN barrier) λ varies with relevant parameters (in particular, local field) and most probably lies
somewhere in the range 0.005 < λ < 14 (though it could turn out, when further atomic-level treatments
are available, that the figure 0.005 has been pessimistic and unnecessarily low [17]).

In principle, the related total emission current ðIEMG
e Þ is found by integrating JEMG

L over the emitter
surface and writing the result as first shown below, where AEMG

n is the notional emission area (as
derived using the EMG equation),

IEMG
e (FC) ¼ JEMG

L dA ¼ AEMG
n JEMG

C ¼ AEMG
n lJSNkC ; ASN

f JSNkC : ð2:1Þ

The subscript ‘C’ denotes characteristic values taken at some characteristic location on the emitter
surface (in modelling, nearly always the emitter apex).

The second form follows from JEMG
C ¼ lJSNkC . Often, λ and AEMG

n are both unknown. Equations with
two unknown parameters are inconvenient, so these are combined into a single parameter
ASN

f ½;lAEMG
n � called the formal emission area for the SN barrier.

Combining these various relations, and assuming that measured current Im equals emission current
IEMG
e , yields the following EMG-theory equation:

Im(FC) ¼ ASN
f JSNkC ¼ ASN

f af–1F2Cexp
–vFbf3=2

FC

" #
: ð2:2Þ

Although this is not explicitly shown, it needs to be understood that the values of ϕ, vF, λ, An, and Af

depend on the choice of location ‘C’.
When applying this equation to experiments, and ‘thinking backwards’, Im(FC) is a measured

quantity, and JSNkC can be calculated precisely (when ϕ and FC are known). Thus, the extracted
parameter {ASN

f }extr[¼ Im(FC)=JSNkC ] is, in principle, a well-defined parameter that depends on the barrier
form, but not on λ: thus, the symbol {ASN

f }extr carries the barrier label, rather than an equation label.
In practice, it is nearly always the formal area that is initially extracted from an FN or MG plot. Issues

of how formal area relates to the notional area in some specific emission equation, or to geometrical
quantities relating closely to real emitters, are matters for separate discussion, outside the scope of this
paper. This paper is primarily about the extraction of precise values for formal area ASN

f .
A second major problem lies in determining the relationship between the characteristic barrier field

FC and the measured voltage Vm. I now prefer to write

FC ¼ Vm=zC, ð2:3Þ
where ζC is the characteristic voltage conversion length (VCL), for location ‘C’. Except in special geometries,
ζC is not a physical length. Rather, ζC is a system characterization parameter: low VCL means the emitter
‘turns on’ at a relatively low voltage Vm.

So-called ideal FE devices/systems have Im(Vm) characteristics determined only by the system
geometry (which must be unchanging) and by the emission process, with no ‘complications’ (see
below). For ideal devices/systems, the VCL ζC is constant, and related characterization parameters
(such as characteristic FEFs) can be derived from extracted ζC-values (see below, and also [16]).

However, real FE devices/systems may have ‘complications’, such as (among others) leakage current,
series resistance in the measuring circuit, current dependence in FEFs, and space-charge effects.
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These may cause ‘non-ideality’ whereby ζC ceases to be constant but becomes dependent on voltage

and/or current. In turn, this may modify the FN or MG plot slope or cause plot nonlinearity. In such
cases, conventional FN-plot analysis may generate spurious results for characterization parameters
[13,16]. This will also be true for MG-plot analysis.

Additional research is urgently needed on how to analyse and model the FE Im(Vm) characteristics of
non-ideal devices/systems, but it will probably be many years before comprehensive theory exists.
Hence, at present, FN and MG plots provide adequate emission characterization only for ideal
devices/systems. For FN plots, there is a spreadsheet-based [18] ‘orthodoxy test’ that can filter out
non-ideal datasets; a version for MG plots will be described elsewhere in due course.

A third major problem is the following. For ideal real emitters, even if one assumes the emitter radius
is large enough for the SN barrier to be an adequate approximation for evaluating tunnelling
probabilities, one expects that the extracted value {ASN

f }extr would depend on emitter shape and on the
applied-voltage range. There is already material in the literature that shows that this must be the case
(e.g. [19–21]). However, the FN and MG plot theories are built using ‘smooth planar emitter
methodology’. In this approach, ASN

f is treated as if it were a constant, with the extracted value
{ASN

f }extr derived––with varying degrees of precision—from the slope and intercept of a straight line
fitted to an experimental FN or MG plot.

My current understanding is that {ASN
f }extr (as derived from an FN or MG plot) is actually some kind

of effective average value of [Im=JSNkC ], taken over the range of FC-values used in the experiments. But
detailed physical interpretation of {ASN

f }extr is an issue separate from whether the value extracted from
an MG plot is a useful characterization parameter (which it is considered to be). Values of {ASN

f }extr

are presumed particularly useful for LAFEs, when comparing the properties of different emitting
materials or processing regimes. Thus, having a simple method of extracting a numerically well-
defined value (from a particular set of ideal experimental data) is expected to be helpful.

For LAFEs, a more useful property is perhaps the extracted formal area efficiency faSN
f gextr (for the SN

barrier), defined by

faSN
f gextr ; {ASN

f }extr

AM
, ð2:4Þ

where AM is the LAFE macroscopic area (or footprint). Few experimental values have been reported for
faSN

f gextr. It is thought [22] to be very variable as between LAFEs, but perhaps to often lie in the vicinity
of 10−7 to 10−4. Clearly, if––for some particular LAFE material—data analysis showed (for example) that
apparently only 10−5% of the footprint area was actually emitting electrons, then this might indicate scope
for practical improvements. This parameter looks potentially useful for technology development.
3. Theory of Murphy–Good plots
Given the above context, MG-plot theory can now be developed. This is most easily done using scaled
parameters and equations, as follows. The scaled (barrier) field f (for a barrier of zero-field height ϕ) is a
dimensionless physical variable formally defined, using the Schottky constant cS [≡(e3/4πε0)1/2] [10], by

f ; c2Sf
–2FL ffi [1:439965 eV2 (V=nm)–1]f–2FL: ð3:1Þ

For a SN barrier of zero-field height ϕ, the criterion f = 1 defines a reference field FR½¼ c�2
S f2� at which

the barrier top is pulled down to the Fermi level. For this barrier, f = FL/FR, and hence FL = f FR. It can be
shown from [8] (but, better, see arXiv:1801.08251v2) that vF = v(x = fC), where fC = FC/FR .

Scaling parameters η(ϕ) and θ(ϕ) are defined by

hðfÞ ; bc2Sf
–1=2, uðfÞ ; ac�4

S f3: ð3:2Þ

Substituting FC ¼ fCFR ¼ fC c�2
S f2 into equation (2.2), and writing vF explicitly as v(fC), yields the

scaled equation

Im(fC) ¼ ASN
f uðfÞf2C exp

–hðfÞ � v(fC)
fC

� �
: ð3:3Þ

For simplicity, we now normally cease to show the dependence of η and θ on ϕ.
The parameter fC is helpful in characterizing FE theory and the behaviour of field emitters. For

example, in the case of tungsten field emitters (with ϕ = 4.50 eV) it is known that: (a) these emitters
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most commonly operate within the fC-range 0.15 < fC < 0.35 (see electronic supplementary material

spreadsheet related to [18]), (b) the safe operating limit for pulsed emission (in traditional field
electron microscope configuration) is about fC < 0.6 [23,24], and (c) the derivation of the MG zero-
temperature FE equation breaks down above about fC≈ 0.8 [7]. Slightly different fC-values would
apply to materials with work-function different from 4.50 eV. Scaled-field values are easily converted
back to local-field values by multiplying by the reference field FR, which is approximately equal to
14.1 V nm−1 for a ϕ = 4.50 eV emitter.

A key development [25], in 2006, was the discovery of a simple good approximation for v(f ):

vF ¼ v(f) � 1� f þ (1=6) f lnf : ð3:4Þ

In 0≤ f≤ 1, vF takes values between v( f = 0) = 1 and v( f = 1) = 0. For equation (3.4), in 0≤ f≤ 1, Forbes
& Deane [8] found the maximum error in v( f ) as 0.0024 and the maximum percentage error as 0.33%.
High-precision numerical formulae for v( f ), with maximum error 8 × 10−10 in 0≤ f≤ 1, are also now
known (see appendix B).

Setting f = fC and substituting equation (3.4) into equation (3.3) leads, after some rearrangement, to

Imð fCÞ � ASN
f � u exph � fkC � exp –h

fC

� �
, ð3:5aÞ

and

k ; 2� h=6: ð3:5bÞ

For an ideal device/system, equation (3.1) can be used to define, by VmR¼FRzC ½¼c�2
S f2zC�, a

reference measured-voltage VmR at which, at location ‘C’, the SN barrier-top is pulled down to the Fermi
level. It follows that

fC ¼ FC
FR

¼ Vm=zC
VmR=zC

¼ Vm

VmR
, ð3:6Þ

and that equation (3.5a) can be rewritten as

ImðVmÞ � fASN
f � ðu exphÞ � V�k

mRg � Vk
m � exp –hVmR

Vm

� �
, ð3:7Þ

and then

lnfIm=Vk
mg � lnfASN

f � ðu exphÞ � V�k
mRg–

hVmR

Vm
: ð3:8Þ

This is an equation for a theoretical Murphy–Good plot.
Since ASN

f is being treated as constant, and all parameters on the right-hand side (except Vm) are
constants, equation (3.8) is predicted to be a straight line with slope SMG and intercept ln{RMG} given by

RMG ¼ ASN
f � ðu exphÞ � V�k

mR, ð3:9Þ

and

SMG ¼ �hVmR ¼ �bf3=2zC: ð3:10Þ

The subscript ‘MG’ indicates that these parameters ‘belong to’ a theoretical MG plot. It further
follows that

RMG � ðjSMGjÞk ¼ ASN
f � u � exph � hk¼ ASN

f � uh2 � exph � h�h=6: ð3:11Þ

From equations above, θη2 = ab2ϕ2 [≅(7.192492 × 10−5 A nm−2 eV−2)ϕ2]. Thus, if SMG and ln{RMG}
are identified with the slope SfitMG and intercept lnfRfit

MGg of a straight line fitted to an experimental
MG plot, the extracted values of the VCL ζC, the reference measured voltage VmR, and the formal



Table 1. Typical values of quantities appearing in the ‘extraction formulae’ (3.12) to (3.14).

ϕ (eV) bϕ3/2 (V nm−1) η exph � h�h=6 ΛMG(ϕ) (nm
2 A−1)

2.50 27.00 6.2210 75.62 29.42

3.00 35.49 5.6790 56.55 27.32

3.50 44.73 5.2577 44.85 25.31

4.00 54.65 4.9181 37.06 23.45

4.50 65.21 4.6368 31.54 21.77

5.00 76.37 4.3989 27.46 20.25

5.50 88.11 4.1942 24.34 18.89
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emission area ASN
f are

z extr
C ¼ � SfitMG

bf3=2 , ð3:12Þ

fVmRgextr ¼ �SfitMG

h
ð3:13Þ

and fASN
f gextr ¼ LMG � Rfit

MG � ðjSfitMGjÞk, ð3:14Þ

where the emission area extraction parameter ΛMG (when using an MG plot) is given by

LMGðfÞ ; 1
ðab2f2Þ � exph � h�h=6

: ð3:15Þ

An extracted area-efficiency value can be obtained from equations (2.4) and (3.14), and an extracted
value of macroscopic FEF γM from equation (3.12) and the relation

g extr
M ¼ dM

z extr
C

, ð3:16Þ

where dM is the system distance used to define the FEF and related macroscopic field FM.
Since expression (3.15) depends only on ϕ, a table of ΛMG(ϕ)-values is easily prepared with a

spreadsheet. Some illustrative values are shown in table 1. ΛMG(ϕ) is only weakly dependent on ϕ, so
uncertainty in the true ϕ-value should cause little error in the extracted value of formal emission area.

The consistency of the above approach has been checked by simulations that use a modified version
of an already existing special-purpose spreadsheet that calculates values for the FE SMFs, using the high-
precision numerical expressions given in [8] and appendix B. These MG-plot related simulations have
also been compared with simulations based on the equivalent theory (set out in appendix A) for
interpreting an FN plot by using the extended MG equation. In both cases, the simulations have been
carried out for the characteristic-scaled-field range 0.15≤ fC≤ 0.35, for selected values of local emitter
work function in the range 2.50≤ ϕ/eV≤ 5.50. (Emitters with ϕ = 4.50 eV are often operated within this
scaled-field range.) An annotated copy of the spreadsheet as used in the simulations is provided as
downloadable electronic supplementary material; details of the simulations are given in appendix B.

In general terms, the simulations confirm that the MG plots will normally yield very consistent results
for extracted values of the reference measured voltage VmR, the characteristic voltage conversion length
(VCL) ζC, and the formal emission area ASN

f for the SN barrier. In these simulations, the parameters VmR

and ζC are extracted with a consistency of 0.1% or better, and ASN
f with a consistency of better than 1.8%.

The corresponding figures for the FN plot are around 2% and around 52%, respectively. These results
clearly demonstrate the superiority of the MG plot.

With the MG plot, there are small discrepancies between the input values for the various parameters
and the ‘typical extracted values’, as assessed by the extracted values corresponding to the scaled-field
value fC = 0.25. These discrepancies are around 0.3% for VmR and ζC, and up to 1.8% for ASN

f , and are
thought to arise because MG plot theory is based on the simple good approximation (3.4), which is
not an exact expression for the function v( f ).

For an FN plot, as interpreted via the EMG equation, the corresponding discrepancies between the
input values and ‘typical extracted values’ are around 0.7% for VmR and ζC, and up to 19% for ASN

f .
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So, again, the performance of the MG plot is significantly superior to that of the FN plot.
It needs to be understood that the numerics presented here have been generated specifically for the

purpose of making numerical comparisons between the performances of MG plots and FN plots, and are
considered to be ‘validly indicative’. If different values had been used for the ranges of fC-values and/or
work functions employed in the simulations, then numbers slightly different from those reported above
would have been generated. However, there is no reason to think that qualitative conclusions about the
comparison of MG plots and FN plots would be affected.

It is also important that one should not take the numerics given here as good estimates of the likely
errors involved when the extraction procedures discussed here are applied to real experimental results.
Further factors come into play when real experimental results are involved, including noise in the
experimental data, possible uncertainty in the true work-function value, and weaknesses in the
‘smooth planar emitter’ methodology that underlies both FN plots and MG plots. (Obviously, real
emitters are very often shaped like rounded posts or pointed needles, and have atomic structure.) In
the author’s view, we currently have no adequate knowledge about the sizes of likely errors of this
kind. The investigation of alternative Im(Vm) data interpretation methodologies and the likely errors
involved are active topics of research (e.g. [19–21]).
pen
sci.6:190912
4. Discussion
The essential merit of the MG plot is that the whole tiresome apparatus [11,12] of slope and intercept
correction factors, fitting points and chord corrections (needed for high-precision parameter extraction
when an FN plot is used with the EMG equation) has been swept away.

The author’s view is that using MG plot analysis techniques based on the EMG equation should
benefit three groups of experimentalists who currently use FN plots (and will also benefit the subject
as a whole). Those who already use FN-plot interpretation theory based on equation (3.4) will no
longer need to use slope and intercept correction factors, or equivalent. Those who already use the
MG equation, but use formulae based ultimately on 1970s approximations for vF, such as those of
Spindt et al. [26] or Shrednik [27], will get slightly more precise results than before, and will not have
to use approximation formulae whose true origin may not always be obvious.

However, the largest group of beneficiaries should be those who analyse FN plots by using the
elementary FN-type equation (see [16]), which is a simplified version (see appendix A) of the original
1928 FN FE equation, with both equations based on assuming that the tunnelling barrier is ET. For
this group, for ideal devices/systems, the simple formulae provided here allow them to precisely
extract (from an MG plot) information about three characterization parameters (the VCL, the FEF and
the formal area efficiency), rather than the current normal practice of extracting only one (the FEF).

In describing these extracted results using MG plots as ‘precise’, I refer primarily to the removal of the
procedural and mathematical imprecisions associated with the use of FN plots and/or the use of 1970s era
approximations for v( f ), st and rt. There remains, of course, the possibility of physical error due to incorrect
choice of emitter work function when converting experimentally determined slope and intercept values
to characterization parameters, using the extraction formulae (3.12)–(3.14). The sizes of the errors
relating to particular pairs of correct and incorrect work-function values can be estimated roughly from
table 1, which shows values for the quantities that appear in these extraction formulae, for selected
work-function values. More precise estimates can be obtained by using the spreadsheet: inserting a
work-function value into cell K19 will generate relevant quantity values in cells K25, K31 and K41.

One reviewer has suggested that it might be possible to overcome the above problem by applying
multi-parameter numerical fitting to derive a work-function value. It is shown in the reviewer’s report
that this technique works effectively when applied to precisely simulated data, using the Matlab
routine ‘fminsearch’. This is an interesting suggestion that deserves to be explored further by
additional simulations––but I fear that the technique may work less effectively when applied to noisy
data such as may be collected in FE experiments––a point made to me by Kyritsakis (A. Kyritsakis
2019, private communication).

The following point also deserves note. Using either the original 1928 FN equation or the elementary
FE equation to extract an area-like parameter from an FN plot would result in a formal-area estimate
ðAET

f Þ greater than ASN
f by a factor of typically around 100 (see appendix A). Taking the tunnelling

barrier to be a SN barrier is ‘better physics’ [5] than taking it to be the ET barrier used in deriving the
elementary FE equation. Hence one expects that extracting the area ASN

f should be ‘better scientific
procedure’ than extracting the area AET

f .
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The formulae here envisage that researchers will use their raw Im(Vm) data to make Im(Vm) MG plots, and

will then apply an orthodoxy test [18]––which must be passed if values for extracted (and related)
characterization parameters are to be regarded as trustworthy. As indicated earlier, an orthodoxy test
already exists for FN plots, and a modified version [28] will be made available shortly for MG plots.
Hopefully, this should help to reduce the incidence of spuriously high FEF values reported in the literature.

Using Im(Vm)-type MG plots could also help eliminate the widespread but unfortunate literature
practice of pre-converting Im(Vm) data to become JMðFappM Þ data before making an FN plot, where FappM
is the apparent macroscopic field obtained from the pre-conversion equation, and JM is the macroscopic
(or LAFE-average) current density defined by JM = Im/AM. This pre-conversion is almost always carried
out by using a plausible but often defective conversion equation (defective because it can be invalid for
non-ideal devices/systems) [13]. This, in turn, has often led to defective FN plots and spurious results
for characterization parameters.

Another feature of experimental FE literature is that papers sometimes use macroscopic current
densities to show data or make FN plots, but state a formula for local current density in the text,
without drawing attention to the difference. This practice creates un-discussed apparent discrepancies
between theory and experiment, sometimes by a factor of 106 or more. Such confusions would be
reduced if, instead, FE papers gave an equation for measured current, either an Im(FC) equation of
form (2.2) above, or a related Im(Vm) equation.

The question also arises of how improved data-analysis theory of the general kind described in this
paper might be applied to non-metals, in particular semiconductors and carbon-based materials such
as carbon nanotubes (CNTs). For the last 90 years or so, it has been near-universal practice among FE
experimentalists to apply ‘smooth planar emitter methodology’ and FN-plot theory to all materials ‘as
a first approximation’, notwithstanding that this approach was originally developed to apply to a
Sommerfeld free-electron metal. The introduction of MG plots does not change this situation: MG
plots can be applied to all materials ‘as a somewhat improved first approximation’.

The problem, of course, is how to do better than this. With FN plots, it is known (certainly to the author)
that differences in surface exchange and correlation effects, as between metals and other materials, can in
principle be represented by introducing new forms of slope and intercept correction factors, to replace st
and rt. But this is rarely if ever done. The equivalent in the present work would be to introduce a
different form of data plot in which κ is taken to have a value intermediate between (2− η/6) and 2, but
good relevant theory to decide this new value of κ is not available in the literature, as far as I am aware.

A more serious difficulty, for both semiconductors and nanotubes, is the possibility of field
penetration into the emitting material: this could make the operative work function ϕop depend
significantly on the apex field Fa, and would require modification of the theory given here. At present,
the possibility of doing this reliably is limited by the lack of good knowledge as to what the
functional form of ϕop(Fa) would be for non-metal field emitters, in various circumstances.

It is also needful to remember that all FN and MG plots implicitly involve the (unrealistic) ‘smooth
planar emitter’ methodology. As noted earlier, the issue of how best to include emitter-shape effects,
when predicting FE Im(Vm) characteristics or analysing experimental FE Im(Vm) data, is a topic of
active research (e.g. [19–21]). At present, no general agreement exists on how best to perform data
analysis for non-planar emitters, and significant amounts of detailed further research seem needed.

Strategically, it seems more urgent to develop Im(Vm) data interpretation theory for point-form metal
emitters than to examine how to apply ‘smooth planar emitter’ methodology to non-metals. Thus, for all
the above reasons, detailed discussion of customized Im(Vm) data interpretation theory for non-metals
seems premature, and is outside the scope of this paper.

Development of data interpretation theory for point-form emitters will inevitably require us to
eventually move on from MG plots. An early step will be to examine more general data-plot forms
that might be predicted to be linear or approximately linear, in particular the so-called power-κ (or
power-k) plot [21]. But, very probably, Im(Vm) data analysis will eventually find it useful or necessary
to employ some more-sophisticated analysis technique, such as multi-parameter numerical fitting. This
technique has been widely used outside the context of FE for many years, and sometimes within it. It
potentially offers greater flexibility and greater precision in parameter extraction.

The author’s view is that it is likely to be some years before Im(Vm) data-interpretation methodologies
specifically designed for point-form emitters (including basic theory, easy-to-use validated tools, and any
related knowledge needed to interpret or use their outputs) become widely available. In particular, it
would ideally need to be shown that the methodologies work robustly for ‘noisy’ data inputs, can
output ‘measured’ values of characteristic local field and scaled field, and can provide the equivalents
of an orthodoxy test [18] and (desirably) ‘phenomenological adjustment’ [16] .
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Until this happens, MG plots (which are straightforward to implement, and––like FN plots––are

robust against moderate amounts of noise) can provide a significantly better approach to FE Im(Vm)
data analysis than do FN plots.
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Appendix A. Emission area extraction parameters for Fowler–Nordheim
plots
This appendix gives expressions for emission area extraction parameters for FN plots. First consider the
case where an FN plot is interpreted by (a) assuming that the tunnelling barrier is a SN barrier and
(b) using the EMG equation. The current–voltage form of this equation is obtained by combining
equations (2.2) and (2.3) above. In natural FN coordinates this becomes

ln{IEMG
m =V2

m} ¼ lnfASN
f af–1z�2

C g–vFbf3=2zC=VmÞ: ðA1Þ

Customizing the general theory in [11] yields the slope Stan of the tangent to the ‘theoretical’
plot (A 1) as

Stan(V�1
m ) ¼ –s(fC) � bf3=2zC, ðA2Þ

where fC [=Vm/VmR] is the characteristic scaled-field value corresponding to measured voltage Vm, VmR

is the reference measured voltage as discussed in the main text, and s( f ) is the slope correction function
for the SN barrier, as usually defined (e.g. [8]). Also, from [11], the intercept ln{Rtan} that this tangent
makes with the vertical (1/Vm = 0) axis is given via

Rtan(V�1
m ) ¼ r(fC) � ASN

f af–1z�2
C , ðA3Þ

where r( fC) is the 2012 intercept correction function as defined in [11] and denoted there by r2012.
Because a theoretical FN plot of the EMG equation is slightly curved, its slope (and hence the slope of

its tangent) vary with the horizontal-axis coordinate V�1
m . The tangent method of plot interpretation takes a

given experimental FN plot to be parallel to this theoretical tangent as defined at a particular V�1
m -value

and hence at a particular fC-value ft. Fitting values of the correction functions are then defined by st = s( ft)
and rt = r( ft). On identifying the related values of Stan and ln{Rtan} with the slope SfitFN and intercept
lnfRfit

FNg of the straight line fitted to the experimental FN plot, we find that

Rfit
FNjSfitFNj2 ¼ ðrts2t Þðab2f2ÞASN

f : ðA4Þ

Hence, the extracted value of ASN
f is given in terms of SfitFN and Rfit

FNby the extraction equation

fASN
f gextr ¼ LSN

FN � ðRfit
FNjSfitFNj2Þ, ðA5Þ

where the extraction parameter LSN
FN for an FN plot, interpreted by assuming a SN barrier, is given by

LSN
FN ¼ 1

ðab2f2Þðrts2t Þ
: ðA6Þ

The fitting value ft is not initially known. In principle, it can be estimated by an iterative process, but
normal practice takes st = 0.95 as a first approximation. This corresponds to ft≅ 0.2815 and (for an emitter
with work-function 4.500 eV) to rts2t ffi 112:9. The corresponding extraction-parameter value is

LSN
FN � 6:083 nm2 A�1: ðA7Þ

If, instead, an FN plot is interpreted by assuming the tunnelling barrier is ET, then a numerically
different result is found for the related extraction parameter LET

FN. In this case, an ‘extended elementary
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(EEL) equation’ [16] is written in the current–voltage form

IEEL(Vm) ¼ AET
f af–1z�2

C V2
m exp

–bf3=2zC
Vm

" #
, ðA8Þ

where AET
f is the formal emission area for the ET barrier. The extracted value of AET

f is given in terms of
SfitFN and Rfit

FN by

fAET
f gextr ¼ LET

FN � ðRfit
FNjSfitFNj2Þ, ðA9Þ

where

LET
FN ¼ 1

ab2f2 : ðA10Þ

This result is found from equation (A 6) by noting that, for the ET barrier, rt and st are both replaced
by unity. For ϕ = 4.500 eV, equation (A 10) yields

LET
FN � 686:6 nm2=A: ðA11Þ

To achieve numerical consistency in making comparisons, values (A 7) and (A 11) are given here to
four significant figures, but the physical precision is very much worse, particularly for value (A 7),
which could easily be in error by 10% or more.

Clearly, for a given value of the experimentally derived product ðRfit
FNjSfitFNj2Þ, use of the extraction-

parameter value (A 11) will lead to estimates of the formal emission area AET
f that are much larger (by

a factor of order 100) than those found by using the extraction-parameter value (A 7) to estimate the
formal emission area ASN

f . Qualitatively, this is not surprising, since it is known (e.g. [1]) that the 1956
MG FE equation predicts emission current densities that are larger than those predicted by the
elementary FE equation, by a factor typically between 250 and 500. This result underlines the need for
careful definition of area-like quantities.

More important is the following conclusion. As shown in appendix B, extracted values of ASN
f found

by analysing an MG plot are much the same as the extracted values of ASN
f found by using the extended

MG equation to analyse an FN plot. This means that extracted values of ASN
f found by analysing an MG

plot are much smaller (by a factor of order 100) than extracted values of AET
f found by using the extended

elementary equation to analyse an FN plot. Both these analysis procedures are relatively straightforward.
However, when one accepts (for reasons discussed in [1]) that assuming a SN barrier is better physics
than assuming an ET barrier, then the conclusion is that ASN

f is physically a ‘more meaningful
parameter’ than AET

f , and that extracting an ASN
f -value rather than an AET

f -value is ‘significantly better
scientific procedure’.
Appendix B. Description and discussion of simulation procedures
and results
This appendix describes simulations carried out in order to test the methodology proposed in this paper
for extracting ASN

f values from a Murphy–Good plot, and to compare the precision of the methodology
with that of the corresponding procedure for extracting ASN

f values from an FN plot. For simplicity, these
simulations make use of an already existing special-purpose spreadsheet able to evaluate high-precision
values of the FE SMFs v(x) and u(x) [≡−dv/dx] (and hence of all the FE SMFs, and of related quantities
such as emission current densities). The parameter x is the Gauss variable (i.e. the independent variable in
the Gauss hypergeometric differential equation). These two functions are estimated by the following
series, derived from those given in [8] by replacing the symbol l0 by the symbol x now preferred, and
by slightly adjusting the form of the resulting series for v(x) (without changing its numerical predictions):

vðxÞ ffi ð1� xÞ 1þ
X4
i¼1

pixi
 !

þ x ln x
X4
i¼1

qixi�1 ðB1Þ

and

uðxÞ ffi u1 � ð1� xÞ
X5
i¼0

sixi � ln x
X4
i¼0

tixi: ðB2Þ



Table 2. Numerical constants for use in connection with equations (B 1) and (B 2).

i pi qi si ti

0 — — 0.053 249 972 7 0.187 5

1 0.032 705 304 46 0.187 499 344 1 0.024 222 259 59 0.035 155 558 74

2 0.009 157 798 739 0.017 506 369 47 0.015 122 059 58 0.019 127 526 80

3 0.002 644 272 807 0.005 527 069 444 0.007 550 739 834 0.011 522 840 09

4 0.000 089 871 738 11 0.001 023 904 180 0.000 639 172 865 9 0.003 624 569 427

5 — — −0.000 048 819 745 89 —

u1 = 3π/8√2 ≅ 0.8330405509
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Values of the constant coefficients pi, qi, si and ti are shown in table 2.
It is readily seen that, at the values x = 0,1, equation (B 1) generates the exactly correct values v(0) = 1,

v(1) = 0, and that at x = 1, equation (B 2) generates the exactly correct value u(1) = u1 = 3π/8√2.
The form of equation (B 1) mimics the form of the lower-order terms in the (infinite) exact series

expansion for v(x) [6], but the coefficients in table 2 have been determined by numerical fitting to
exact expressions for v(x) and u(x) (in term of complete elliptic integrals) evaluated by the computer
algebra package MAPLE™. In the range 0≤ x≤ 1 (but not outside it), v(x) takes values lying in the
range 1≥ v(x)≥ 0, and the maximum error associated with formulae (B 1) and (B 2) is known to be
less than 8 × 10−10 [8]. The accuracy of the spreadsheet implementation is expected to be similar (e.g.
see Wikipedia entry on ‘Numeric precision in Microsoft Excel’).

These formulae are applied in the context of Murphy–Good-type FE equations by setting x = fC. A
copy of the modified spreadsheet, as used in the present simulations, is provided as electronic
supplementary material and will need to be downloaded.

For these simulations, the FE device/system has been taken as ideal, the local work function ϕ has
been taken as 4.50 eV, the input value of the SN-barrier formal emission area ASN

f has been taken as
constant and equal to 100 nm2, and the input value of the reference measured voltage VmR has been
taken as constant and equal to 6000 V. For a work-function value of 4.500 eV, this VmR value is
equivalent to a constant characteristic voltage conversion length ζC of approximately 426.66 nm.

It is known (see spreadsheet in electronic supplementary material related to [18]) that tungsten field
emitters (with assumed work function 4.50 eV) normally operate within the range 0.15≤ fC≤ 0.35. In this
range, for fC-values increasing by steps of 0.01, values have been calculated (in the spreadsheet related to
the present paper) for the measured voltage Vm (column AM), its reciprocal V�1

m (column AQ), the
characteristic kernel current density JSNkC (column AN), the predicted measured current IEMG

m (column
AO), and the MG-plot vertical-axis quantity lnfIEMG

m =Vk
mg (column AR).

For each of the fC values in the range 0.20≤ fC≤ 0.30, an ‘extracted local slope’ SMG has been estimated
(column AS) by using the equation

SMG � Y(fC � 0:05)� Y(fC þ 0:05)
X(fC � 0:05)� X(fC þ 0:05)

, ðB3Þ

where X[≡1/Vm] and Y½; lnfIEMG
m =Vk

mg� are the quantities on the horizontal and vertical axes of the
MG plot. The parameter SMG given by equation (B 3) is the average slope over a scaled-field range of
0.1, centred on the chosen fC-value. SMG is then used to derive an estimate (column AT) for the
vertical-axis (1/Vm = 0) intercept ln{RMG} of the tangent to the MG plot at the chosen fC-value, using a
formula equivalent to

ln{RMG} � Y(fC)þ jSMGjX(fC): ðB4Þ

In order to make comparisons with extraction procedures that use an FN plot (as interpreted using
the EMG equation) to estimate a value for ASN

f , we have carried out manipulations similar to those
just described, but with κ taken equal to exactly 2. Columns BF and BG show the resulting values of
SSNFN and lnfRSN

FNg.
In relation to slope and intercept values extracted from the simulations, the observed near-constancy

of the values in columns AS and AT shows that the MG plot is ‘almost exactly’ straight. The plot is not
expected to be exactly straight, because MG plot theory is based on the ‘simple good approximation’
(3.4), which is not an exactly correct formula for v( fC).
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Over the range of midpoint fC-values considered, namely 0.20≤ fC≤ 0.30, for the MG plot the

variation in the extracted local slope is about 0.06% and that in the extracted intercept is about −0.1%.
The corresponding figures for the FN plot are about 1.9% and about −2.0%. This confirms that the
MG plot is much more closely linear than the FN plot.

For the parameters {VmR}
extr and z extr

C that can be derived from the extracted slope, the derived
variations are, of course, the same as the variations in the extracted slope. However, comparisons can
also be made between the input value (6000 V for VmR) and the extracted value {VmR}

extr for the
central fC-value in the whole range considered. For this value ( fC = 0.25), {VmR}

extr is 5982.5 V for the
MG plot, 6041.6 V for the FN plot. These values quantify discrepancies between the input and
extracted values of VmR: for the MG plot the discrepancy is −0.29%, for the FN plot the discrepancy is
+0.69%. For the MG plot, the discrepancy is probably caused by the use of the ‘simple good
approximation’ to develop MG plot theory. The same figures and thinking apply to the extraction of
characteristic VCL values, and to the extraction of characteristic FEF values via equation (3.16).

For the parameter {ASN
f }extr extracted using an MG plot and equations (3.13.) and (3.14), the variation

in this parameter over the midpoint range is about 1.3%, and the discrepancy between the input
value and the central extracted value is about −1.4%. When this parameter is extracted using an FN
plot and equations (A 5) and (A 6), the variation over the midpoint range is about 40% and the
discrepancy between the input value and the central extracted value is about 15%. These figures
confirm that, for the purpose of extracting a precise estimate of ASN

f , the MG plot is demonstrably
much superior to the FN plot.

The numerics presented here have been derived primarily for the purpose of comparing the merits of
FN plots and MG plots. As noted in the main text, those for the MG plot should not be taken as good
estimates of the likely errors involved in extracting characterization-parameter values from real
experimental data.
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