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Abstract

Insulin is now well-established as playing multiple roles within the brain, and specifically as 

regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, 

such as those seen in type 2 diabetes and Alzheimer’s disease, are associated with brain 

hypometabolism and cognitive impairment but the mechanisms of insulin’s central effects are not 

determined. Several lines of research converge to suggest that the insulin - responsive glucose 

transporter GluT4 plays a central role in hippocampal memory processes, and that reduced 

activation of this transporter may underpin the cognitive impairments seen as a consequence of 

insulin resistance.

Background: glucose, insulin, and hippocampal memory.

Over the past two decades or so, insulin signalling within the brain has moved from being 

seen as non-existent (or, at most, a minor player in hypothalamic fuel-sensing1) to being 

recognised as an important scientific and clinical focus, central to the impact of both type 2 

diabetes (T2DM) and Alzheimer’s disease (AD) - indeed, the latter has been characterised in 

some cases as ‘type 3 diabetes’ 2, 3. The fact that insulin is a key component of hippocampal 

memory processes, and the concept of systemic insulin resistance extending to the brain 

such that it impairs both hippocampal metabolism and cognitive function,4-7 are now well-

established 6, 8-20.

Study of the metabolic regulation of cognition, and specifically of hippocampal memory 

processing, began with investigation of glucose, the brain’s primary fuel source (which field 

in turn emerged from earlier work on the mechanisms modulating the impact of stress on 

memory21). Reviews both in this issue and elsewhere have covered this history in detail: 

administration of exogenous glucose, either systemically or directly into the brain, is well 

established to acutely improve performance on challenging cognitive tests, both in 
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laboratory animals and in a wide range of human populations 22-25. Importantly, glucose 

supply to the hippocampus was shown to be a constraint on performance of challenging 

memory tasks, so that cognitive demand depletes ECF glucose levels within brain regions 

involved in processing the specific task and to an extent that correlates with task difficulty 
26, 27. This task-associated depletion was later directly confirmed to be correlated with both 

increased local lactate production 28 and caused by local glucose uptake and metabolism 29. 

Depletion is local rather than brain-wide, occurring only in the brain regions in processing a 

particular task 30-34. Glucose metabolism has become the primary marker for neural and 

cognitive activity in humans, forming the basis for techniques including fMRI and PET.

Conditions that impair brain glucose supply, such as aging, T2DM or AD, lead to more 

profound task-associated depletion of local brain glucose correlated with impaired cognitive 

performance 35-40. Details of the exact causes of task-associated increases in glucose 

demand remain to be precisely described and may vary, but there are a large number of 

candidate processes downstream of increased local glycolytic metabolism: for example, 

metabolic support for the energetically costly Na+/K+ ATPase and promotion of enhanced 

cellular excitability and synaptic plasticity 41-46.

Given the close relationship between local glucose metabolism and cognitive performance, 

interest in factors that might modulate brain glucose supply and metabolism increased: 

insulin was an early, and clinically-important, candidate and one whose receptors had 

already been shown to be altered, in the rat hippocampus, by water maze training 47. Indeed, 

insulin was confirmed to be a key player in hippocampal cognitive processes: specific 

blockade of endogenous intrahippocampal insulin markedly impairs spatial working 

memory, while physiological doses delivered to the hippocampus enhance it 4-6. Those 

studies also showed that diet-induced obesity and systemic insulin resistance (DIO; a rat 

model of lifestyle-induced type 2 diabetes) impairs both cognition and hippocampal 

metabolism in a manner resembling direct blockade of intrahippocampal insulin 5: the 

impairment seen resembles the cognitive and metabolic impairment seen in human patients 

with T2DM, who are especially prone to hippocampal dysfunction 48-57. Enhancement of 

memory by insulin has also been shown in several human studies 58-64, possibly in at least 

some cases by increasing insulin-mediated glucose transport through GluT4 65. In vivo 
studies using microdialysis directly confirmed that insulin acutely stimulates local 

hippocampal glycolysis 19, and other work has shown that insulin’s modulation of brain 

glucose metabolism is region-dependent, with cortex and hippocampus being most sensitive 
18, 66-72. Nonetheless, the mechanisms by which insulin regulates memory processes are less 

understood 6, 13, 14, 19, 20, 59, 65, 73-78. Understanding the interplay of metabolic regulators is 

vital for understanding of both hippocampal function and the impact of e.g. T2DM and AD. 

The clinical fact that central insulin resistance causes cognitive impairment is now 

reasonably well-established, but not yet well understood at a cellular or molecular level.

In the periphery, insulin is thought of as a regulator of glucose. However, the converse is also 

true: release of insulin from the pancreas occurs in response to elevations in blood glucose. 

The molecular machinery that regulates such release is present in the brain, and has been 

shown to modulate hippocampal memory 41, 42, 79; moreover, there is increasing evidence 

for local synthesis and release of insulin in the brain 6, 80-86. This raises the possibility that 
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one role of hippocampal insulin might be an effector of glucose’s procognitive actions, 

including via increased GluT4 translocation that permits increased glucose flux; this has 

been suggested 25 but remains untested. One potentially complicating factor both here and in 

consideration of the links between insulin resistance and cognitive impairment is that insulin 

transport across the blood-brain barrier may decrease with age87, so that reduced central 

insulin signaling might be seen even without diminished central insulin sensitivity.

Mechanisms by which insulin enhances memory

The focus of this paper is on GluT4 and insulin resistance - it is explicitly not intended to be 

a comprehensive review of mechanisms of brain aging - but it is important to note that 

regulation of GluT4 is far from the only mechanism by which insulin likely regulates 

cognitive processes: the brief discussion below is incomplete and omits major lines of 

research such as regulation of neurotransmission and neurotransmitter receptors (including 

NMDA, AMPA, and GABA receptors 78-88-90). However, it is worth discussing a couple of 

mechanisms that appear to regulate hippocampal cognition, especially in the context of this 

issue’s focus on central insulin resistance.

Equally important and conversely, GluT4 in the context of memory processes is not solely 

regulated by insulin: several other receptor tyrosine kinases (e.g. insulin-like growth factor-1 

receptors and TrkB receptors) and other receptors involved in memory formation may 

regulate GluT4 91-94. Downstream of receptor activation, GluT4 translocation is regulated by 

several post-receptor signaling molecules critical for maintaining long term memory 

including insulin-like growth factor 2, brain-derived neurotrophic factor, Ca2+/calmodulin-

dependent protein kinase II, phosphoinositide 3-kinase (PI3K), protein kinase A, MAPK, 

protein kinase-λ, and -protein kinase-ζ 91-101. Some non-receptor activation-dependent 

conditions are associated with GluT4 trafficking and activity, such as cellular depolarization 

via elevated intracellular [Ca2+] and elevated extracellular [K+] 102-106; as noted below, this 

includes recruitment of GluT4 to the synapse as a consequence of neuronal activity 107, a 

seminal recent finding that is consistent with prior work showing increased cerebellar GluT4 

after prolonged exercise108. In general, although insulin’s CNS actions are likely to be 

mediated in significant partvia GluT4, the two are not synonymous. This is consistent with 

the fact that although GluT4 and insulin receptors (IR) show some degree of brain co-

localization 17, 109, there is not a one-to-one correlation, in contrast to peripheral tissues 

where the two showtight co-localization.

Antagonism of beta-amyloid

One insight into likely mechanisms of insulin action in the brain comes from clinical studies 

which show a clear link between T2DM and development of AD, and that many AD patients 

have reduced hippocampal insulin signalling along with brain hypometabolism and 

accumulation of beta-amyloid (Aβ)54, 74, 110-117. Several studies including in vitro work 

suggest that insulin and Aβ oppose each other at a molecular level 118-126; recent work 

showed that acute administration of oligomeric Aβ to the hippocampus causes rapid 

cognitive impairment, reduced local glucose metabolism, and impaired translocation of the 

insulin-regulated glucose transporter GluT4 7, a pattern that closely resembles hippocampal 
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insulin resistance. Related studies, discussed further below, showed that in DIO rats, specific 

antagonism of intrahippocampal oligomeric Aβ reversed cognitive impairment, suggesting a 

key interaction between insulin and Aβ in modulation of hippocampal cognitive processing. 

Insulin regulates Aβ processing and removal from the brain 127, 128, a large literature shows 

that the mutual antagonism between insulin and beta-amyloid mutually extends to e.g. 

glucose metabolism, glutamate signalling, and other pathways 60, 129-137, such that 

preventing impairment from accumulation of oligomeric Aβ is an important procognitive 

role of hippocampal insulin.

Insulin-regulated aminopeptidase (IRAP)

GluT4 translocates to the cell surface via complex machinery 138, 139 downstream of insulin, 

primarily through phosphatidyl inositol 3-kinase (PI3K), and Akt140. Activation of Akt 

inactivates glycogen synthase kinase 3 beta (GSK3β) and activates AS160 141-144. 

Activation of AS160, along with non-PI3K mechanisms, permits release of GluT4-

containing glucose storage vesicles (GSVs) from their intracellular tethers 
138, 139, 143, 145-147, allowing GluT4 to move to the cell surface. However, the GSVs contain 

proteins other than GluT4, including some involved in regulation of memory processes such 

as insulin-like growth factor 2 (IGF2) receptors, insulin-regulated aminopeptidase (IRAP), 

and the Ras GTPase-activating-like protein IQGAP1; 106, 148, 149-151. Hence, recruitment of 

GluT4 to the cell surface will concurrently recruit these proteins (and vice versa), so that 

increased plasma membrane GluT4 might in some cases be a correlate, rather than a cause, 

of insulin’s cognitive effects.).

IRAP, in particular, colocalises with GluT4 in the hippocampus 106 and is the receptor for 

angiotensin IV (AngIV), which enhances hippocampal memory 152, 153. The presence of 

IRAP in GSVs may both promote stability of the GLUT4 protein and regulate 

compartmentalization and recycling of GLUT4 from endosomes to GSVs following 

translocation and subsequent endocytosis 154. Interestingly, though, we have shown that 

glucose flux through GluT4 is required for cognitive enhancement by hippocampal AngIV 
155, suggesting that IRAP is not an alternative to GluT4 as the transducer of insulin’s 

cognitive effects.

GluT4 and glucose metabolism

In the periphery, the primary role of insulin is to remove glucose from the blood via GluT4, 

which moves to the cell surface to permit increased glucose entry into cells when needed. 

GluT4 is heavily expressed in the hippocampus 156. Taken together with the facts that (i) 

hippocampal cognitive processes are limited by glucose supply32-34, (ii) administration of 

glucose to the hippocampus causes an increase in hippocampal metabolism that correlates 

with improved memory 5, 7, 26, 27, 39, 157-159, and (iii) intrahippocampal insulin acutely 

increases local hippocampal metabolism55, an attractive hypothesis is that cognitive 

enhancement by insulin requires GluT4 translocation as a mediator of on-demand glucose 

supply during memory processing 156, 160, 161. Researchers have speculated that because 

GluT4 exists in neuronal populations with high-energy demands, such as the hippocampus, 

it is likely that GluT4 supports GluT3, the principal neuronal glucose transporter, in meeting 

the demand for glucose supply to neurons during times of enhanced energy demand 161-163. 
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This role of GluT4 is likely to be specific to neurons: in the hippocampus GluT4 appears to 

be abundant wherever there are insulin receptors, but the converse is not true 156, 164-166. 

Insulin receptors have been identified in many cell types (e.g. neurons, astrocytes, 

endothelia, microglia), whereas GluT4 shows neuron-specific localization 156, 167-169.

Several studies, from our lab and others, support this ‘on-demand energy supply’ hypothesis 

for hippocampal GluT4. In the hippocampus, insulin enhances GluT4 translocation in the 

brain in a time-course and kinase-dependent (i.e. PI3K) manner that is very consistent with 

insulin’s effects on peripheral GluT4 170. Physiologically-relevant increases in 

intrahippocampal insulin that enhance memory upregulate GluT4 translocation, and 

intrahippocampal Aβ at a dose that impairs cognition and hippocampal metabolism reduces 

GluT4 translocation 5, 7. More recently, we were able to show (using indinavir, see below) 

that GluT4 is a key player in hippocampal memory processes and specifically the impact of 

insulin. Increased glucose metabolism via GluT4 was required for enhancement of spatial 

memory by exogenous insulin; moreover, cognitive challenge using either of two 

hippocampally-mediated tasks in the absence of any treatment increased hippocampal GluT4 

translocation after spatial working memory or fear-encoding (but not retrieval, interestingly; 

it appears that the role of GluT4 in hippocampal memory processes may be specific to 

encoding) 29, 171. Consistent with the ‘on-demand’ hypothesis, blockade of hippocampal 

GluT4 did not affect hippocampal metabolism at baseline, but prevented any increase in 

metabolism by insulin treatment29. Moreover, the role of GluT4 in memory appears to be at 

least somewhat region-specific: no effect of indinavir was seen on an amygdala-dependent 

task, in contrast to the marked effect on a very similar hippocampally-dependent task 171. 

These findings strongly support a key role for increased glucose metabolism, via GluT4, at 

times of increased glucose demand during hippocampally-mediated memory encoding.

In our 2016 paper 171, we noted as a potential inconsistency in this hypothesis that “Others 

have used high-resolution [14C]-2DG imaging to show that increased glucose utilization 

during upregulated neuronal activity occurs primarily in synaptic areas (the neuropil) rather 

than perikarya 172-174. Because GluT4 is expressed in perikarya rather than neuropil163, 175, 

which shows limited 2DG phosphorylation during hippocampally-dependent memory 

acquisition, increased neuronal glucose utilization seen during SA testing may not have been 

mediated entirely, or even primarily, through GluT4.” One possibility to resolve this 

apparent conflict was that insulin might undergo relatively bulk release in the hippocampus 
176, and hence could conceiveably act simultaneously on both synapses to control 

glutamatergic neurotransmission and the cell body to enhance GluT4 translocation and 

glucose utilization. The apparent dissociation between the location of plasma membrane 

GluT4 and the site of energy demand was, though, potentially resolved in a seminal 

subsequent study which confirmed our finding of activity-dependent neuronal GluT4 

translocation and showed that this occurs in large part at the synapse, rather than the cell 

body 107. This result expanded our understanding of the role of hippocampal GluT4, as 

potentially including both an insulin-dependent role (primarily at the neuronal cell body) 

and also a role in providing on-demand glycolytic support at the synapse (which is the 

location of the majority of activity-associated energy demand 45, 177, 178 and where 

glycolytic enzymes localize when energy demand exceeds supply179). Ashrafi et al.107 

suggested that activation of AMP-kinase might mediate the synaptic recruitment of GluT4 
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during hippocampal cognitive processing, consistent with the discussion, above, of GluT4 

being a target of multiple cognitive signalling pathways.

While acute blockade of GluT4 impaired memory encoding, chronic direct inhibition of 

hippocampal GluT4 impaired long-term memory, accompanied by e.g. reduced hippocampal 

BDNF, and alterations in task-associated hippocampal metabolism, but spared short-term 

memory 171. Further investigation of this dissociation is needed.

GluT4 and hippocampal insulin resistance

Peripheral vs. central regulation of GluT4

Outside the CNS, GluT4 translocation mediates the anabolic functions of insulin by 

increasing conversion of glucose into glycogen, protein, and fatty acids 180-183. Some of 

these effects are mechanistically impossible in the hippocampus, though; for instance, 

GluT4 is expressed in neurons 184, and glycogen conversely made only in astrocytes 185, 186, 

and thus insulin is unlikely to effect glucose conversion into glycogen through GluT4-

mediated glucose uptake in the brain. In general, brain insulin signalling and regulation of 

GluT4 may be different from that in peripheral tissues. For example, brain IRs are 

structurally distinct from peripheral IRs 187. The neuronal IR is largely the -α isoform 

(IRα), which differs from the dominant -β (IRβ) isoform present in astrocytes, muscle, fat 

and liver due to alternative splicing of exon 11 188-191. Insulin and IGF2 bind IRα with high 

affinity 189, 192, although it is unknown whether IGF2-activation of IR promotes GluT4 

translocation in the hippocampus. IRα is linked to mitogenic actions of insulin, and is 

somewhat less effective at increasing glucose metabolism than IRβ 189: in general, insulin’s 

effects in the hippocampus may not precisely match those seen elsewhere in the body.

As mentioned above, IR and GluT4 may have distinct spatial expression patterns within 

neurons, and these may alter at times of increased neuronal activity. Moreover, although 

rodent studies have identified GluT4 as primarily or exclusively neuronal, there is some 

evidence in the human brain that GluT4 may also be found on non-neuronal cells, such as 

microglia and endothelial cells 193, so that insulin’s effects in human brain may be more 

diverse than those observed in rodent studies. Several molecules and events necessary for 

hippocampal memory (e.g. CaMKII, DHA, PKC, PKA, BDNF, cellular depolarization, etc.) 

regulate GluT4 in adipocytes and muscle 91-106. It will be important to determine which of 

these effects also occur in neurons.

Impaired hippocampal GluT4 translocation in insulin resistance

In peripheral tissues, deficits in GluT4 trafficking and intrinsic activity are linked to the 

adverse effects of insulin resistance 101, 183, 194-199. Because insulin resistance impairs 

hippocampal cognitive and metabolic processes 19, 134, 176, 200-207, identifying the molecular 

consequences of brain insulin resistance is important DIO animals show markedly reduced 

cognitive responsiveness to intrahippocampal insulin, accompanied by an absence of the 

increased local glucose metabolism seen in response to insulin in control animals 55. Perhaps 

surprisingly, although factors linked to T2DM such as elevated corticosterone impair 

hippocampal GluT4 translocation 168, there appear to be no data reported on hippocampal 
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GluT4 in an animal T2DM model. As would be predicted, we found translocation of GluT4 

to be impaired (Figure 1): after 12 weeks of a high-fat diet the proportion of hippocampal 

GluT4 found at the plasma membrane was less than half of that of control animals, 

consistent with impaired GluT4 translocation being a key factor in cognitive and metabolic 

impairments seen with hippocampal insulin resistance.

Interestingly, a second glucose transporter, GluT8, may be regulated by insulin208, 209 

(although reports differ 210) and has been identified in the hippocampus, its primary location 
184, 211. The impact of insulin resistance on hippocampal GluT8 is unknown.

Hippocampal beta-amyloid and GluT4.

T2DM and AD are linked mechanistically by insulin resistance: patients with AD have 

reduced brain insulin signalling 54, 74, 100, accompanied by hypometabolism, and both 

insulin and insulin sensitizers have proven effective at ameliorating AD 60, 74, 212, 213. 

Conversely, T2DM is a major risk factor for AD, and leads to both elevated brain Aβ and 

impaired clearance of Aβ 54, 74, 110-117. Abnormal accumulation of brain Aβ has been 

reported in transgenic rodent models, and we see elevated hippocampal Aβ in our DIO rat 

model also (unpublished data). In vivo, after as little as 10 min, oligomeric Aβ causes 

impaired hippocampal insulin signaling and reduced GluT4 translocation, accompanied by 

cognitive impairment and hippocampal hypometabolism but no effect on either GluT1 or 

GluT3 129. Moreover, cognitive impairment seen in the DIO rat model of diet-induced 

insulin resistance is completely reversed by blockade of intrahippocampal oligomeric Aβ 
214, along with restoration to baseline of dysregulated hippocampal glutamate signalling that 

is a hallmark of amyloid’s hippocampal effects 215, 216, showing that Aβ is a key 

downstream effector of the cognitive impairment caused by insulin resistance. Further, 

GluT4 immunoreactivity colocalises with cholinergic markers 217, suggesting a role for 

GluT4 dysregulation in AD which is characterised by damage to cholinergic neurons 
218, 219. Taken together, these findings strongly support the potential for (dys)regulation of 

GluT4 to be central to the pathological links between T2DM and AD. One possible caveat to 

this conclusion is offered by Nelson et al.220, who suggest that a direct T2DM-AD link is 

not certain and that cardiovascular pathology may be a better explanation for the link 

between T2DM and impaired cognition during aging.

Indinavir, HIV, and GluT4-related cognitive impairment

The GluT4 blocker indinavir was developed as an inhibitor of the HIV retroviral protease, 

and has no effect on mammalian proteases in either rats or humans 221, 222. Other than 

inhibition of HIV protease, the primary action of indinavir is to selectively inhibit GluT4 via 

competition at the cytoplasmic domain without affecting translocation of GSVs 223, 224, 

causing rapid and reversible peripheral insulin resistance 225-228. This dual activity offers a 

potential human model in which to assess the specific impact of GluT4 blockade: patients 

treated with GluT4-impairing protease inhibitors (PI; indinavir, nelfinavir) vs. those treated 

with the newer atazanavir, which has a low affinity for GluT4 227.

A common consequence of HIV infection is cognitive impairment including brain 

pathology, commonly referred to as HIV-associated neurocognitive disorder (HAND) 229; 

McNay and Pearson-Leary Page 7

Exp Neurol. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the prevalence of HAND has not decreased concomitantly with e.g. decreased viral load 
230-235 and is roughly 30-50% among HIV-infected persons 236. Long-term PI use has been 

linked to HAND, with symptoms including hippocampal cognitive impairment and Aβ 
accumulation, resembling central insulin resistance 237. HIV impairs blood-brain barrier 

integrity, so that systemic drugs such as PI may have increased access to the brain 238; note 

that this may also conceivably alter transport of insulin and/or glucose from the periphery. 

This suggests the possibility that impaired hippocampal GluT4 activity may be a cause of 

HAND. As an initial test of this hypothesis, we analysed data from approximately 1100 

patients in the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) dataset236. 

Consistent with this suggestion, we found that HIV patients with a history of GluT4-

targeting PI use had impaired hippocampally-dependent recall memory relative to those who 

never took GluT4-targeting PI (Figure 2). This result is further support for GluT4 as a 

central regulator of hippocampal memory processes, and for impairment of glucose flux 

through GluT4 as a causal factor in cognitive impairments associated with central insulin 

resistance.

Conclusion

Central, and more specifically hippocampal, insulin resistance appears to be a central 

element in the cognitive impairment seen in both T2DM and AD. Impairment of glucose 

supply to neurons subsequent to dysregulation of the insulin-sensitive glucose transporter 

GluT4 may be a unifying mechanism that explains, at least in part, the comorbidity of these 

two diseases. Additional disease states, such as HAND, where central GluT4 is impaired are 

also associated with cognitive impairment on hippocampal tasks. GluT4 is thus an attractive 

target for future therapeutic intervention: indeed, several treatments that increase the activity 

of GluT4 such as alpha lipoic acid, AICAR, insulin sensitizing drugs, and histone 

deacetylase inhibitors also increase memory 239-242. Moreover, GluT4 in the hippocampus 

of healthy subjects is a key component of memory processing and regulation, likely 

transducing on-demand glucose supply to neurons when needed to meet the metabolic needs 

of increased neuronal activity.
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Figure 1. 
DIO rats have reduced hippocampal plasma membrane (active) GluT4 compared to rats fed 

a control chow diet Y-axis shows the ratio of plasma membrane to total GluT4 in the 

hippocampus, normalised to the group mean for Control animals set at 100%. Data are mean 

+ SEM. * = p<.05.
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Figure 2. 
CHARTER data showing that HIV patients on GluT4-inhibiting PI such as indinavir have 

impaired memory recall compared to patients taking PI that do not affect GluT4-mediated 

glucose uptake. Y-axis is demographically adjusted domain T-score for the recall domain, as 

defined in the CHARTER study236. Data are mean + SEM. * = p< .05.
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