
A tumorigenic index for quantitative analysis of liver
cancer initiation and progression
Gaowei Wanga, Xiaolin Luoa, Yan Lianga, Kota Kanekoa, Hairi Lib, Xiang-Dong Fub, and Gen-Sheng Fenga,1

aDepartment of Pathology, Division of Biological Sciences, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093; and bDepartment
of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093

Edited by Roger J. Davis, University of Massachusetts Medical School, Worcester, MA, and approved November 13, 2019 (received for review June 29, 2019)

Primary liver cancer develops from multifactorial etiologies, result-
ing in extensive genomic heterogeneity. To probe the common
mechanism of hepatocarcinogenesis, we interrogated temporal
gene expression profiles in a group of mouse models with hepatic
steatosis, fibrosis, inflammation, and, consequently, tumorigenesis.
Instead of anticipated progressive changes, we observed a sudden
molecular switch at a critical precancer stage, by developing analyt-
ical platform that focuses on transcription factor (TF) clusters.
Coarse-grained network modeling demonstrated that an abrupt
transcriptomic transition occurred once changes were accumulated
to reach a threshold. Based on the experimental and bioinformatic
data analyses as well as mathematical modeling, we derived a tu-
morigenic index (TI) to quantify tumorigenic signal strengths. The TI
is powerful in predicting the disease status of patients with meta-
bolic disorders and also the tumor stages and prognosis of liver
cancer patients with diverse backgrounds. This work establishes a
quantitative tool for triage of liver cancer patients and also for can-
cer risk assessment of chronic liver disease patients.
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The incidences and mortality of liver cancer, mainly hepato-
cellular carcinoma (HCC), are increasing rapidly worldwide

(1). Diverse risk factors for primary liver cancer have been
identified, including infection of hepatitis B virus and hepatitis C
virus, alcohol abuse, nonalcoholic fatty liver disease (NAFLD) or
nonalcoholic steatohepatitis (NASH), and intake of aflatoxin B1.
Consistent with the complex and multifactorial etiologies,
multiomics analyses of human liver tumor samples have identified
vast genomic heterogeneity, molecular and cellular defects,
metabolic reprogramming, and subtypes of tumors as well as
altered tumor microenvironment in the liver (2–4).
However, it remains to be determined if any common molecular

signatures in the transcriptomes exist for liver cancer, despite their
considerable genomic heterogeneity. Furthermore, little is known
about the kinetics and fashions, either gradual accumulation or
dramatic transition, in generation of cell-intrinsic and cell-extrinsic
signals that are intertwined to drive malignant transformation of
hepatocytes and tumor initiation. To dissect the stepwise onco-
genic signals and mechanisms at the precancer stages, we chose
to work on mouse models that recapitulate key pathogenic fea-
tures in human liver cancer. By pathological examination, RNA-
sequencing (RNA-seq), and bioinformatic data analysis, we iden-
tified a sudden switch in transcription factor (TF) clusters at a
precancer stage of hepatocarcinogenesis. Based on a multilayer
analysis of the TF clusters and mathematic modeling, we de-
veloped a tumorigenic index (TI) calculation system for quantita-
tive measurement of liver tumorigenesis. Although this platform
was established based on the transcriptomic data derived from
genetically modified mouse tumor models, we have found appli-
cable effectiveness of the derived TI values in determination of
disease status in other mouse models of chronic or malignant liver
diseases with diverse backgrounds. Furthermore, using the TI
method developed from animal models to interrogate the hu-
man patients’ data, we demonstrated the power of the TI tool in

prognosis of liver cancer patients with diverse etiologies and also in
diagnosis of precancer patients with steatosis, fibrosis, or cirrhosis.
Upon further development and optimization, this TI platform may
become a quantitative means for early detection of liver tumor
initiation or risk assessment of chronic disease patients, based on
comprehensive analysis of the whole transcriptome rather than a
few biomarker molecules. We believe that the principle and ra-
tionale of this TI derivation method can be extended from HCC to
other types of cancer, to develop a quantitative analytical tool for
cancer prediction and prognosis in a given organ or tissue.

Results
Temporal Gene Expression Patterns in Liver Tumorigenesis. Pten is a
tumor suppressor that counteracts the PI3K/Akt signaling path-
way, and Pten deficiency has often been detected in liver can-
cer patients (5, 6). Targeted deletion of Pten in hepatocytes
induced NAFLD and, subsequently, NASH, followed by tumor
development in mice (7, 8). The NASH-driven pathogenic pro-
cess in Pten-deficient liver was accelerated and aggravated by
additional deletion of Shp2/Ptpn11 (9), a newly identified liver
tumor suppressor (10, 11). These mutant mouse lines with de-
fined genetic background and characterized tumor phenotype
constitute an ideal group of animal models to dissect stepwise
mechanisms underlying NASH-HCC development. Toward this
goal, we isolated liver samples at multiple time points from mice
with hepatocyte-specific deletion of Pten (PKO), Shp2 (SKO),
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Pten and Shp2 (DKO), and wild-type (WT) control (Fig. 1A).
Based on the developmental or pathological features, these liver
samples were divided into 4 groups: 1) youth, 2) adult, 3) pre-
cancer, and 4) cancer (Fig. 1A). Representative histological or
pathological properties of the specimens were shown (SI Ap-
pendix, Fig. S1) and were also described in detail previously (9).
RNA-seq was performed for all liver samples, and the data
quality analysis showed high levels of correlation for biological
replicates in each group (SI Appendix, Fig. S2A), with reduced
expression of Shp2 and/or Pten in corresponding mutants as
expected (SI Appendix, Fig. S2 B and C). By comparing expres-
sion levels in each mutant with WT control at the same time

point, we identified genes that were significantly changed in
mutant livers at different stages (Dataset S1). The resulting
heatmap depicts the progressive changes in liver transcriptomes
of the 3 mutant mouse lines (Fig. 1B), which correlated well with
the kinetics and severity of tumor progression in SKO, PKO, and
DKO livers (SI Appendix, Fig. S1). Highlighted in Fig. 1B are
some significantly changed genes related to the MAPK pathway,
fatty acid, glucose or bile acid metabolism, extracellular matrix,
epigenetic machinery, and inflammatory response.
By comparing the transcriptomes between PKO and WT livers

at multiple time points, we identified significantly changed bi-
ological processes in the mutant liver using gene set enrichment
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Fig. 1. Temporal gene expression patterns during progression of chronic fatty liver disease to tumorigenesis. (A) Liver samples were collected from WT, PKO,
SKO, and DKO mice and were classified into 4 groups based on developmental or pathological stages. The youth group represented the 1-mo-old (1M) livers
of all 4 genotypes; the adult group included WT livers at 2 to 16M; the precancer group included PKO livers at 2 to 12M, SKO livers at 2, 7, and 12M, and DKO
livers at 2M; and the cancer group included PKO livers at 16M and DKO livers at 7 and 12M. RNA-seq was performed for at least 3 mouse livers of each
genotype at every time point shown. (B) Heatmap of differentially expressed genes in PKO, SKO, and DKO livers, relative to WT controls at the same time
point (t test, false discovery rate (FDR) < 0.05). We selected genes that were significantly changed in at least 2/3 mutant livers. Highlighted here are genes related
to MAPK pathway (Mapk3, Jun), fatty acid metabolism (Abhd5, Slc27a2), glucose metabolism (Pkm), bile acid and cholesterol metabolism (Cyp7b1), extracellular
structure (Mmp2), epigenetic machinery (Kmt2c, Kat6a), and inflammatory response (Tnf). (C) GSEA was performed to identify significantly up-regulated (red) or
down-regulated (blue) biological processes in PKO livers, relative toWT. Marked on the right are some examples with a detailed list provided in Dataset S2. (D–F)
Comparative analysis of transcriptomes between PKO and WT livers identified differentially expressed ligands and receptors (D), epigenetic regulators (E),
and biological pathways (F) at these time points (FDR < 0.05). A detailed list of significantly changed epigenetic regulators is provided in Dataset S4.
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analysis (GSEA) (Fig. 1C and Dataset S2). Consistent with the
development of NAFLD and NASH, changes in metabolism of
fatty acids and lipids were detected very early in PKO liver
starting from 1 mo (1M) (SI Appendix, Fig. S3A). Changes in
epigenetic and DNA repair pathways (SI Appendix, Fig. S3B) and
extracellular structure organization (SI Appendix, Fig. S3C) were
also detected very early at 1 mo, followed by changes in amino
acid metabolism at 2 mo (SI Appendix, Fig. S3D), in several
immunological and inflammatory processes at 5 mo (SI Appen-
dix, Fig. S3E), and the metabolic processes of bile acids and
cholesterol at 12 mo (SI Appendix, Fig. S3F). By comparing ex-
pression levels of ligand and receptor genes between PKO and
WT livers, we identified ligand and receptor pairs that were
changed in a coordinated fashion in Pten-deficient livers (Fig. 1D
and Dataset S3). Significantly changed ligands and receptors
included Jag2-Notch1, TGFb3-TGFBR2, IFNG-IFNGR1, IL1-
IL1RN, and TGFA-EGFR. We also identified significantly
changed epigenetic regulators such as DNMT1, ARID4A, and
SETD3 in PKO liver (Fig. 1E and Dataset S4). The GSEA ap-
proach identified pathways that were significantly altered, such
as integrin1, syndecan1, IFNγ, IL-2, GA12, ARF6, P38, CD8-
TCR, ILK, Telomere, AMI, JAK-STAT, and WNT pathways, in
PKO liver (Fig. 1F and Dataset S5). In SKO liver, MAPK activity
and cell cycle were down-regulated, and inflammatory response
such as leukocyte proliferation was up-regulated, starting from
1M (SI Appendix, Fig. S4 A–C), followed by changes in epige-
netics at 12M (SI Appendix, Fig. S4D). The DKO liver exhibited
all of the changes detected in PKO and SKO livers in an expe-
dited fashion (SI Appendix, Fig. S4 E–G), resulting in aggravated
and accelerated tumorigenesis.

Significantly Changed Transcription Factor Clusters in Liver Tumors.
To probe the driving force for the transcriptomic changes associ-
ated with liver tumorigenesis, we combined a given TF with its
target genes as a TF cluster, as their coexpression controls specific
cellular activities (SI Appendix, Fig. S5A). The TF cluster-based
analysis is superior over a TF alone, which often showed high
variations among samples. A total of 1,568 TF clusters have been
collected and defined in the public datasets CellNet (12) and
GeneFriends (13) (SI Appendix, Fig. S5B and Dataset S6). We
confirmed the power of downstream genes to capture key features
of specific TFs (SI Appendix, Fig. S5C and Dataset S7). Using the
TF clusters as basic units, we compared the transcriptomic data
between tumors (isolated from PKO livers at 16 mo and DKO
livers at 7 and 12 mo) and WT adult liver samples collected at 2 to
16 mo (Fig. 1A). A total of 61 TF clusters were significantly
changed in tumors relative to WT livers, with 36 up-regulated and
25 down-regulated (SI Appendix, Fig. S5D and Dataset S8), as
exemplified by up-regulated RelA and down-regulated HNF4α
clusters (SI Appendix, Fig. S5D). We summarized well-documented
biological functions of some TFs from the literature in Dataset
S8. Consistent with the overall gene expression profile changes,
as above, the up-regulated TF clusters participate in immune
responses and extracellular structure, while down-regulated TF
clusters operate in metabolic activities and epigenetic regulation.
We also identified some TFs, such as PRRX2, AEBP1, and SFPI1,
which have not been reported in liver cancer.

A Transcriptomic Switch at the Precancer Stage and a Coarse-Grained
Correlative Network. Having identified distinct TF clusters in tu-
mors relative to healthy adult livers, we then compared expres-
sion of these TF clusters between WT and PKO livers at multiple
time points, in order to trace their changes along the tumorigenic
process. The overall expression patterns of the 61 TF clusters
remained relatively stable in adult WT livers during a long period
of 2 to 16 mo and did not change drastically in PKO livers at 2
to 4 mo. However, a sudden switch occurred in the PKO liver
at 5 mo (Fig. 2A and SI Appendix, Fig. S6 A and B), prior to

detection of tumor nodules. Of note, the dire transcriptomic
change detected in PKO livers at 5 mo was observed in DKO
livers even at 2 mo but was not visible in SKO livers until 12 mo
(SI Appendix, Fig. S6 A and B), correlating well with the kinetics
of tumor development in these 3 mutant mouse livers. Thus,
instead of a gradual change, a sharp molecular transition of TF
clusters occurred at a precancer stage. It is also interesting to
note a high level of similarity of the transcriptomes between
tumor tissues and the youth livers at age of 1 mo, reinforcing a
notion of cell dedifferentiation during the tumorigenic process
(SI Appendix, Fig. S6 A and B).
We attempted to determine a mechanism underlying such a

sharp switch during hepatocarcinogenesis. In theory, the property
of a biological process such as the transcriptomic change is dic-
tated by the topology of a gene regulatory network. To define such
topology in the context of liver cancer, we inferred correlations
between the 61 TF clusters, based on the RNA-seq data (Dataset
S9), and visualized the correlations as a network (Fig. 2B), in
which the nodes denote individual TF clusters and the solid and
dashed lines indicate positive and negative relationships, re-
spectively. The TF clusters were divided into 2 groups, 1 that was
activated in WT livers and the other up-regulated in tumors. The
correlative network was further simplified by using a coarse-
grained network model (Fig. 2C). The 2 TF cluster groups were
assembled using 2 nodes, and a coarse-grained network between
them was abstracted from the TF correlation network. In this
network, activated TF clusters in WT livers or tumors showed
positive feedback regulations that can maintain their distinctive
expression patterns through reciprocal inhibition.
The coarse-grained network was further quantified using a set

of nonlinear differential equations (SI Appendix) (14, 15), gener-
ating 2 robust attractors (Fig. 2D). In the first attractor, specific TF
clusters were up-regulated in WT adult liver, with the expres-
sion patterns maintained by mutual positive regulation. However,
the activated TF clusters in tumors were down-regulated due
to inhibition by those unique to WT livers. The second attractor
indicated the opposite trend, up-regulation of tumorigenic TF
clusters and down-regulation of those in WT livers. These 2
attractors represented the states of WT livers and tumors, re-
spectively, and Pten deficiency disturbed the stable expression of
the TF clusters in adult livers. Once the changes were accumulated
to reach a threshold, the feedback regulation in the coarse-grained
network ensued a switch to a tumorigenic transcriptome.

A TI Is Defined by a Multilayer Computational Framework. To de-
velop a quantitative method for analysis of liver tumorigenesis,
we defined a TI by formulating a multilayer computational model
based on the transcriptomic data and the coarse-grained network
(Fig. 2D). The first layer was the whole transcriptome (Fig. 3A),
and the second layer included the 61 TF clusters changed signif-
icantly between WT livers and tumors. Each TF’s activity was
determined by expression of its downstream target genes in the
first layer. The TF clusters were divided into 2 groups based on
their up- or down-regulated expression in tumors, relative to WT
livers. The TF clusters up-regulated in tumors were assigned as
protumorigenic, with down-regulated clusters assigned as anti-
tumorigenic. The third layer represented the averaged activities of
the TF clusters to calculate the tumor-promoting and tumor-
inhibiting strengths. Finally, a TI value was defined ranging
from −1 for healthy liver to +1 for tumor, to quantify tumorigenic
signals in the last layer as output. The TI value of 0 marks the
critical transition point from healthy or chronic liver diseases to
irreversible tumorigenic fate.
The computational framework included multiple parameters

to make quantitative connections between layers (SI Appendix).
We first used the RNA-seq data of WT livers and tumor samples
to train and optimize the values of these parameters. Using
the trained computational framework, we analyzed all samples in
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Fig. 1A and calculated the activities of the 61 TF clusters (Fig.
3B), tumor-promoting or tumor-inhibiting strengths (Fig. 3 C
and D), and a TI value (Fig. 3E). Indeed, the TI values were
negative for all of the WT adult livers and positive for all tumor
samples and even indicated the increasing severity of tumor
phenotypes in SKO, PKO, and DKO livers (Fig. 3E). A switch
from negative to positive TI was indeed found in PKO livers at
5 mo, in agreement with the heatmap (Fig. 2A). Of note, the
index of the youth livers at 1 mo was higher than the adult livers
at 2 to 16 mo, reflecting the decreased proliferative capacity of
mature hepatocytes in adult liver. The TI value was positive for
DKO liver even at 1 mo when it was negative for both SKO and
PKO livers, indicating accelerated hepatooncogenesis driven by
combined Shp2 and Pten deletion.

TI Is Applicable to Other Mouse Models with Liver Diseases or Tumors.
We tested if the TI platform, established using genetically
modified mouse models, could be applied to evaluate and predict
the pathogenic stages of other mouse models with chronic liver
diseases or tumors of different etiologies. From the National
Center for Biotechnology Information public databases, we se-
lected 11 datasets that include transcriptomes of WT livers or liver
tumors developed in mad2 and p53 null livers, ctnnb1 or gnmt
knockout backgrounds, hepatoblastomas, and NAFLD and NASH
livers induced by high-fat diet (Dataset S10). The TI values derived
using the multilayer framework correctly predicted liver diseases
and tumors in 11 out of the 12 datasets tested, based on the
documented phenotypes of these samples. For example, the in-
dexes of WT livers were negative (Fig. 4), and indexes of HCCs
induced by different gene deletion (Fig. 4 A–D) or toxic agents

(Fig. 4 E, F, and J) were positive. The TI values for precancer
steatosis, NAFLD or NASH induced by toxic agents (Fig. 4J), or
different diet models (Fig. 4 G–I and K) increased relative to WT
livers. Most of the dietary models of NASH had negative TIs,
indicating that their pathogenic processes did not pass the
critical switch point yet in the course of tumorigenesis. To-
gether, these analyses demonstrated the general applicability of
the TI in predicting premalignant and malignant diseases in a
variety of mouse models.

TI Is Powerful in Predicting Tumor Stages and Prognosis of HCC
Patients. Having demonstrated the TI platform in predicting
pathogenic stages in mouse models for liver diseases of diverse
backgrounds, we tested the power of the TI in determining disease
progression in human patients with HCC or chronic liver diseases.
A total of 15 transcriptomic datasets were interrogated, including
nontumor liver diseases such as steatosis, alcoholic hepatitis,
steatohepatitis, NAFLD, NASH, fibrosis, and cirrhosis, and HCCs
with diverse etiologies (Dataset S11). As expected, all of the HCC
samples had positive indexes (Fig. 5 and SI Appendix, Fig. S7), and
the TIs were negative for most of the NAFLD and NASH samples,
with increasing values, as compared to the healthy controls (Fig.
5D). The TIs of livers with fibrosis or cirrhosis (Fig. 5 B, C, E, and
F) were higher, some of which had positive values, passing the
critical transition point in the tumorigenic process. Thus, the TI
derived from a multilayer framework is powerful in predicting
human HCC and assessing cancer risk of precancer liver diseases.
We further tested the TI approach in predicting tumor stages and

prognosis of human HCC patients using 3 HCC datasets (TCGA,
GSE14520, GSE16757), which contained both transcriptomic and
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clinical data of the patients (Dataset S11). We evaluated the
correlation between the TI values and the clinical outcomes. For
371 liver cancer patients in the TCGA dataset, the TI values
predicted the tumor stages, with advanced HCCs having higher
indexes (Fig. 5G). By dividing the patients into 2 groups based
on the median TI value, Kaplan–Meier plotting showed shorter
survival and poorer prognosis for the high-TI group than for the
low-TI group (Fig. 5H). The TI values clearly distinguished
the 221 tumors from 224 nontumor tissues (Fig. 5I), and also
correctly predicted the prognosis of the 221 HCC patients, in the
GSE14520 dataset (Fig. 5J) as well as the 100 tumor samples in the
GSE16757 dataset (Fig. 5 K and L). As the public datasets were
generated from different RNA-seq or microarray platforms, with
gene expression levels varied at different orders of magnitude, the

TI approach provides a platform-independent tool to accurately
evaluate the clinical status and prognosis of HCC patients.
We also used 2 other methods, LASSO (16) and Random

Forests (17), to calculate the TI values for these 3 sets of data in
TCGA, GSE14520, and GSE16757 (SI Appendix, Figs. S8 and
S9). With the identical samples used in the multilayer framework
for model training, the indexes derived by LASSO did separate
the stage I and II–III tumors for the data in GSE16757 (SI Ap-
pendix, Fig. S8E), but failed to distinguish between stage I and II
liver cancer for the data in TCGA (SI Appendix, Fig. S8A), and
the TI values were even higher for nontumor than tumor samples
(SI Appendix, Fig. S8C). Kaplan–Meier survival analysis of the
100 samples in GSE16757 showed significantly shorter survival for
patients with high TIs (SI Appendix, Fig. S8F), with no significant
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Fig. 3. A tumorigenic index (TI) for quantitative evaluation of liver tumorigenesis. (A) A multilayer computational framework. The whole transcriptomic
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difference of survival between high and low TIs for the 371 pa-
tients in TCGA (SI Appendix, Fig. S8B) or the 221 tumor samples
in GSE14520 (SI Appendix, Fig. S8D). Using Random Forests, the
derived TI values did separate the nontumor from tumor samples
in the GSE14520 dataset (SI Appendix, Fig. S9C), but did not
distinguish the tumor stages for the 347 patients in TCGA (SI
Appendix, Fig. S9A) or the 100 liver tumor samples in GSE16757
(SI Appendix, Fig. S9E). Kaplan–Meier analysis showed shorter
survival for patients with high TIs in TCGA (SI Appendix, Fig.
S9B) and GSE14520 (SI Appendix, Fig. S9D), but not for the pa-
tients in GSE16757 (SI Appendix, Fig. S9F). Thus, the TIs derived
using LASSO and Random Forests were not sufficiently robust to
predict liver tumor progression and prognosis. The better perfor-

mance of our multilayer framework modeling is likely due to its
ability to obtain robust results against noises on individual genes in
processing transcriptomic data collected from different platforms.

Discussion
Primary liver cancer is characterized by diverse etiologies, genomic
heterogeneity, and complex clinical presentations. Molecular dis-
section of hepatocarcinogenesis based on exome- and genome-
sequencing data of patient samples is challenging because of the
difficulty to distinguish the driver mutations from the vast majority
of passenger mutations. To decipher the common oncogenic
mechanisms in liver cancer, we chose to search and identify tran-
scriptomic signatures that drive malignant transformation and
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with high (red) and low (blue) TIs (log-rank test, P < 0.004). (K) TIs of 100 liver tumor samples in GSE16757. These tumor samples had well-documented tumor
stages (stage I, n = 35; stage II and III, n = 65). (L) The 100 tumor samples in GSE16757 were subgrouped at the median TI (high TI, n = 50; low TI, n = 50), with
Kaplan–Meier analysis done to compare survival for patients with high (red) and low (blue) TIs (log-rank test, P < 0.05). *P < 0.05; **P < 0.01.
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tumor initiation, using a group of mouse models with clearly defined
genetic defects and pathological properties. Intensive analysis of
temporal gene expression profiles has revealed several important
aspects in the liver. First, the transcriptomes in adult livers were
relatively stable from 2 to 16 mo, suggesting a stringent control and
maintenance of gene expression required for functional homeostasis
as a major metabolic organ in mammals. Second, the transcriptomes
in tumor tissues were very similar to the young liver at 1 mo, rein-
forcing a concept of dedifferentiation during the tumorigenic pro-
cess. However, although a set of up-regulated genes were shared
between tumors and the premature liver, genes down-regulated in
tumors relative to adult liver were not down-regulated in the youth
liver, especially those that are involved in maintaining liver-specific
functions and epigenetic regulation. Thus, tumorigenesis is appar-
ently not a simple dedifferentiation process but also involves loss of
physiological functions in healthy organ or tissue. Third, by intensive
month-by-month comparative analysis of gene expression between
WT and PKO livers, we identified changes in multiple biological
pathways, metabolic processes, and epigenetic factors at precancer
stages, which happened in a progressive and accumulating manner.
These changes were accelerated in DKO but delayed in SKO livers,
relative to PKO liver, correlating well with the kinetics of tumor
initiation and progression in these 3 mutants.
To determine the molecular mechanisms underlying these nu-

merous changes, we then focused the analysis on TF clusters as
basic units. This targeted analysis revealed interestingly an abrupt
switch, rather than a gradual change, during the oncogenic pro-
gression from normal adult liver to tumor tissue. By comparing the
WT adult livers of 2 to 16 mo with tumor tissues dissected from
PKO livers at 16 mo and DKO livers at 7 and 12 mo, we identified
a total of 61 significantly changed TF clusters, either up- or down-
regulated. Using the 61 TF clusters as proxy to probe oncogenic
mechanisms, we inferred correlations between TF clusters from
the temporal transcriptomic data and viewed them as a correlative
network. Quantitative analysis of the network together with
mathematical modeling indicated that normal liver and cancer
were associated with 2 distinct attractors, with their own basins of
attraction. When perturbation-triggered changes were accumu-
lated to reach a threshold, a sudden transition occurred from the
normal liver attractor to the tumor attractor.
Based on the transcriptomic data and the 61 TF clusters, we

established a TI derivation system as a quantitative tool to mea-
sure tumorigenic signal strength and tumor progression in the
liver. The derived TI values of WT, SKO, PKO, and DKO liver
samples (Fig. 1A) accurately indicated the phenotypic severity of
these mouse tumor models at various time points and captured a
critical transition from negative to positive TI in PKO livers from
4 to 5 mo, which was accelerated in DKO livers. Using inde-
pendent public datasets, we demonstrated the power of the TI cal-
culation in predicting the disease status of precancer samples or the
tumor stages of cancer samples in different mouse models (Fig. 4).
Of note, these mouse models were generated by targeted gene
deletion or were induced by high-fat diet. Therefore, although it
was established by using genetically engineered mouse lines, this

analytical platform was effectively applied to other mouse liver
tumor models and also dietary models of NAFLD and NASH,
independent of genetic backgrounds and etiologies.
We extended the quantitative analysis from mouse models to

human patients. A large set of human patient samples were col-
lected, including steatosis, fibrosis, cirrhosis, and HCC of diverse
etiologies (Fig. 5). Indeed, we obtained negative TI values for these
precancer samples, including healthy steatosis and NASH, etc., with
all HCC samples being positive. The TI values accurately indicated
the tumor stages and even predicted HCC patient survival in
prognostic analysis. Furthermore, some cirrhosis patients without
clinical detection of tumor nodules yet were found to have positive
TI values, suggesting that the pathogenic process likely crossed the
critical transition point in oncogenesis. Thus, this TI approach can
be developed into a risk assessment or early diagnostic tool of HCC
development for a huge population of chronic liver disease pa-
tients, especially those with cirrhosis. By quantifying the contribu-
tion of each TF cluster to TI, this model can be further used to
predict the determining TFs in precision medicine.
This TI platform derived from analysis of tumorigenic TF

clusters displayed superior accuracy in predicting tumor progres-
sion and prognosis of HCC patients, as compared to the 2 other
state-of-the-art machine learning methods, LASSO and Random
Forests. However, at this moment, the TI method is effectively
applicable to liver tumors, mainly HCC. Using the same rationale
to identify targeted TF clusters specific to various organs or tissues,
similar approaches may be developed for quantitative analysis
of other cancer types. With the rapidly evolving techniques of
multiomics analysis, computational biology, and bioinformatics,
we believe that quantitative analytical tools, either generic or
specialized, will eventually be developed for all types of cancer.

Materials and Methods
Animal Protocols. Hepatocyte-specific Shp2 KO mice (SKO), Pten KO mice
(PKO), and Shp2 and Pten double-knockout (DKO) mice were generated and
characterized as described previously (9, 10). All animal experimental pro-
tocols (S09108) have been approved by the Institutional Animal Care and Use
Committee of the University of California San Diego, following NIH guidelines.

RNA-Sequencing and Data Analysis. Total RNAswere extracted from liver tissues
using QIAGEN RNeasy columns, and RNA-sequencing (RNA-seq) was performed
using the multiplex analysis of polyA-linked sequence and the Illumina
Hiseq2000 machine. Raw reads generated by RNA-seq experiments were
mapped to themm9mouse reference genome using Star (2.3.0). The expression
level of each gene under different conditions was obtained using cuffdiff.

Data and Code Availability. The RNA-seq data have been deposited in the
National Center for Biotechnology Information Gene Expression Omnibus
database under ID code GEO: GSE123427. Codes have been deposited in the
GitHub (https://github.com/wanyewang1/Index_model).

More materials and methods in this study are detailed in SI Appendix and
Datasets S1–S11.
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