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Advances in neuroimaging and neuroanatomy have yielded major
insights concerning fundamental principles of cortical organization
and evolution, thus speaking to how well different species serve
as models for human brain function in health and disease. Here,
we focus on cortical folding, parcellation, and connectivity in mice,
marmosets, macaques, and humans. Cortical folding patterns vary
dramatically across species, and individual variability in cortical
folding increases with cortical surface area. Such issues are best
analyzed using surface-based approaches that respect the topol-
ogy of the cortical sheet. Many aspects of cortical organization can
be revealed using 1 type of information (modality) at a time, such
as maps of cortical myelin content. However, accurate delineation
of the entire mosaic of cortical areas requires a multimodal ap-
proach using information about function, architecture, connectivity,
and topographic organization. Comparisons across the 4 aforemen-
tioned species reveal dramatic differences in the total number and
arrangement of cortical areas, particularly between rodents and
primates. Hemispheric variability and bilateral asymmetry are most
pronounced in humans, which we evaluated using a high-quality
multimodal parcellation of hundreds of individuals. Asymmetries
include modest differences in areal size but not in areal identity.
Analyses of cortical connectivity using anatomical tracers reveal
highly distributed connectivity and a wide range of connection
weights in monkeys and mice; indirect measures using functional
MRI suggest a similar pattern in humans. Altogether, a multifaceted
but integrated approach to exploring cortical organization in pri-
mate and nonprimate species provides complementary advantages
and perspectives.
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Cerebral cortex is the dominant structure of the mammalian
brain and is implicated in a wide range of sensory, motor,

cognitive, and emotional functions. Despite wide variations across
species in size and morphological complexity, there are funda-
mental commonalities in cortical structure and function across all
mammals. Most notably, cerebral cortex is a thin, layered sheet of
gray matter containing a mosaic of cortical areas that differ in
architecture, connectivity, topography (maps of sensory or motor
domains), and/or function (1, 2).
Our ability to investigate how cerebral cortex is organized and

how it “works” has been greatly enhanced in recent decades by a
growing arsenal of powerful and complementary experimental
methods, both invasive (mainly applicable to animal models) and
noninvasive (widely applicable to humans). Invasive anatomical,
electrophysiological, and optical methods are available over a
wide range of spatial scales (micro-, meso-, and macroscopic),
and they provide a remarkably rich and diverse range of infor-
mation. Many of these tools require complex genetic manipula-
tions and hence are limited to genetically tractable species,
especially the mouse but more recently also the marmoset mon-
key. Some invasive methods can be applied to the human brain
(e.g., surgical interventions and postmortem histology), but in

recent years these have been dwarfed by noninvasive methods,
particularly MRI. These complementary invasive and non-
invasive methods have contributed to an explosion of experi-
mental findings pertaining to cortical structure, function, and
connectivity in a number of intensively studied species. An
emerging general observation is that brain circuitry, including that
of cerebral cortex, is exceedingly complex by many measures and
at every scale examined. Indeed, this complexity far exceeds what
was generally suspected in the late 20th century, early in the
modern neuroscience era.
Here, we take an evolutionary perspective that focuses on a

few intensively studied species—humans, nonhuman primates,
and mice—and a few general topics pertaining to cerebral cortex.
These include 1) macroscopic morphology and individual vari-
ability, particularly as revealed by MRI; 2) cortical parcellation,
functional organization, and bilateral symmetry; and 3) cortico-
cortical connectivity. Connectivity is particularly fundamental but
is especially challenging in humans because the methods used to
infer long-distance connections are indirect and subject to errors
and bias. Animal models offer promise for much-needed valida-
tion studies of the noninvasive approaches that are being used in
the human brain.

Brain Size and Cortical Convolutions
Brains differ dramatically across species in size and in the com-
plexity of cortical convolutions, illustrated in Fig. 1 for 4 primate
and 2 rodent species. In terms of mass, the human brain is ∼3,800
times larger than that of the mouse, which diverged from our
lineage ∼75 MYA (million years ago); it is ∼290 times larger than
that of the New World marmoset monkey (divergence ∼35 MYA),
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∼17 times larger than that of the Old World macaque monkey
(divergence ∼25 to 30 MYA), and 4 times larger than that of our
closest living relative, the chimpanzee, which diverged 5 to 7 MYA
(4–6). Human brain expansion relative to the great apes occurred
mainly in the last 1 to 2 million y (7–9).
The wide range in complexity of cortical convolutions reflects

well-known anatomical scaling relationships as a function of total
brain size. With increasing brain size, subcortical structures
(brainstem, thalamus, basal ganglia) increase more slowly in vol-
ume than does cerebral cortex (8, 10, 11). Subcortical white mat-
ter, on the other hand, increases more steeply than does cortical
gray matter volume (12). However, increases in cortical volume
are reflected mainly in an expanded surface area, because cortical
thickness increases with a very shallow slope (13, 14). Beyond a
critical brain size (∼7 g), all species are gyrencephalic, with a
cortical folding index >1 (14), because cortical surface area ex-
ceeds the minimum external surface area of the combined sub-
cortical gray matter, white matter, and ventricles. Beyond this
transition, cortex becomes progressively more convoluted with
increases in brain size, thereby ensuring an intimate contact be-
tween cortex and the white matter it enshrouds (15). How factors
other than size determine the distinctive pattern of cortical folds in
any given species (or individual) is a different matter. Despite the
differences in folding extent, gyrencephalic primates share many
primary sulci, such as the lateral, superior temporal, and (except
for the marmoset) central sulci (Fig. 1). In contrast, gyrencephalic
species from other mammalian orders have very different folding
patterns (e.g., capybara in Fig. 1). Insofar as cortical folds are
correlated to some degree with areal boundaries (16), major dif-
ferences in folding patterns may reflect differences in the areal
layout in primates vs. other mammalian orders (9).

Folding Variability, Bilateral Symmetry, and Brain Atlases
Using structural MRI scans to examine cortical folding patterns
in 3 gyrencephalic primates, we found that the variability of
folding across individuals (and also between the left and right
hemispheres of the same individual) scales with brain size and
complexity of convolutions. These relationships are of interest
both neurobiologically and developmentally (e.g., in relation to
mechanisms of cortical folding) and from a neuroimaging meth-
odological perspective related to the challenges of comparing
data from brains that differ in shape. Examples of individual-
subject and group-average data for each species are illustrated in

SI Appendix, Fig. S1 using MRI volume slices and in SI Appendix,
Fig. S2 using cortical surface reconstructions that represent the
topology of the cortical sheet. In the macaque, individual-subject
folding patterns are very similar to one another and to the group
average when viewed as MRI volume slices and as cortical surface
models. In addition, the left and right hemispheres are relatively
symmetric by visual inspection. The bilateral symmetry of the
population-average surfaces was used to generate standard-mesh
representations having excellent left–right geographic corre-
spondence (17) using GIFTI and CIFTI data formats (18). In
chimpanzees, folding differences are more pronounced across
individuals, and the group-average atlas surfaces (aligned using
folding) show less preservation of folding detail. These differences
are even more pronounced in humans, whether aligned using only
cortical folding or when using areal features. The species differ-
ences between group-average surfaces are not simply a conse-
quence of the larger number of subjects used for the human atlas
(n = 210) vs. macaque (n = 19) and chimpanzee (n = 29) but are
instead attributable to genuine species differences in folding var-
iability (SI Appendix, Fig. S3).

Cortical Myelin Maps
Classical anatomists relied heavily on cytoarchitectonic and
myeloarchitectonic analyses of postmortem histological data.
Modern noninvasive neuroimaging has opened up new vistas for
in vivo architectonics. One notably successful approach estimates
myelin content based on the T1w/T2w ratio in cortical gray matter
(19, 20). Fig. 2 shows cortical myelin maps for 4 primates and the
mouse. In humans and macaques, these T1w/T2w–based maps are
qualitatively similar to published postmortem myeloarchitectonic
maps (19, 20, 22–24). Each primate species (human, chimpan-
zee, macaque, and marmoset) has 6 heavily myelinated regions
(red and orange) that include early somatomotor (1), auditory
(2), early visual (3), middle temporal (MT) complex (4), parietal
(intraparietal sulcus) visual (5), and retrosplenial cortex (6). Each
of these zones is surrounded by a belt of moderately myelinated
cortex (yellow and green). Lightly myelinated cortex (blue and
indigo) includes large swaths of cortex implicated in higher cog-
nitive and emotion-related functions in prefrontal (A), lateral
parietal (B), lateral temporal (C), medial parietal (D), and insular
(E) cortex. By visual inspection, heavily myelinated regions occupy
the highest portion in marmosets, lowest in humans, and in-
termediate in chimpanzees and macaques, as is particularly evi-
dent in the “MT+” visual region (4) and in the parietal region (5).
Lightly myelinated cognitive/emotional regions show the oppo-
site progression, being proportionally largest in humans and
smallest in marmosets. These qualitative assessments are sup-
ported by quantitative measurements of the fractional size of
prefrontal cortex (defined using functional as well as architec-
tonic markers) in humans, chimpanzees, and macaques (22).
The mouse myelin map in Fig. 2 is shown on a dorsolateral

view of a volumetric parcellation plus 2 coronal prefrontal sections
(21). Methodological differences aside, the comparison suggests
major differences between rodent and primate myelin maps. Most
notably, mouse parietal cortex lacks any lightly myelinated region
corresponding to primate region B. Also, lightly myelinated mouse
prefrontal cortical areas ILA, ACAv, and PL (25, 26) occupy a
lower percentage of cortex than primate prefrontal region A even
in the marmoset.

Cortical Parcellations in Mice, Monkeys, and Humans
Cortical areas have long been considered fundamental units of
cerebral cortex, but it has proven very challenging to achieve a
consensus parcellation in any mammalian species. As previously
noted, the many extant parcellations for humans and a variety of
laboratory animals have in general been based on differences in
architecture, connectivity, topography, and/or function. Most pub-
lished parcellations are unimodal (e.g., purely cytoarchitectonic

Fig. 1. Brain images of 4 primate and 2 rodent species. Size ratios (yellow
text) are based on brain weight. The scale bar applies to all images. Primate
and mouse brain images were adapted with permission from ref. 3. Capybara
(a gyrencephalic rodent) image courtesy of Suzana Herculano-Houzel, Van-
derbilt University, Nashville, TN.
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or purely resting-state functional MRI [fMRI]) and have been
based on a small number of individuals (sometimes only 1
hemisphere of 1 individual). This is problematic because areal
boundaries are often subtle, noisy, or inconsistent across subjects
and laboratories. Confidence in a parcellation scheme is in-
creased when multiple approaches reveal consistency in delin-
eating areal boundaries (1, 2) and even more so when results from

many individuals are accurately aligned to yield probabilistic
maps that are able to illustrate individual consistency and
variability.
Fig. 3 illustrates recent progress in parcellating mouse, mar-

moset, macaque, and human cortex, using multiple parcellations
for each species. Fig. 3A shows 2 mouse parcellations: a 41-area
parcellation (27) based on multiple immunocytochemical

Fig. 2. Myelin maps in 5 species based on the T1w/T2w ratio. Primate data are from population-average surface-aligned data. Note that the chimpanzee and
macaque surfaces are “hyperinflated” in order to reveal myelin patterns in buried regions such as the intraparietal sulcus. A single color palette applies to all 4
primates, but is scaled according to percentile ranges within each species rather than to absolute values. Mouse images are based on volumetric analysis of a
single animal; adapted with permission from ref. 21. Data are available at https://balsa.wustl.edu/97vwD.

Fig. 3. Cortical parcellations in 4 species. (A) Two mouse parcellations. (A1) A 41-area parcellation of isocortical (neocortical and transitional) cortex on a flattened,
tangentially sectioned left hemisphere, based on multiple immunocytochemical markers. Adapted from ref. 27, with permission from Elsevier. (A2 and A3) Mouse
parcellation (refs. 25 and 26; adapted with permission from ref. 26) displayed on a computationally flattened right hemisphere (A3) and mirror-flipped (A2) (symmetry
assumed but not empirically demonstrated). Areal boundaries are based on numerous architectonic and immunocytochemical markers plus retinotopy using intrinsic
optical imaging. Areas MOp and MOs differ in shape and relative size on the 2 flatmaps (red lines). (B1) Marmoset parcellation (28) is based on cytoarchitecture and
multiple immunocytochemical markers. Adapted from ref. 28, with permission from Elsevier. (B2) Marmoset parcellation (29) is based on myelin, cytochrome
oxidase, and calbindin markers. Adapted with permission from ref. 29, which is licensed under CC BY 4.0. The flatmap also shows tracer injection sites used for
connectivity analyses. (C) Macaque cortical parcellations mapped to the Yerkes19 atlas. (C1) PHT00 parcellation (30) based on cytoarchitecture and SMI-32
immunocytochemistry. (C2) Composite multimodal parcellation (17) based on cytoarchitecture, myeloarchitecture, immunocytochemistry, and retinotopy. (C3)
Architectonic parcellation (31) is based on cytoarchitecture and SMI-32 immunocytochemistry. (D1) A human unimodal parcellation (32) based on resting-state
fMRI. Red arrows show pronounced asymmetric patterns in left vs. right hemispheres. (D2) The HCP_MMP1.0 multimodal parcellation (19) based on myelin
maps, cortical thickness, resting-state fMRI, and visuotopic organization using rfMRI. Data for C and D are available at https://balsa.wustl.edu/9765g.
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markers (flatmap in Fig. 3A1) and a 43-area isocortex parcella-
tion (25, 26) based on many architectonic (including transgenic
expression) markers, connectivity, and retinotopic mapping, dis-
played on a right-hemisphere flatmap (Fig. 3A3) and mirror-
flipped in Fig. 3A2 for easier comparison with panel A1. Both
parcellations are dominated by large primary and secondary somato-
sensory and motor areas (SSp, SSs, MOp, MOs) plus primary
visual, auditory, gustatory, and olfactory areas (V1, AUDp, GU,
and Pir). In all, 37 areas are present in both schemes, and most
have the same or similar names. However, there are many modest
differences in size, shape, and neighborhood relationships of some
of the smaller areas and even for large areas such as MOp and
MOs (Fig. 3A, red lines), though it is unclear how much is at-
tributable to differences in how the flatmaps were generated. Al-
together, these 2 mouse schemes constitute the closest to a unified,
consensus cortical parcellation to date for any species.
The most intensively studied monkeys are the marmoset and

macaque (Fig. 3 B and C, respectively) and the owl monkey (2, 33).
Two marmoset multimodal architectonic parcellations (28, 29)
in Fig. 3 B1 and B2 each contain 117 cortical areas and have
numerous similarities but also many differences in detail. For the
macaque, there is greater divergence among widely used parcel-
lation schemes in terms of the total number and specific ar-
rangement of candidate areas. There are 161 areas in the PHT00
(30) cytoarchitectonic parcellation (Fig. 3C1), 130+ areas in the
LV00_FOA00_PHT00 composite parcellation (17) (Fig. 3C2), and
91 areas in the Markov M132 architectonic parcellation (31).
In general, the marmoset and macaque parcellations share

many commonalities and differ greatly from the mouse, which
is hardly surprising in view of their evolutionary relationships.
Monkeys have several-fold more areas than the mouse, along
with other fundamental differences in organization. Among early
sensory areas, the most prominent differences are 1) the strip-like
arrangement of primate somatosensory areas (3a, 3b, 1, 2) vs. the
more rounded mouse SSp and SSs, and 2) the fact that primate V1
is by far the largest primary sensory area and is nearly surrounded
by a single concentric area V2 vs. the mosaic of many areas ad-
jacent to mouse V1. In addition, monkeys have a large expanse of
higher sensory, motor, and multimodal association areas in oc-
cipital, parietal, frontal, and temporal cortex that are unlikely to
have strong candidate homologs in the mouse, consistent with the
aforementioned observations regarding myelin maps (Fig. 2).
In humans, numerous pan-hemispheric cortical parcellation

schemes have been reported, an early example being Brodmann’s
classic 47-area cytoarchitectonic map (34). Other studies reported
many more areas, including an early myeloarchitectonic parcella-
tion containing ∼200 areas (35, 36) and triggering a century-long
debate regarding the number of human cortical areas. In recent
years, resting-state fMRI has been used to generate numerous
unimodal but pan-hemispheric parcellations based on similarities
in “functional connectivity” (correlated fluctuations in fMRI BOLD
time-series data). One widely used fMRI-based parcellation (Fig.
3D1) contains 356 parcels in the 2 hemispheres (32). Although
there are 178 parcels in each hemisphere, numerous asymmetries
are evident between the left and right hemispheres (red arrows),
and many parcel boundaries do not respect known visual or so-
matosensory-motor areal boundaries (2, 23).
Fig. 3D2 shows the HCP_MMP1.0 multimodal group-average

parcellation (23), which identified 180 areas (or area complexes)
in each hemisphere by 1) using high-quality multimodal data from
the Human Connectome Project (HCP); 2) processing the data to
minimize artifacts, nuisance signals, distortion, and blurring; 3)
accurately aligning data from hundreds of subjects to a surface-
based atlas using “areal features” (not just folding patterns); 4)
computing spatial gradients on group-average data for multiple
modalities pertaining to architecture, connectivity, topography,
and function; and 5) requiring agreement between at least 2 mo-
dalities for nearly all candidate areal borders. Importantly, the

same 180 areas were identified in locations that geographically
approximately correspond in the 2 hemispheres. This high
degree of bilateral symmetry in human cortex (found but not
forced during the parcellation process) contrasts with the nu-
merous parcels that lack symmetric partners in Fig. 3D1 and in
many other published resting-state network (RSN)-based unimodal
parcellations.

Individual Variability and Bilateral Asymmetry of Human
Cortical Areas
Besides the group-average parcellation, the HCP_MMP1.0 also
identified cortical areas accurately in hundreds of individual
subjects, using an “areal classifier” to assign areal identity to
each surface vertex in each individual by examining the 112-
dimensional feature vector associated with it for characteristics
matching the learned areal fingerprint (23). Here, we use the
resultant individual-subject parcellations to examine variability and
bilateral symmetry in 446 subjects. We previously reported (ref. 23,
supplementary information, section 1.5) that each of the 180
cortical areas varies in surface area by 2-fold or more across in-
dividuals, consistent with previous reports based on fewer areas
and individuals (e.g., refs. 37 and 38). Some of this apparent var-
iability reflects “noise” in the size estimates, as evidenced by a
median Dice coefficient of 0.72 for 27 test–retest subjects (who
had repeat scanning sessions).
Here, we report several findings concerning parcellations in

the left vs. right hemispheres (Fig. 4). 1) As shown along the
vertical axis in Fig. 4A, the size of each area is correlated between
the left and right hemispheres across individuals (r = 0.37 ± 0.13;
95% CI [0.35, 0.39]). The distribution is skewed and exceeds 0.6
for 10 of the 180 areas. This correlation arises in part because total
hemispheric surface area varies across individuals and is correlated
between hemispheres (r = 0.99). After regressing out total surface
area of each hemisphere as a confound, the left–right area cor-
relation is only modestly lower (r = 0.30 ± 0.12; 95% CI [0.29,
0.31]), indicating that the correlations are largely driven by factors
other than total cortical extent. These observations suggest that
whatever developmental and/or environmental factors determine
the size of each area in each individual, there appear to be com-
mon influences in the 2 hemispheres rather than complete inde-
pendence. 2) Most areas (128/180, P < 0.05, corrected for
multiple comparisons) are significantly larger on average in 1
hemisphere compared with the other (red dots). The asymmetry
index, (L − R)/(L + R) (horizontal axis in Fig. 4A), is significant
for all areas with an index greater than 0.13 in absolute value, and
these span nearly the full range of left–right correlation values; it
exceeds 0.2 in nearly 1/3 of all areas (57/180) and exceeds 0.4 in a
few areas (6/180). Thus, many areas show a modest but potentially
interesting degree of bilateral asymmetry at the level of areal size,
rather than existence per se. It will also be of interest to evaluate
correlations in mean cortical thickness of each area in the left vs.
right hemisphere and of mean areal volume (which reflects both
surface area and thickness).
An important consideration is how the left–right asymmetries

and correlations shown in Fig. 4A vary with areal size. The co-
efficient of variation in area size is consistently high for small
areas and declines steeply with increasing area size (Fig. 4B). This
is consistent with the hypothesis that uncertainty (noise) in areal
border delineation is similar in absolute spatial extent (millimeters
distance on the cortical sheet) for both large and small areas.
Similarly, the asymmetry index tends to be higher for small areas
(Fig. 4C) but it is significant for the majority of areas across all
area size ranges. Finally, the left–right correlation values tend to
increase with areal size (Fig. 4D), but the correlation exceeds 0.4
and is significant for most areas of size greater than 500 mm2 and
for many of the smaller areas (size < 200 mm2).

26176 | www.pnas.org/cgi/doi/10.1073/pnas.1902299116 Van Essen et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1902299116


Connectomes and Principles of Corticocortical Connectivity
Our understanding of basic principles of corticocortical con-
nectivity has evolved dramatically over the past half-century. In
the 1960s, relatively few pathways connecting relatively few
areas had been identified, and an appealing conceptual framework
involved the unidirectional flow of information through a serial
hierarchy of visual areas (39). During the 1970s and 1980s, modern
pathway-tracing methods revealed many more cortical areas and
even more pathways interlinking them, including bidirectional
(reciprocal) connections indicative of extensive feedforward and
feedback pathways (40) and hierarchical organization (41). This
led to the presentation of a distributed cortical hierarchy involving
32 visual areas at 10 discrete hierarchical levels, and an average
of 10 inputs and 10 outputs for each area (1). It also included a
parcellated connectivity matrix whose entries were binary (present
or absent) because very little quantitative information was avail-
able at that time regarding connection weights.
In subsequent years, many additional cortical areas and corti-

cocortical pathways have been reported, but even more important
has been the ability to estimate connection weights quantitatively.
This has led to the realization that corticocortical connectivity
patterns are more complex in 2 important ways: 1) The number of

cortical inputs and outputs to each area is typically several times
larger than had previously been reported, and 2) quantitative
analyses revealed that the range of connection weights is many
orders of magnitude—much larger than previously believed. Fig. 5
A and B shows cortical parcellations and weighted connectivity
matrices for the mouse and macaque. Fig. 5C illustrates a version
of our current understanding of human corticocortical parcellated
connectivity using resting-state fMRI.
In the mouse, an analysis of retrograde tracer injections in 19

cortical areas determined weighted connections (fraction of ex-
trinsically labeled neurons) in each source area, including 7
subareas of SSp (27). In the resultant 19 × 47 weighted connec-
tivity matrix (Fig. 5A), 97% of all possible connections that could
exist were indeed identified, with a range of connection weights
spanning 4 to 5 orders of magnitude. This study, plus a more
recent anterograde tracer analysis involving a larger number of
mouse cortical areas and also thalamic nuclei (25), builds on
earlier analyses that used analogous approaches to characterize
connectivity patterns in the macaque (31) and marmoset (29). In
the macaque (Fig. 5B), a 29 × 91 connectivity matrix indicated
that 66% of all possible pathways do indeed exist, with connection
weights again spanning 5 orders of magnitude; for the 29 × 29

Fig. 4. Left vs. right hemisphere areal correlations and asymmetries in the human HCP_MMP1.0 cortical parcellation. (A) Scatterplot of an asymmetry index
([L − R]/[L + R]) on the horizontal axis, reflecting differences in the average surface area for the left vs. right hemispheres, vs. the correlation between left and right
hemisphere area size (vertical axis) in 446 individual subjects (210P, 210V, plus parcellation training subjects). The small percentage of areas (4%) missing in in-
dividual subjects (23) is included in the averages. (B) Coefficient of variation (SD divided by the mean) for each area (computed separately for the left and right
hemispheres and then averaged) as a function of mean area size (averaged across hemispheres). (C) The left–right average surface area asymmetry index as a
function of mean area size. The 52 areas that lack significant asymmetry after multiple-comparisons correction (blue dots) all have low asymmetry indices (<0.13)
but span the full range from very small to the largest cortical areas. The 128 areas having significant asymmetry fractions span nearly the full range of cortical area
sizes but are weighted toward smaller areas. (D) Left–right correlation values vs. cortical areal size. Correlation values tend to increase with areal size, but they vary
widely (several-fold or more) for all major size ranges and are comparable for areas that have significant vs. nonsignificant asymmetry fractions (red vs. blue dots).

Van Essen et al. PNAS | December 26, 2019 | vol. 116 | no. 52 | 26177

N
EU

RO
SC

IE
N
CE

CO
LL
O
Q
U
IU
M

PA
PE

R



“edge complete graph,” 2/3 of the pathways are bidirectional, and
among reciprocal pathways the connection weights sometimes
differ significantly (31). Similar principles appear to apply to the
55 × 117 connectivity matrix reported in the marmoset (29) (see
also http://analytics.marmosetbrain.org), though many important
aspects have yet to be reported in comparable detail.
An important alternative to the aforementioned notion of a

cortical hierarchy having discrete processing levels involves models
that represent hierarchy as a continuous variable. In the macaque,
this includes a graded hierarchy scheme embedded in a feedfor-
ward and feedback counterstream organization (44, 45). In the
mouse, there is evidence for a graded hierarchy involving 37 cor-
tical areas and 24 thalamic nuclei (25) that is much shallower,
involving differences in laminar patterns of inputs and outputs that
are complex, sometimes subtle, and different in detail from the
criteria used in the macaque. In the marmoset, current evidence
for hierarchical organization (46) suggests broad similarities with
the macaque, but a more detailed analysis is strongly warranted. In
humans and macaques, T1w/T2w–based maps of myelin content
(Fig. 2) have been proposed as a “proxy” for anatomical hierarchy
that also correlates with the principal axis of transcriptional vari-
ation based on human gene expression patterns (47).
Because invasive anatomical pathway tracing is not feasible

in humans, the only realistic prospects for systematically infer-
ring long-distance connectivity come from noninvasive methods

of diffusion-weighted MRI (followed by tractography to estimate
“structural connectivity”) and resting-state fMRI (followed by
correlation analyses to estimate “functional connectivity”). Both
approaches are subject to many types of error and bias (43, 48, 49);
they differ in major ways from one another and from the true
anatomical connectivity they aim to estimate. Fig. 5C shows 12
major resting-state networks identified by Ji et al. (42) based
on the same HCP multimodal parcellation as in Fig. 3D2. This
analysis provides a refined and HCP-specific representation of
many networks reported in previous RSN studies (e.g., refs. 32, 50,
and 51) plus several networks not previously reported of Fig. 5 C,
Bottom shows a parcellated functional connectivity matrix for
the 12 RSNs and 360 cortical areas, indicating high functional
connectivity within each RSN and varying degrees of functional
connectivity between RSNs. Negative correlations are most
pronounced between the default-mode (task-negative) network
(DMN) and the cinguloopercular network. Importantly, the human
functional connectome illustrated here was cleaned using temporal
independent-component analysis (tICA) to remove global re-
spiratory artifacts and to show higher vs. lower estimated arousal
level, respectively, above vs. below the diagonal (43, 52). The hu-
man functional connectivity matrix shows a highly distributed
pattern of “connectivity” and a wide range of “connection weights”
(correlation values) and in these respects appears similar to the
monkey and mouse anatomical connectivity matrices. However,

Fig. 5. Parcellated cortical connectivity matrices. (A) A 19 × 47 weighted connectivity matrix for the mouse, including 7 subareas of SSp. Adapted from ref.
27, with permission from Elsevier. (B) A 29 × 91 weighted connectivity matrix for the macaque. Adapted from ref. 31 by permission of Oxford University Press.
(C, Top) A 12-network resting-state network representation of the human HCP_MMP1.0 parcellation (42). (C, Bottom) A functional connectivity matrix from
449 HCP subjects. OA, orbital affective; pMM, posterior multimodal; vMM, ventral multimodal. The published functional connectivity matrix (42) has been
cleaned using tICA (43) and here shows the difference between potentially more sleepy (high mean resting-state tICA component RC1 amplitude; n = 241)
below the diagonal and less sleepy (low mean RC1 amplitude; n = 208) above the diagonal, using a mean RC1 amplitude of 6 as the threshold. Data for C are
available at https://balsa.wustl.edu/kN69P.
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functional correlations may reflect not only direct connections but
also indirect anatomical pathways, common inputs, as well as
other complex manifestations of neurovascular coupling, a
complex and still poorly understood process (53).
Systematic, quantitative evaluations of the relationship between

functional and anatomical connectivity are urgently needed in
macaques and marmosets, as these are the best available animal
models for addressing these issues. Initial proof of principle of this
approach came a decade ago (54). Improvements in data acquisi-
tion and analysis for both modalities may lead to better strategies
for inferring direct anatomical connectivity from resting-state fMRI
correlations, using “ground truth” tracer-based connectivity (55).

Interspecies Surface-Based Registration
The comparisons across species described and illustrated above
all involved datasets analyzed and displayed separately for each
species. An attractive complementary approach involves compar-
isons of cortical organization after mapping between species using
surface-based registration. This approach is promising to the de-
gree that maps of cortical organization are topologically equiva-
lent. Given the evidence discussed above for unequal numbers
of cortical areas in humans (∼180) vs. macaques (∼140), there is
unlikely to be perfect topological equivalence at the level of area-
to-area correspondence. On the other hand, given the likelihood
of genuine homology for many areas (especially early sensory
and motor areas) and also the broad similarities in myelin maps
across species (Fig. 2), there is much to be learned from exploring
topology-preserving interspecies registration. Previous efforts
along these lines used a landmark-based approach based on cor-
responding borders of areas or regions presumed to be homolo-
gous (56–58). Owing to methodological limitations (nonuniform
distortions in regions between landmarks), the resultant “evolu-
tionary expansion” maps are only rough approximations. Improve-
ments can be anticipated using more robust algorithms (59) and
stronger registration constraints (60).

Concluding Comments
In this perspective, we have discussed exciting progress in eluci-
dating many aspects of cortical organization and connectivity in
primates and rodents. On the cortical parcellation front, it is no-
table that in the late 20th century the macaque was widely con-
sidered to have the most detailed and accurate parcellation among
any species. Over the past decade, progress in parcellation has

been much greater for mouse and human cortex. Progress in the
mouse has benefited from multimodal analyses that include full-
hemisphere architectonics using tangential-slice postmortem his-
tology, connectivity using tracer injections, and topographic or-
ganization and functional characterization using electrophysiology
and optical methods, all done to date on a modest number of
animals. The convergence of 2 independent efforts on highly
similar mouse parcellations provides hope that these are
approaching a consensus ground truth. For humans, the advent of
MRI methods and an “HCP-style” approach to data acquisition
and analysis (61) was critical in enabling the HCP_MMP1.0 par-
cellation in individuals as well as a group average (23). Validation
using other high-quality datasets and other approaches is obviously
desirable, but we emphasize the need for objective, multimodal
approaches that robustly handle both false positives and false
negatives in identifying genuine areal boundaries (as distinct from
transitions that may reflect intraareal subparcels or overt artifacts).
A high-priority future objective is to achieve consensus pan-
cortical parcellations in macaques and marmosets that are based
on multiple modalities. Among the various challenges is the fact
that even well-defined cortical areas (e.g., V1 and MT) vary in
their absolute size and also in their internal organization (33, 38,
62, 63). A robust multimodal parcellation on many subjects in a
consistent spatial framework would invite a variety of intriguing
questions, including some touched on here in humans (cf. Fig. 4).
Progress in achieving these objectives in monkeys will depend on
further improvements in data quality and data analysis.

Data Availability. Data for the study as a whole are available at
https://balsa.wustl.edu/study/976M4 (64) and for individual scenes
at the URLs indicated in the figure legends.
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