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Abstract

The enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential therapeutic target for 

multiple myeloma. Malignant plasma cells produce and secrete large amounts of monoclonal 

protein, and inhibition of GGDPS results in disruption of protein geranylgeranylation which in 

turn impairs intracellular protein trafficking. Our previous work has demonstrated that some 

isoprenoid triazole bisphosphonates are potent and selective inhibitors of GGDPS. To explore the 

possibility of selective delivery of such compounds to plasma cells, new analogues with an ω-

hydroxy group have been synthesized and examined for their enzymatic and cellular activity. 

These studies demonstrate that incorporation of the ω-hydroxy group minimally impairs GGDPS 

inhibitory activity. Furthermore conjugation of one of the novel ω-hydroxy GGDPS inhibitors to 

hyaluronic acid resulted in enhanced cellular activity. These results will allow future studies to 

focus on the in vivo biodistribution of HA-conjugated GGDPS inhibitors.
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Geranylgeranyl diphosphate (1, GGDP, Figure 1) represents an important branch point in 

isoprenoid biosynthetic pathways. This intermediate is used in plants to afford a tremendous 

variety of cyclic diterpenoids,1 and in mammals it is used primarily for post-translational 

modification of proteins.2 Among the proteins modified by reaction with GGDP are those in 

the Ras superfamily of small GTPases such as the Rho proteins which play roles in cancer 

cell migration and metastasis,3 and the Rab proteins which are essential for intracellular 

trafficking processes.4

Isoprenoid biosynthesis in humans already is targeted by at least two families of blockbuster 

drugs, the statins and the nitrogenous bisphosphonates. Statins target the enzyme 3-

hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) which is the rate-limiting step 

in the mevalonate pathway to higher isoprenoids, and these drugs are widely used as 

cholesterol-lowering agents and to prevent cardiovascular disease.5 The nitrogenous 

bisphosphonates target the later enzyme farnesyl diphosphate synthase (FDPS), and are 

widely used to treat osteoporosis and other diseases of the bone.6 In vitro, both classes of 

drugs can exert anti-cancer activities as a consequence of disruption of protein prenylation, 

particularly geranylgeranylation.7 These drugs are not ideal in the setting of systemic anti-

cancer therapy however, because standard doses of statins do not alter protein prenylation8–9 

and the nitrogenous bisphosphonates in clinical use do not have sufficient systemic 

exposure.10

For some time there has been interest in identification of compounds that directly inhibit the 

enzyme geranylgeranyl diphosphate synthase (GGDPS)11–12 to disrupt geranylgeranylation 

more specifically.11, 13 We and others have focused on the development of GGDPS 

inhibitors as anti-myeloma agents because disruption of Rab geranylgeranylation results in 

impairment of monoclonal protein trafficking within myeloma cells, leading to ER stress 

and cell death.12, 14–15 In this context, we have reported the preparation and biological 

activity of a number of compounds with significant activity against this enzyme. The first 

was digeranyl bisphosphonate (2, DGBP),16 which showed an IC50 of ~260 nM for GGDPS 

and good selectivity over the related enzyme farnesyl diphosphate synthase,17 but cellular 

activity only at high concentrations (~10 μM). Crystallographic studies indicated that 

DGBP’s V-shaped structure occupied the enzyme’s active site, with the phosphonates 

complexed to magnesium ions and the two isoprenoid side chains occupying the FPP and 
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GGPP channels.18 More recently we have focused on monoalkyl compounds assembled 

through click chemistry and incorporating a triazole ring system. These efforts first yielded 

the inhibitor 3, which shows enzyme activity at 2.2 μM and cellular activity ~1 μM.19 

Surprisingly, as a mixture of olefin isomers the homologue 4 showed an IC50 of 45 nM 

against GGDPS, high specificity for GGDPS over FDPS, and cellular activity at 

concentrations as low as 30 nM in multiple myeloma cells.20–21 After preparation of the 

individual isomers 5 and 6, and methylation of the alpha position, bioassays revealed these 

compounds had IC50 values of 125 and 86 nM respectively, and cellular activity at 20 and 25 

nM levels.21

The potency of these GGDPS inhibitors in both enzyme and cell assays is relevant from a 

therapeutic perspective. Preclinical studies of compounds 4–6 have shown systemic 

distribution, prolonged half-lives and metabolic stability,22–23 all of which are important 

drug-like features. The dose-limiting toxicity for these compounds has been hepatic in 

nature22–23 and it would be desirable to enhance their anti-myeloma activity by optimizing 

drug delivery to the target organs of interest and thereby minimize off-target effects. A 

prodrug approach might help in this regard,24–27 but it may be preferable to utilize GGDPS 

inhibitors that can be conjugated to other agents. Hyaluronic acid (HA), a non-sulfated 

glycosaminoglycan, can be readily optimized for delivery of varied cargoes including small 

molecule chemotherapeutic agents,28–30 and has thus far found clinical use in 

ophthalmology, rheumatology and wound healing applications.31–32 Furthermore, work 

done with fluorescent dyes has revealed that conjugation of the dye to HA can lead to 

improved tumor uptake relative to surrounding tissue and alter biodistribution profiles.33 HA 

is the native ligand for CD44 and multiple studies have demonstrated that HA can target 

both to CD44-overexpressed solid tumors34–36 and to cells of hematological malignancies37 

including myeloma cells.38 As an initial foray into this area, we describe the synthesis and 

biological activity of two ω-hydroxy triazole bisphosphonates. Furthermore, we demonstrate 

that the ω-OH modification allows linkage to HA via ester formation and report the cellular 

activity of the first HA-GGDPS inhibitor conjugate.

As an initial test of this strategy, the first target chosen was the triazole bisphosphonate 15 
(Scheme I) which was viewed as reasonably accessible. The synthesis of this compound 

started with selenium dioxide catalyzed allylic oxidation of commercially available geranyl 

acetate (7).39 While oxidation provided a mixture of the desired alcohol and the 

corresponding aldehyde, treatment with NaBH4 to reduce that aldehyde increased the yield 

of the desired alcohol 8 to an acceptable level. After protection of the free alcohol 8 as the 

TBS ether 9, base catalyzed hydrolysis of the acetate afforded compound 10.40 Conversion 

to the bromide 1141 was accomplished in near-quantitative yield by reaction with PBr3. 

Reaction of the bromide 11 with sodium azide proceeded cleanly, but gave the allylic azide 

as a mixture of E and Z isomers due to a well known [3,3] sigmatropic rearrangement.42 The 

azide then was allowed to react with the acetylene 1343 to afford the TBS protected triazole, 

which was immediately carried to acidic hydrolysis to afford the desired alcohol 14. 

Standard McKenna hydrolysis44 of the tetraethyl ester 14 by treatment with TMSBr 

followed by NaOH provided the tetra-sodium salt 15. Based on the 1H NMR spectrum of 

this product, the E/Z ratio was found to be ~2:1 in favor of the E isomer.
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The second synthetic target in this series was the ω-hydroxy analogue of compound 6, 

which required a longer synthesis but is one of the compounds with better cellular activity. 

This compound could be envisioned as arising from homonerol through a sequence parallel 

to that used to obtain compound 15. However, our previous route to homonerol employed an 

8-step sequence45 and while it gave isomerically pure material, to avoid an even longer 

sequence an alternative route to homonerol was developed. For this route, nerol (16) first 

was oxidized to neral (17) under either of two reaction conditions. A TEMPO oxidation46 

gave the desired aldehyde in just four hours while an MnO2 oxidation required several days 

but gave the same aldehyde in nearly quantitative yield. Wittig olefination of neral produced 

the isomerically pure triene 18 in high yield. Regioselective hydroboration-oxidation of the 

terminal double bond in the triene 18 gave homonerol (19) in modest yield,47 but the brevity 

of this reaction sequence made that acceptable.

Once homonerol (19) was in hand, multiple attempts to accomplish a SeO2 oxidation went 

unrewarded. Therefore, the reaction sequence employed in Scheme 1 was reorganized so 

that the selenium dioxide oxidation could be pursued at a later stage. Treatment of 

homonerol (19) with methanesulfonyl chloride and subsequent reaction of the mesylate with 

sodium bromide gave homoneryl bromide (20) in good yield.21 At this stage of the 

sequence, the selenium dioxide mediated allylic oxidation48 was modestly successful, and 

furnished the desired alcohol 21 in ~25% yield. While this yield might still be improved, 

once the alcohol 21 was in hand replacement of bromide with azide was performed and the 

product immediately was carried to the next step. For this click reaction, the alkyne 23 was 

synthesized by a known procedure from tetraethyl vinyl bisphosphonate (22) through a two-

step process.21 The click reaction then was conducted under standard conditions to afford 

the ester 24. McKenna hydrolysis of the phosphonate esters provided the desired salt 25.

Once the two new triazoles 15 and 25 were available, they were tested for their ability to 

disrupt protein geranylgeranylation in cell assays and to inhibit GGDPS in enzyme assays. 

The activity of the new ω-hydroxy compounds was compared directly to their respective 

parent compounds 3 and 6. As shown in Figure 2, the disruption of protein 

geranylgeranylation was evaluated using two methods: 1) immunoblot analysis for 

unmodified Rap1a (a representative substrate for geranylgeranyl transferase (GGTase) I; 

and, 2) ELISA for intracellular lambda light chain levels as a marker for disruption of Rab 

geranylgeranylation.14 Lovastatin was included as a positive control.14 Both compounds 15 
and 25 induced concentration-dependent effects in these assays, consistent with GGDPS 

inhibitory activity. In both cases, the addition of the ω-OH group did modestly diminish 

cellular potency, with compound 15 approximately 10-fold less potent than 3 and compound 

25 approximately 10-fold less potent than 6. Enzyme assays utilizing recombinant GGDPS 

and FDPS confirmed the specificity of these new compounds as GGDPS inhibitors (Table 

1).

Because it was more readily available, we then joined the alcohol 15 to HA (26, 10K) via 

NHS/EDC conjugation chemistry49–52 to prepare the drug conjugate 27. Conjugation was 

confirmed by the presence of the aromatic signal from the triazole moiety and acetyl 
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hydrogens from HA in the 1H-NMR spectrum as well as by the presence of a phosphonate 

resonance in the 31P NMR spectrum.

Next, we compared the cellular activity of the parent ω-OH compound 15 to the HA 

conjugate 27. As shown in Figure 3, the HA-conjugate 27 induced greater accumulation of 

unmodified Rap1a than the free drug 15 in two different human myeloma cell lines. This 

enhanced cellular potency is likely a consequence of improved cellular uptake due to CD44 

cell surface expression. Presumably cellular esterases53–54 then hydrolyze the ω-OH-

GGDPS inhibitor from the polymer, releasing free drug in the cell.

In conclusion, after introduction of the ω-hydroxyl group to geranyl acetate (7), and its 

immediate protection as a TBS ether, the synthetic sequence to compound 15 closely 

parallels our earlier synthesis of compound 3. In contrast, the preparation of compound 25 
employs a different synthetic sequence for preparation of homonerol (19), a sequence that is 

just three steps long rather than the eight used previously. As a result, this intermediate was 

available in sufficient quantity that the disappointing yield for the selenium dioxide 

oxidation to afford compound 21 could be tolerated. The remaining steps in the sequence 

then run parallel to our earlier synthesis of compound 6.

While our prior studies have included substantial structure-function analysis of the triazole 

bisphosphonate class of GGDPS inhibitors, we have not previously evaluated the impact of 

modification of the terminal component of the isoprenoid chain. In the studies presented 

here we demonstrate that the addition of an ω-hydroxyl group to two of our previously 

reported inhibitors results in retention of GGDPS inhibitory activity. While the potency of 

these new analogues is diminished relative to the parent compounds, the hydroxy group 

affords the ability to conjugate these inhibitors to other agents such as HA with the goal of 

modifying drug biodistribution patterns and enhancing the therapeutic index. Our 

preliminary studies with the conjugate 27 demonstrate enhanced cellular activity of the HA-

GGDPS inhibitor conjugate compared to the free drug. Future studies now can examine the 

biodistribution and toxicity profile of the HA-GGDPS inhibitor conjugates in vivo, as well 

as explore alternative modifications at the ω-position to create additional “linkable” 

inhibitors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Geranylgeranyl diphosphate and known inhibitors of geranylgeranyl diphosphate synthase.
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Figure 2. Comparison of the effects of the novel ω-hydroxyl triazole bisphosphonates to the 
parent analogues on protein geranylgeranylation.
RPMI-8226 cells were incubated for 48 hours in the presence or absence of lovastatin (Lov, 
10 μM) or varying concentrations of the test compounds. A) Immunoblot analysis of uRap1a 

(antibody detects only unmodified protein) and β-tubulin (as a loading control). B) 

Intracellular lambda light chain concentrations were determined via ELISA. Data are 

expressed as a percentage of control (mean ± SD, n=3). The * denotes p < 0.05 per unpaired 

two-tailed t-test.
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Figure 3. Comparison of the effects of the ω-hydroxyl triazole bisphosphonate 15 and the HA-
conjugate 27 on protein geranylgeranylation.
RPMI-8226 (R) or MM.1S (M) cells were incubated for 48 hours in the presence or absence 

of lovastatin (Lov, 10 μM) or varying concentrations of the test compounds (for the HA-

conjugate 27, concentration is based on the percent weight of the inhibitor in the HA 

polymer conjugate). Immunoblot analysis of uRap1a (antibody detects only unmodified 

protein) and β-tubulin (as a loading control). These blots are representative of three 

independent experiments.
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Scheme 1. 
Synthesis of compound 15, the ω-hydroxy analogue of compound 3.
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Scheme 2. 
Synthesis of compound 25, the ω-hydroxy analogue of compound 6.
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Scheme 3. 
Generation of HA-GGDPS inhibitor polymer conjugate 27.
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Table 1.

Summary of the bioassay results of the novel ω-OH-triazole bisphosphonates.

Compound GGDPS IC50 (μM) FDPS IC50 (μM) Fold-selectivity for GGDPS compared to FDPS Cellular LEC
1
 (μM)

15 11.6 + 2.6 91.2 + 25.0 8 10

25 0.67 + 0.30 81.4 + 23.5 121 0.25

1
Cellular LEC (lowest effective concentration) is defined as the lowest concentration for which an unmodified Rap1a band is visible in the 

immunoblot and a statistically significant increase in intracellular lambda light chain is observed in the ELISA.
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