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STUDY QUESTION: Is the combined use of fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging and second harmonic
generation (SHG) spindle imaging a feasible and safe approach for noninvasive embryo assessment?

SUMMARY ANSWER: Metabolic imaging can sensitively detect meaningful metabolic changes in embryos, SHG produces high-quality images
of spindles and the methods do not significantly impair embryo viability.

WHAT IS KNOWN ALREADY: Proper metabolism is essential for embryo viability. Metabolic imaging is a well-tested method for measuring
metabolism of cells and tissues, but it is unclear if it is sensitive enough and safe enough for use in embryo assessment.

STUDY DESIGN, SIZE, DURATION: This study consisted of time-course experiments and control versus treatment experiments. We
monitored the metabolism of 25 mouse oocytes with a noninvasive metabolic imaging system while exposing them to oxamate (cytoplasmic
lactate dehydrogenase inhibitor) and rotenone (mitochondrial oxidative phosphorylation inhibitor) in series. Mouse embryos (n = 39) were
measured every 2 h from the one-cell stage to blastocyst in order to characterize metabolic changes occurring during pre-implantation
development. To assess the safety of FLIM illumination, n = 144 illuminated embryos were implanted into n = 12 mice, and n = 108
nonilluminated embryos were implanted into n = 9 mice.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Experiments were performed in mouse embryos and oocytes. Samples were
monitored with noninvasive, FLIM-based metabolic imaging of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide
(FAD) autofluorescence. Between NADH cytoplasm, NADH mitochondria and FAD mitochondria, a single metabolic measurement produces
up to 12 quantitative parameters for characterizing the metabolic state of an embryo. For safety experiments, live birth rates and pup weights
(mean ± SEM) were used as endpoints. For all test conditions, the level of significance was set at P < 0.05.

MAIN RESULTS AND THE ROLE OF CHANCE: Measured FLIM parameters were highly sensitive to metabolic changes due to both
metabolic perturbations and embryo development. For oocytes, metabolic parameter values were compared before and after exposure to
oxamate and rotenone. The metabolic measurements provided a basis for complete separation of the data sets. For embryos, metabolic
parameter values were compared between the first division and morula stages, morula and blastocyst and first division and blastocyst. The
metabolic measurements again completely separated the data sets. Exposure of embryos to excessive illumination dosages (24 measurements)
had no significant effect on live birth rate (5.1 ± 0.94 pups/mouse for illuminated group; 5.7 ± 1.74 pups/mouse for control group) or pup
weights (1.88 ± 0.10 g for illuminated group; 1.89 ± 0.11 g for control group).

LIMITATIONS, REASONS FOR CAUTION: The study was performed using a mouse model, so conclusions concerning sensitivity and
safety may not generalize to human embryos. A limitation of the live birth data is also that although cages were routinely monitored, we could
not preclude that some runt pups may have been eaten.

WIDER IMPLICATIONS OF THE FINDINGS: Promising proof-of-concept results demonstrate that FLIM with SHG provide detailed
biological information that may be valuable for the assessment of embryo and oocyte quality. Live birth experiments support the method’s
safety, arguing for further studies of the clinical utility of these techniques.

STUDY FUNDING/COMPETING INTEREST(S): Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University and
by the Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Institutes of Health Award UL1 TR001102), by
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Introduction
The invention of precise, noninvasive methods of assessing oocyte
and embryo quality has long remained a critical goal in ART (Gardner
et al., 2015; Sanchez et al., 2017). Forty years after the first successful
IVF procedures were performed, morphological assessment remains
the primary method of evaluation, despite its well-known limitations
(Wong et al., 2014). Morphological features, however, have no clear
connection to the underlying biochemical factors that are essential for
viability, such as metabolic function (Gardner et al., 2000, 2001; Leese,
2002; Babayev and Seli, 2015) and genetic integrity (Baart et al., 2006;
Vanneste et al., 2009; Niakan et al., 2012).

Innovations in recent years have offered some promise, but failed
to solve the problem of low overall success rates in IVF. Time-lapse
imaging systems have been advanced in the hopes that embryo growth
dynamics may reflect viability more accurately than single observations.
Like the standard morphological assessment though, these systems can
only sample gross morphological features, and clinical trials have not
demonstrated efficacy in increasing success rates (Gardner and Sakkas,
2013; Armstrong et al., 2019).

The main advance has been the development of pre-implantation
genetic testing for aneuploidy (PGT-A). These techniques have demon-
strated some significant increase in success rates (Forman et al., 2013;
Scott et al., 2013a;), mostly for older patients (Munne et al., 2019;
Murphy et al., 2018). However, PGT is expensive and invasive, and
concerns persist over accuracy, reproducibility between clinics and
the role of mosaicism (Capalbo et al., 2017; Vega and Jindal, 2017).
Perhaps most importantly, it conveys no information about metabolic
competence. Among euploid embryos, 40% still fail (Scott et al., 2013a)
due to nongenetic causes, including metabolic dysfunction.

Some studies have measured mitochondrial DNA copy number in
biopsied cells in the hopes of gleaning some insight into metabolic
health (Diez-Juan et al., 2015; Fragouli et al., 2016). Studies using this
technique, however, have neither reported consistent results nor
demonstrated predictive values (Diez-Juan et al., 2015; Treff et al.,
2017; Cecchino and Garcia-Velasco, 2019). Additionally, high variation
in the data remains a barrier for this technique (Treff et al., 2017).

It has long been known that embryo metabolism relates to viability
(Renard et al., 1980; Van Blerkom et al., 1995; Gardner et al., 2000,
2011). Here, we investigate the potential utility of fluorescence lifetime
imaging microscopy (FLIM)-based metabolic imaging of the electron
carriers nicotinamide adenine dinucleotide (NADH) and flavin adenine
dinucleotide (FAD) (Becker, 2012; Heikal, 2012) with second harmonic
generation (SHG)-based spindle imaging (Hsieh et al., 2008; Yu et al.,
2014). This approach has several benefits. First, NADH and FAD
fluorescence can serve as a basis for imaging the spatial distribution
of mitochondria within cells, as NADH is highly concentrated in
the mitochondria relative to the cytoplasm (Stein and Imai, 2012)
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and nuclei (Cinco et al., 2016), and FAD is almost entirely localized
to the mitochondria (Dumollard et al., 2004). Previous studies have
shown strong co-localization of FAD fluorescence with mitochondrial
fluorescence in mouse oocytes using mitochondrial dyes (Dumollard
et al., 2004), and other studies showed incomplete overlap between
NADH fluorescence with mitochondria in other cell types (Mujat
et al., 2008; Tucker et al., 2016). Abnormal mitochondrial morphol-
ogy has been associated with reduced developmental competence
(Nagai et al., 2006). Hence, FLIM intensity images, alone, may have the
potential to assist in oocyte/embryo screening. Fluorescence imaging
of cytoplasmic NADH also contains some signal from NADPH, as
their fluorescence spectra are almost identical (Ghukasyan and Heikal,
2014); however, NADH contributes the majority of the fluorescence
signal in many cell types, as its concentration is typically several fold
higher than that of NADPH (Klaidman et al., 1995). Therefore, for
simplicity we adopt the convention of referring to this fluorescence
signal as ‘NADH’ signal.

Beyond imaging, FLIM provides quantitative information on the local
environment of NADH and FAD molecules, which is reflective of the
biochemical processes they are engaged in (Ghukasyan and Heikal,
2014). FLIM measures not only the fluorescence intensity of a sample
but also the rates at which fluorophores decay from their excited state
(Becker, 2012). These rates, or ‘fluorescence lifetimes’, are affected by
the microenvironment of the fluorophores and thus have been used to
probe various intracellular processes such as protein binding via FLIM-
FRET (Förster resonance energy transfer) (Yoo et al., 2018), viscosity
(Parker et al., 2010) and temperature (Okabe et al., 2012). Because
NADH and FAD are integral to cellular respiration, their microenviron-
ment is affected by changes in metabolic function, and these changes
are reflected in their FLIM signatures (Ghukasyan and Heikal, 2014).
Thus, FLIM measurement of NADH and FAD is commonly referred to
as metabolic imaging. Furthermore, metabolic imaging has the potential
to probe metabolic processes with subcellular resolution if cytoplasmic
and mitochondrial regions are analyzed separately. NADH in the
cytoplasm is involved in a variety of pathways, including glycolysis and
fermentation, while NADH and FAD in mitochondria are primarily
associated with the tricarboxylic acid cycle and the electron transport
chain (Berg et al., 2007). In total, a single metabolic measurement can
generate up to 12 quantitative metrics, providing a detailed profile of
egg/embryo metabolic state.

FLIM can be performed via one-photon or two-photon excitation
of fluorophores: the former typically uses pulsed photodiode lasers
(Becker, 2017), and the latter typically uses mode-locked lasers, such
as a Ti-sapphire (Smith, 1970), which deliver ultra-short light pulses
of 100–150 fs in duration. In two-photon excitation, fluorophores
absorb two low-energy (long wavelength) photons simultaneously.
This method has several benefits, including efficiency for deep-tissue
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imaging, intrinsic confocal imaging and lower phototoxicity (Potter,
1996).

The sensitivity of a metabolic assay can be investigated by prob-
ing known changes in metabolic state using chemical perturbations.
Oxamate inhibits lactate dehydrogenase, which reduces NAD+ to
NADH during the conversion of lactate into pyruvate (Dumollard
et al., 2007). Rotenone inhibits the transfer of electrons from Complex
I to ubiquinone, reducing the activity of the electron transport chain
(Staniszewski et al., 2013). Embryo metabolism is known to undergo
distinct shifts over the course of early development (embryonic days
E1–E5) (Rieger, 1992; Gardner, 1998; Chason et al., 2011), including
a gradual increase in pyruvate and glucose metabolism during the
cleavage stage (E1–E3) (Gardner and Leese, 1986) and the com-
mencement of aerobic glycolysis around compaction (morula) and
blastocyst formation (Gardner and Harvey, 2015). Thus, comparing
developmental time points can serve as an additional standard for
testing assay sensitivity to detecting known metabolic differences.

In conjunction with FLIM measurements, we also simultaneously
acquire high-fidelity images of meiotic spindles in oocyte and mitotic
spindles via SHG (Hsieh et al., 2008; Campagnola, 2011; Yu et al.,
2014). SHG is a nonlinear effect, in which photons are up-converted
to a single scattered photon of exactly twice the frequency. Thus, it
is commonly generated using the same kind of ultra-short pulsed light
sources as two-photon fluorescence. Significant SHG signals are only
produced by highly ordered, non-centrosymmetric materials. In biol-
ogy, biofilament bundles, such as collagen and microtubules in spindles,
are among the few materials that produce an SHG signal (Campagnola
and Loew, 2003). This provides an endogenous source of contrast
that allows for high-quality, noninvasive imaging of spindles (Hsieh
et al., 2008; Campagnola, 2011; Yu et al., 2014). As chromosome
segregation errors are associated with spindle defects (Battaglia et al.,
1996), visualizing spindle morphology could also have clinical relevance.

As these methods probe physiological factors that are known to be
important for embryo viability, they could potentially serve as a basis
for assessing embryo quality and identifying embryos with the highest
chance of success. Furthermore, they have the potential to serve as
powerful new research tools to produce new insights into early embryo
biology. We have already shown that FLIM parameters exhibit strong
differentiation between a mitochondria protein [caseinolytic peptidase
P (Clpp)]-knockout versus wild type, and old versus young mouse
oocytes (Sanchez et al., 2018). FLIM measurements of mouse embryos
at the compaction stage have also been reported to correlate with
blastocyst development (Ma et al., 2018).

With any noninvasive, light-based assay, an assessment of safety
must be performed before any clinical application is possible, as cell
illumination has the capacity to cause photo damage (Masters and So,
2008). We present evidence supporting the technique’s safety for use
on embryos: we implanted illuminated and nonilluminated embryos
into surrogate female mice and measured both live birth rates and pup
weights as indicators of possible embryo damage.

Materials and Methods

Imaging system and FLIM measurements
FLIM measurements were performed on a Nikon TE300 microscope
with either a Nikon 20× objective (0.75 NA) or a Nikon 40× objective
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(1.25 NA), with a galvanometer scanner and a TCSPC module (SPC-
150, Becker and Hickl GmbH, Germany). Two-photon excitation
was supplied via a Ti:Sapphire pulsed laser (M Squared Lasers, UK)
with an 80-MHz repetition rate and ∼150-fs pulse width. A 750-nm
illumination (3–60 mW) and a 447/60-nm bandpass filter (BrightLine
from Semrock, USA) were used for imaging NADH fluorescence. For
imaging FAD fluorescence, 890- or 845-nm illumination (12–80 mW)
and a 550/88-nm bandpass filter were used. Illumination intensities
were calibrated by measuring power output through the objective
with a handheld power meter (Newport, USA). Fluorescence was
detected in the epi direction with a hybrid detector (HPM-100-40,
Becker and Hickl GmbH, Germany). SHG was detected simultaneous
with FAD imaging by a single-photon counting detector (PMC-150,
Becker-Hickl GmbH, Germany), placed in the forward direction, with
combined 650 short-pass and 440/20-nm bandpass filters (BrightLine
from Semrock, USA). Scans were acquired for 5–60 s, with either one
or three separate Z-planes for metabolic measurements. A customized
motorized stage (using CONEX TRA12CC actuators, Newport, USA)
was used for multi-dimensional acquisition. Bright-field was performed
using the same 20× and 40× objectives and an Amscope (USA)
MU300 camera. Acquisitions were performed using custom LabVIEW
software.

Embryo and oocyte imaging, metabolic
perturbations and live birth experiments
Cryopreserved oocytes and one-cell mouse embryos (Embryotech,
Haverhill, MA, USA), from crosses between B6C3F1 females and
B6D2F1 males, were thawed and transferred to pre-equilibrated dishes
for either culture or perturbation experiments. Research was con-
ducted under a protocol approved by Harvard’s institution’s Animal
Care and Use Committee (IACUC), which has a Letter of Assurance
(File No. A3593-01) from the National Institutes of Health Office of
Laboratory Animal Welfare. Embryos were imaged in either custom-
fabricated microwell dishes with glass coverslip bottoms, commercial
plastic microwell dishes (Primo Vision from Vitrolife AB, Sweden) or
commercial glass bottom dishes (MatTek P35G-0.170-14-C, USA) in
KSOM media (MR-121-D, MilliporeSigma, USA) in an on-stage incu-
bator (10918 from ibidi GmbH, Germany), at 37◦C, 5% CO2 and 5%
O2. Prior to imaging, embryos were stored in a tabletop commercial
incubator (MCO5MPA from Panasonic, Japan).

For MitoTracker experiments, embryos were incubated in advanced
KSOM (aKSOM MR-101-D from Millipore-Sigma, USA) with 5 nM
MitoTracker Red CMXRos (M7512 from Thermo Fisher, USA) for
20 min, then transferred directly to an aKSOM droplet in a glass-
bottomed dish for imaging.

For metabolic perturbation experiments, oocytes were imaged in
custom glass-bottomed microwell dishes to prevent movement of
oocytes caused by pipetting in drugs. Oxamate and rotenone were
pipetted in during acquisition to final concentrations of 10 mM and
1 μM, respectively.

For live birth safety experiments, illuminated and nonilluminated
embryos were transported at 37◦C in pre-equilibrated KSOM to the
Harvard Genome Modification facility at the blastocyst stage, where
they were transferred into pseudo-pregnant CD1 mice as previously
described (Gardner and Sakkas, 1993). Embryos were transferred in
groups of 12, with six embryos in each uterine horn. Pregnant mice
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Figure 1 Morphological features imaged with fluorescence lifetime imaging microscopy and second harmonic generation
imaging. (A) Left: a standard bright-field image of a mouse blastocyst shows gross morphological features. Middle: fluorescence lifetime imaging
microscopy (FLIM) measurements of nicotinamide adenine dinucleotide (NADH) generate intensity images that visualize subcellular structures, including
nuclei (white arrow, 25-μm scale bar). Right: 3D reconstruction from multiple focal planes (100-μm scale bar). (B) Left: Bright-field image of an oocyte.
Second to left: a flavin adenine dinucleotide (FAD) FLIM image of the same oocyte. Second to right: a second harmonic generation (SHG) image of
the same oocyte, which clearly shows the oocyte’s spindle. Right: Overlay image of SHG (magenta) and FAD (grey scale) (25-μm scale bar). (C) Time
lapse FLIM (NADH) and spindle measurements capture key embryo dynamics, such as cell division (25-μm scale bar).

were then monitored daily by the facility, and at birth, pups were
counted and weighed.

Data analyses
We used supervised machine-learning-driven segmentation software
(Sonka et al., 2015) to classify pixels in intensity images into three
groups: mitochondrial and cytoplasmic NADH and mitochondrial
FAD [the concentration of FAD in the cytoplasm is extremely low
(Dumollard et al., 2004), so photons from that potential group were
not analyzed]. The classification utilized a random forest algorithm
(Breiman, 2001), which considered intensity, texture and edge
properties. The algorithm was trained on representative embryo

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

NADH and FAD intensity images, wherein the user manually draws
over the regions to specify their classification (e.g. mitochondrial,
cytoplasmic, background). For each embryo segment, the photon
arrival time histogram was modeled as a bi-exponential model decay:

P(t) = A ((1 − F) exp (−t/τ1) + F exp (−t/τ2) ) + B

Here, A is a normalization factor, B is the background level
from factors such as room light (fits typically gave B/A ∼ 0.005,
indicating low background levels), τ1 is the short lifetime, τ2 is the
long lifetime and F is the fraction of molecule with long lifetime
(the fraction engaged with enzymes for NADH and unengaged for
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Figure 2 FLIM allows for mitochondrial imaging and separate segmentation of mitochondrial and cytoplasmic signals. (A)
MitoTracker images (left) of a two-cell embryo shows co-localization with brighter regions of NADH (center) (25-μm scale bars). A machine-
learning-based algorithm performed on autofluorescence images successfully segments mitochondria and cytoplasm (right). (B) MitoTracker and FAD
autofluoresence images of a one-cell embryo also show co-localization. For FAD images, only mitochondrial regions were segmented. (C) For each
region, all photon arrival times were binned into a separate histogram, which were normalized to produce a probability distribution, which represents
the probability of being in an excited state after excitation. Fitting these curves to a two-exponential decay model produces a total of 12 parameters
for characterizing the metabolic state of an embryo or oocyte (right).

FAD). This function was convolved with a measured instrument
response function to model the experimental data, and least-square
fitting yielded quantitative values for these three fit parameters. An
additional parameter, I, the fluorescence intensity, was calculated
for each region by dividing the total number of photons detected
in the region by the area of the region. Thus, between NADH
cytoplasm, NADH mitochondria and FAD mitochondria, a single
metabolic measurement produces up to 12 quantitative parameters
for characterizing the metabolic state of an embryo. Alternatively, if
mitochondria and cytoplasm are not segmented and analyzed sepa-
rately, then eight parameters can be measured: four from NADH and
four from FAD.

To evaluate the ability of FLIM to distinguish between different
metabolic states, the three FLIM parameters with the largest
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separation between data groups were considered together. As a
test condition, a separating plane was fit between data groups
using a support vector machine algorithm (Cristianini and Shawe–
Taylor, 2000). T tests on individual metabolic parameters were
also performed to detect changes, and P < 0.05 was taken to
be statistically significant.

Results
Mitochondria and spindle visualization and
FLIM quantification
To investigate the potential utility of metabolic and SHG imaging for
revealing mammalian egg and embryo physiology, we first explored
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Figure 3 Metabolic and SHG imaging of oocytes detects effects of metabolic perturbations. Oocytes were exposed to 10 mM oxamate
and then to 1 μM rotenone. (A) Oxamate exposure (indicated with a dashed orange line) caused a visible drop in cytosolic NADH FLIM intensity,
whereas rotenone exposure (purple line) caused an increase in mitochondrial NADH intensity. Bar is 30 μm. (B) For the same oocyte, oxamate
slightly increased FAD intensity, while rotenone decreased it. Simultaneous SHG imaging, overlaid in magenta, revealed that spindles were not disrupted
by oxamate, but were disintegrated by rotenone. (C) Percentage-change time courses for all eight metabolic parameters. Colored traces represent
individual oocyte trajectories (n = 25), and average curves are shown in black with SE bars. Vertical dashed lines indicate oxamate (orange) and rotenone
(purple) exposures. Red bars in the NADH intensity panel correspond to the time stamps of the images shown in (A) and (B). (D) FLIM parameters
were compared before and after oxamate exposure, and the three FLIM parameters with the largest separation were plotted on 3D plots, yielding
complete separation. This comparison was also performed for (E) oxamate versus oxamate + rotenone, and (F) no perturbation versus oxamate +
rotenone.
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the purely morphological data these techniques provide. Standard
bright-field microscopy of mouse blastocysts produces a clear view
of the overall morphology of the embryo, but gives limited informa-
tion on the cellular-scale (Fig. 1A, left). In contrast, imaging NADH
autofluorescence in mouse blastocysts provides a detailed view of
subcellular structures, such as nuclei (Fig. 1A, center image, indicated
by white arrow). Two-photon imaging provides intrinsic optical sec-
tioning, with the 1.25 NA objective used here resulting in a theo-
retical lateral (XY) resolution of 230 nm and an axial (Z) resolution
of 536 nm. We consecutively imaged Z planes two microns apart
(Supplementary Movies S1 and S2) and combined the resulting data,
enabling us to create 3D reconstructions of embryo morphology
(Fig. 1A, right).

Similarly, bright-field images reveal the morphology of oocytes, but
do not provide information on specific subcellular structures (Fig. 1B,
left), while FAD, which is almost exclusively localized to mitochondria,
shows a complex mitochondrial distribution inside oocytes (Fig. 1B,
second to left). The same laser illumination that excites FAD aut-
ofluorescence can also nonlinearly interact with, and scatter from,
the sample, enabling simultaneous imaging with SHG. The meiotic
spindle and the zona pellucida are the only subcellular structures in
mammalian oocytes that produce SHG, with the spindle generating by
far the largest signal. This provides excellent intrinsic contrast (Fig. 1B,
second panel from right) for spindle imaging. The combination of FLIM
imaging and SHG allows detailed visualization of the internal structure
of oocytes (Fig. 1B, right). Time lapse FLIM and SHG measurements
provides information on dynamics. As the one-cell embryo proceeds
to divide, the spindle assembles in the middle of the cell (Fig. 1C,
1.7 h) where the nucleus previously was, then elongates and thins
during cytokinesis (Fig. 1C, 2.7 h). At later times, the spindle midbody
is clearly visible, as the two-cell embryo’s nuclei form (Fig. 1C, 5 h)
(Supplementary Movie S3).

NADH and FAD are highly enriched in mitochondria, arguing that
bright regions and puncta within the cell contain high concentrations
of mitochondria. To investigate this further, we used MitoTracker
to specifically label the mitochondria and imaged one- and two-cell
embryos with high resolution (40× 1.25-NA objective, 20-s integration
time). We imaged MitoTracker (4 mW illumination power), then
either NADH (7 mW) or FAD (30 mW) immediately afterward (27 s
delayed), and found strong colocalization between the MitoTracker
signal and the bright regions of both the NADH and the FAD inten-
sity images (Fig. 2A and B). Machine-learning segmentations of the
mitochondria in the NADH images had a 74.0 ± 0.65% (SEM) over-
lap with the mitochondria in the MitoTracker images. Segmentations
based on FAD images had a 77.5 ± 3.6% (SEM) with mitochondria in
the MitoTracker images. Thus, NADH/FAD autofluorescence imaging
provides information on the localization, morphology and dynamics of
mitochondria.

Beyond mitochondrial visualization, FLIM provides a multi-parametric,
quantitative characterization of metabolic state. We were able to
probe metabolic processes with subcellular resolution by performing
high-resolution imaging. This allowed us to separately segment
mitochondrial and cytoplasmic regions, generating distinct arrival time
histograms for each segment. Performing this segmentation on NADH
and FAD intensity images (Fig. 2A and B, right panels), and fitting
resultant histograms for NADH cytoplasm, NADH mitochondrial
and FAD mitochondrial regions (Fig. 2C, left and middle panels),

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

we obtained a total of 12 quantitative parameters (Fig. 2C, right
panel). The arrival time histograms each contained ∼100 000–200 000
photons, allowing the parameters to be measured with high precision:
the 95% CI for every parameter was less than 10% of its mean.

Metabolic imaging enables in situ
measurements of mitochondrial metabolism
To determine the extent to which FLIM parameters can be used to
determine biologically relevant shifts in oocyte/embryo metabolism,
we first investigated the impact of subjecting oocytes to the metabolic
inhibitors, oxamate and rotenone. To obtain good spatial and temporal
resolution, we performed these experiments in custom-fabricated,
glass-bottomed microwell dishes with only one z-plane, 3 mW NADH,
12.5 mW FAD, 60 s integration time and a 40× objective.

Exposing oocytes to oxamate, a lactate dehydrogenase inhibitor,
resulted in a readily visible decrease in cytosolic NADH intensity
(Fig. 3A). Subsequent addition of rotenone caused a pronounced
increase in NADH intensity and a decrease in FAD intensity (hence an
increase in the redox ratio, NADH/FAD) in mitochondria. SHG images
(Fig. 3B, overlaid in magenta) revealed that oxamate did not disrupt
the meiotic spindle, but exposure to rotenone caused it to disappear
(Supplementary Movie S4).

Averaging data from the 25 oocytes (Fig. 3C) revealed a significant
change after oxamate exposure in six FLIM parameters: NADH
intensity decreased by 33 ± 2% (P = 1.7e−9); NADH fraction engaged
decreased by 7 ± 2% (P = 1.5e−6); NADH τ1 decreased by 35 ± 2%
(P = 1.4e−16); FAD fraction engaged decreased by 4.9 ± 0.6%
(P = 1.8e−11); FAD τ1 increased by 29 ± 7% (P = 1.7e−6); and FAD
τ2 increased by 6 ± 2% (P = 3e−4). Oxamate is known to change
cytosolic metabolic activity, and we detected highly significant changes
in our measured FLIM parameters after exposure to the chemical.
Thus, the results support our hypothesis that FLIM parameters can
measure metabolic state and distinguish different states.

Subsequent exposure of oocytes to rotenone, an inhibitor of the
electron transport chain, also caused a significant, but distinct, set of
parameter changes: NADH intensity increased by 32 ± 3% (P = 4e−6);
NADH fraction engaged decreased by 14 ± 1.4% (P = 9e−20); NADH
τ1 increased by 19 ± 4% (P = 1.6e−6); NADH τ2 increased by 14 ± 2%
(P = 3e−14); FAD intensity decreased by 19 ± 2% (P = 7e−8);
and FAD fraction engaged decreased by 4.7 ± 0.6% (P = 7e−11).
Rotenone is known to change mitochondrial metabolic activity, and we
detected highly significant changes in our measured FLIM parameters
after exposure to the chemical. Thus, the results again support our
hypothesis that FLIM parameters can measure metabolic state and
distinguish different states.

To further characterize the ability of metabolic imaging to distinguish
between different metabolic states, we compared discrete time points
by plotting the three metabolic parameters with the highest degree of
separation on a 3D plot (Fig. 3D–F). Support vector machine planes
were fit to the data as a test condition, and this comparison was per-
formed for no perturbation versus oxamate (Fig. 3D), oxamate versus
oxamate + rotenone (Fig. 3E) and no perturbation versus oxamate +
rotenone (Fig. 3F). In all cases, the data sets were completely separated
by FLIM.

These oxamate and rotenone experiments indicate that metabolic
imaging can be used to readily resolve changes in metabolism induced

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez210#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez210#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez210#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez210#supplementary-data
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Figure 4 High time-resolution measurements of metabolic state during mouse embryo development. (A) Embryos were imaged
together in 9-microwell dishes and individually tracked and analyzed to generate time plots for all FLIM parameters. Bar is 30 μm. (B) Time plots for
NADH and FAD intensities and fractions engaged for the individual embryo shown in (A). Distinct changes are evident in multiple parameters, especially
around the onset of blastocyst formation (∼44 h after the 1st division, which is represented here as t = 0 h). Corresponding time points for the four
images are displayed with red dashes on the plots. (C) The observed trends were robust and reproducible among all healthy embryos. These plots
display individual embryo trajectories as thin-colored lines (n = 39), which were synchronized by 1st division. Averaged metabolic curves from all 39
embryos are displayed as thick black lines with SE bars. (D) FLIM parameters were compared between the 1st division and morula stages, and the
three FLIM parameters with the largest separation were plotted as 3D plots, yielding complete separation. This comparison was also performed for
(E) compaction versus expanded blastocyst and (F) 1st division versus expanded blastocyst.

by poisons. We next sought to determine if metabolic imaging is
sensitive enough to also measure the changes in embryo metabolism
that take place during pre-implantation development. For these exper-
iments, we used multi-well plastic dishes with five embryos per well.
Metabolic images were taken at three different Z planes every 2 h,

.

.

.

.

.

.

.

.

.

.

over the course of 70 h, using 30 mW NADH, 50 mW FAD and 60 s
integration time for each plane. Individual embryos were tracked from
the one-cell stage to blastocyst (Fig. 4A, Supplementary Movie S5). To
obtain a strong signal, photons from all three planes were binned into
one histogram for each time point. We calculated metabolic param-

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez210#supplementary-data
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Figure 5 Live birth safety study. To evaluate the safety of FLIM
illumination on embryos, we implanted illuminated and nonilluminated
embryos into pseudo-pregnant mice, later measuring birth rates and
pup weights as metrics for possible damage. Sample numbers indicate
number of mice and number of pups, respectively. No significant
differences were observed.

eters for each embryo, which underwent highly significant changes
over the course of pre-implantation embryo development (Fig. 4B).
Plotting data from 39 different embryos shows that changes over
development were highly stereotyped (Fig. 4C). To further investigate
the repeatability of these measurements, we split the data into two
batches (with n = 20 and n = 19 embryos) from separately acquired
time courses. The metabolic parameters from two batches were highly
similar (Supplementary Fig. S1), arguing that these measurements are
robust and repeatable.

Metabolic parameters changed monotonically between the period
shortly after the first division (t = 0 in Fig. 4B and C) and compaction
(44 h), and different monotonic changes were observed between
compaction and expanded blastocyst stage. Comparing the one-cell
embryo to morula revealed highly significant changes in four FLIM
parameters (each with P < 10−6): NADH intensity, NADH τ1, FAD
intensity and FAD τ1. Comparing morula to blastocyst revealed highly
significant changes in four FLIM parameters (each with P < 0.002):
NADH intensity, NADH fraction bound, NADH τ1 and FAD intensity.
These observations reflect the known changes in metabolism, which
occur over the course of embryo development. Using just three of
the measured FLIM parameters, it is possible to completely sepa-
rate one-cell embryos from morula (Fig. 4D), morula from blasto-
cyst (Fig. 4E) and one-cell embryos from blastocyst (Fig. 4F). Thus,
metabolic imaging is sensitive enough to measure natural changes in
embryo metabolism.
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Live birth safety study
The ability of metabolic imaging and SHG to visualize mitochondria
and spindles, and the obtained quantitative information on embryo
metabolism, suggests that these techniques may be helpful in clinical
embryology. These techniques are noninvasive in that they do not
require exposing the embryos to any reagents; however, illumination
light can damage embryos. Thus, we sought to determine if the
illumination required for high signal-to-noise metabolic measurements
damaged embryos. We exposed experimental groups of embryos
to repeated acquisitions, every 2 h for 48 h, taking metabolic mea-
surements with settings identical to those used in Fig. 4 (30 mW
NADH, 50 mW FAD, 60 s integration time, three z-planes). Con-
trol groups of embryos were incubated in the same dishes as the
experimental groups, but not exposed to any illumination. For the
experimental group, n = 144 illuminated embryos were implanted
into n = 12 mice, and for the control group, n = 108 nonilluminated
embryos were implanted into n = 9 mice. Numbers of pups per
mouse and individual pup weights were later measured when the
mice gave birth.

There was no significant difference in either birth rate or pup weight
between the illuminated and control groups (Fig. 5). For the birth rate
measurement, the high labor cost per data point (pups/mouse) limited
the feasibility of obtaining a very high sample size. As such, it was only
possible to power this study to detect a 50% decrease in birth rate with
an alpha of 0.05 and beta of 0.8. For pup weight, however, the sample
size was much larger, such that the study was powered to detect a 7%
decrease in weight. We observed an average experimental pup weight
that differed by less than 1% from the control group.

Discussion
Here we have explored the utility of FLIM and SHG for imaging
mammalian oocytes and embryos. These techniques allow noninvasive
measurements of the location and morphology of mitochondria, nuclei
and spindles. We also demonstrated that FLIM of NADH and FAD is
robust and sensitive enough to detect metabolic changes in individual
embryos associated with metabolic poisons and the natural changes
that occur during embryo development. We found that this imaging
does not significantly impair live births in mice. These results argue that
FLIM and SHG can be used to noninvasively obtain relevant biological
information on oocytes and embryos and thus are highly promising
tools for ART.

Measuring metabolism of oocytes and
embryos with FLIM
Proper metabolism is crucial for embryo development, and metabolic
fluxes of glycolysis and oxidative phosphorylation, determined by
nutrient uptake and oxygen consumption, have been found to correlate
with embryo quality (Gardner and Leese, 1987; Gardner et al., 2011;
Gardner and Wale, 2013). However, previous nontargeted metabolic
assessments of embryo metabolism have not been clinically useful,
likely because of their complexity and lack of sensitivity (Hardarson
et al., 2012; Vergouw et al., 2012). Metabolic imaging via two-photon
FLIM of NADH and FAD is a highly promising alternative approach for
measuring embryo metabolism for ART, because it can provide detailed
metabolic information on both the cytoplasm, related to glycolysis, and

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez210#supplementary-data
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mitochondria, related to oxidative phosphorylation; it is highly quanti-
tative and robust; it is noninvasive; and it does not require the use of
any foreign stains or specialized media. Here, we have also shown that
metabolic imaging with FLIM can be used to characterize the changes
in metabolism that occur during pre-implantation embryo develop-
ment. The observed large shifts in metabolism at the morula stage
are consistent with expectations from previous studies (Houghton
et al., 1996; Chason et al., 2011), but these measurements also yielded
unexpected results that should be further investigated. For example,
blastocysts engage in aerobic glycolysis (Gardner and Harvey, 2015),
which would naively be expected to result in increases of NADH
concentration (e.g. as in cancer cells (Yu and Heikal, 2009)). However,
we observe an ∼50% decrease in NADH intensity with blastocyst
formation, suggesting that further study is needed to understand this
metabolic transition. This could be due to the oxidation of cytosolic
NADH during the conversion of pyruvate to lactate, which occurs
as the blastocyst prepares to implant (Gardner, 2015). In addition to
enabling new, fundamental insights, improved metabolic measures may
also allow better refinement of embryo culture media.

Imaging spindles with SHG
A microscopy system for two-photon FLIM can also be used to
simultaneously acquire SHG images, without the need for additional
acquisition time or photo-exposure. SHG can produce high-quality
images of meiotic and mitotic spindles (Campagnola and Loew, 2003;
Hsieh et al., 2008; Campagnola, 2011; Yu et al., 2014) (Fig. 1B and C).
Previous work has investigated the use of polarized light microscopy for
imaging the spindle, and it has been reported that there are associations
between meiotic spindle morphology and oocyte quality (Battaglia
et al., 1996; Zeng et al., 2007; Tomari et al., 2011, 2018; Korkmaz et al.,
2015; García-Oro et al., 2017; Guo et al., 2017). Thus, SHG imaging
of meiotic spindles might also provide useful information for selecting
high-quality oocytes. It will be interesting for future work to determine
if imaging mitotic spindles in early embryos can provide additional
information to aid in identifying aneuploid embryos.

Safety
It is paramount to investigate the safety of new technologies before
attempts are made to apply them clinically. While metabolic imaging
with FLIM does not entail exposing oocytes and embryos to foreign
material, there is the potential concern that that illumination could
cause harm. Excess light dosage from conventional microscopy is
detrimental (Masters and So, 2008), but such effects can be minimized
or eliminated by controlling light exposure, as performed in time lapse
imaging systems (Nakahara et al., 2010). Similarly, the repeated laser
pulse blastocysts conventionally receive during trophectoderm biopsy
procedures do not appear to reduce embryo viability (Scott et al.,
2013b), although when performed in excess they may lead to damage
(Bradley et al., 2017). We thus investigated the safety of illumination
during FLIM imaging of embryos and found that time lapse exposure
of one measurement every 2 h for 48 h did not significantly impact
live birth rates or pup weights. Previous work also demonstrated
that this level of illumination did not cause a measurable difference
in intracellular reactive oxygen species and blastocyst formation rates
(Pedro et al., 2018). It is likely that in a clinical setting, far fewer
measurements of metabolism would be sufficient to aid in selection,
perhaps at only one to three time points.
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Strengths and limitations
Because these experiments were performed in mouse, conclusions
around the sensitivity and safety of these new methods may not gen-
eralize to human. Inbred mice used here are genetically homogenous,
and the level of variation between human patients is not yet known.
Performing these studies in human, where tracking individual embryos
is possible, is the only way to measure the direct correspondence
between FLIM measurements and birth outcome. True evaluation
of this imaging system as an IVF tool will require clinical studies,
including measurements on discarded embryos to obtain baseline data,
expanded safety assessment, observational studies and clinical trials to
demonstrate efficacy for predicting live birth. A limitation of the live
birth data is also that although cages were routinely monitored, early
morning and during the day, we could not preclude that some runt pups
may have been eaten.

Conclusion
Our results indicate that metabolic imaging is a highly sensitive
assay for measuring changes in embryo metabolic function, which
is known to be essential for viability. Taken together with simultaneous
spindle imaging via SHG, we believe these proof-of-concept data
and initial safety studies are encouraging indications that noninvasive
metabolic imaging may be helpful for clinical embryo and oocyte
assessment.

Supplementary data
Supplementary data are available at Human Reproduction online.
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