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Abstract

Despite progress in understanding molecular aberrations that contribute to the development and 

progression of ovarian cancer, virtually all patients succumb to drug resistant disease at relapse. 

Emerging data implicate bioactive sphingolipids and regulation of sphingolipid metabolism as 

components of response to chemotherapy or development of resistance. Increases in cytosolic 

ceramide induce apoptosis in response to therapy with multiple classes of chemotherapeutic 

agents. Aberrations in sphingolipid metabolism that accelerate the catabolism of ceramide or that 

prevent the production and accumulation of ceramide contribute to resistance to standard of care 

platinum- and taxane-based agents. The aim of this review is to highlight current literature and 

research investigating the influence of the sphingolipids and enzymes that comprise the 

sphingosine-1-phosphate pathway on the progression of ovarian cancer. The focus of the review is 

on the utility of sphingolipid-centric therapeutics as a mechanism to circumvent drug resistance in 

this tumor type.
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INTRODUCTION

Ovarian cancer is the fifth leading cause of cancer-related deaths and the leading cause of 

death among women with gynecological malignancies. Although progress has been made in 

understanding the biology of ovarian cancer, progress in treating patients with this tumor 

type has been equivocal. Fewer than half of patients achieve complete remission[1]. Seventy-

five percent of women are diagnosed with advanced, metastatic disease mainly due to 

limitations in early detection and nonspecific symptoms. While a majority of women 

respond favorably to tumor debulking and frontline chemotherapy with carboplatin and 

paclitaxel, more than half will relapse within 18 months of diagnosis with drug resistant 

disease[2].

Development of chemotherapy resistant disease is a fundamental obstacle in treating many 

tumor types and is a factor in treatment failure for many patients with advanced, 

disseminated disease. Due to the differences in molecular characteristics and complexities 

among tumor types, the mechanisms of and pathways involved in the emergence of a 

chemoresistant phenotype may be unique to specific classes of agents and tumor types. 

However, general resistance mechanisms include increased drug efflux, enhanced DNA 

damage response, defective apoptotic signaling, or activation of anti-apoptotic proteins[3]. 

Acquired resistance may include drugs with different mechanisms of action, to which 

tumors have not yet been exposed. Due to the late stage at which most ovarian cancers are 

diagnosed, a high proportion of tumors are resistant to platinum-based therapy at diagnosis. 

Because few alternative therapies are available, the 5-year survival for these patients remains 

at less than 50%. New treatment strategies are needed.

Manipulation of the sphingolipid-mediated sphingosine-1-phosphate (S1P) pathway may 

represent such a strategy. The S1P pathway, including sphingolipid metabolites, regulates 

multiple cellular processes including proliferation, neovascularization, migration, invasion, 

and metastasis by controlling cell signal transductions networks that contribute to both 

tumorigenesis and tumor progression[4–6]. Sphingolipids also contribute to the structural 

integrity and fluidity characteristics of cell membranes[6,7]. Few therapeutic agents directly 

target S1P pathway proteins, but this pathway can influence the efficacy of several classes of 

chemotherapeutic agents, including docetaxel, doxorubicin and cyclophosphamide. Further, 

aberrations in sphingolipid metabolism are associated with chemoresistance[8–11]. This 

review details current understanding of how the S1P pathway impacts the development and 

progression of ovarian cancer and addresses the therapeutic implications of targeting this 

pathway in this tumor type. The focus of the review is on one of the core lipids of the S1P 

pathway, ceramide, and on the role of ceramide in inducing tumor cell death.

THE SPHINGOLIPID RHEOSTAT AND CANCER

S1P pathway signaling is regulated primarily by the relative levels of ceramide, sphingosine, 

and S1P, which comprise the three core lipids of the S1P pathway. These lipids play critical 

roles in cellular processes such as cell growth, differentiation, death, and motility[12] [Figure 

1]. Mechanisms that regulate the synthesis, catabolism, and clearance of these bioactive 

sphingolipids are tightly coupled to specific stimuli that engage and regulate downstream 
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effectors, distinguishing them from lipids that have predominantly structural functions[4,8]. 

Adding another layer of complexity, sphingolipid metabolism constitutes an interconnected 

network comprised of numerous pathways that not only regulate the levels of individual 

bioactive sphingolipids, but also their interconversion and the sphingolipid balance[8]. The 

concept that the relative levels of the three core lipids are tightly regulated to influence 

cellular processes is referred to as the ceramide-sphingosine-S1P rheostat model[13]. S1P is 

mitogenic and promotes growth, motility, and angiogenesis, whereas the S1P precursors 

sphingosine and ceramide mediate anti-proliferative and cytotoxic stress responses including 

apoptosis, cell cycle arrest, lethal autophagy, and growth suppression in vitro and in 
vivo[6,13–15].

These three core sphingolipid metabolites are rapidly interconverted in response to various 

stimuli such as growth factors, inflammatory stimuli and stress. The resulting changes in 

relative levels of these lipids, in turn, mediate specific responses[6,15]. For example, cellular 

stress such as chemotherapy, radiation, or oxidative stress increases levels of ceramide and 

sphingosine through the activation of de novo synthesis, sphingomyelin hydrolysis, or the 

salvage pathway which recycles sphingosine to promote apoptosis. However, tumor cells 

often have relatively low levels of ceramide, due to increased activities of ceramide 

metabolizing enzymes such as glucosylceramide synthase (GCS), sphingomyelin synthase 

(SMS), ceramide kinase (CERK), acid ceramidase (AC), or sphingosine kinase (SPHK). 

These enzymes convert ceramide to glucosylceramide (GlcCer), sphingomyelin, ceramide-1-

phosphate (C1P), or S1P sphingolipids, respectively, each of which has pro-survival 

activity[7,11,12]. In normal cells, the tightly regulated balance of synthesis and degradation of 

sphingosine, ceramide and S1P maintains sphingosine and S1P levels ~10-fold lower than 

the level of ceramide[16]. Of note, hydrolysis of less than 3% of ceramide can exponentially 

increase sphingosine and subsequent S1P levels[12]. The interdependent nature of 

sphingolipid metabolism facilitates rapid interconversion among core lipids, to orchestrate 

diverse cellular responses[5,15]. The complex regulation of the S1P pathway varies with cell 

type, and the abundance or deficiency of sphingolipids and their respective metabolizing 

enzymes make it challenging to define the mechanisms that regulate initiation or progression 

of a particular tumor type[4,17]. This review focuses on the function and potential utility of 

the S1P pathway as a therapeutic target in ovarian cancer.

SPHINGOLIPID METABOLISM

S1P synthesis is tightly regulated by the metabolism of ceramide. Ceramide sits at the hub of 

sphingolipid metabolism as the neutral, lipid building block for complex sphingolipids and 

glycosphingolipids, serving as a substrate for more than 11 different enzymes[12] [Figure 1]. 

Ceramide biosynthesis occurs either from the breakdown of membrane-resident 

sphingomyelin by sphingomyelinases or de novo from the condensation of serine and 

palmitoyl-CoA, catalyzed by serine palmitoyltransferase (SPT) to form 3-ketosphinganine. 

Subsequently, it is reduced to sphinganine by 3-ketosphinganine reductase and synthesized 

into dihydroceramide by (dihydro) ceramide synthases. Referred to as ceramide synthases 

(CERS1–6), these are the rate-limiting enzymes for the synthesis of endogenous ceramide, 

with different fatty acyl-CoA substrate preferences. Various chain-length ceramides are 

ultimately generated as the product of dihydroceramide desaturase[12,18]. The de novo 
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formation of ceramide is induced by several stress-factors including tumor necrosis factor-α, 

hypoxia, and chemotherapeutic agents[19]. Ceramide can be converted to sphingomyelin by 

sphingomyelin synthase, glycosylated by glucosylceramide synthase (GCS) to form 

glucosylceramide, or ceramide can be hydrolyzed to form sphingosine by ceramidases (acid, 

neutral, or alkaline), characterized by the pH required for optimal enzymatic activity[7,20]. 

Ultimately, sphingosine is phosphorylated by sphingosine kinase isozymes (SPHK1 or 

SPHK2) to generate the bioactive lysophospholipid S1P. Through a range of different 

pathways, S1P acts as both an extracellular and intracellular signaling molecule. S1P can be 

transported out of the cell by members of the ABC transporter family and by spinster 

homolog 2 (Spns2), where it exists in high nanomolar concentrations in the blood[21]. Upon 

exit from the cell, S1P engages with 5 specific G-protein coupled receptors (GPCRs), 

referred to as S1PR1–5, in an autocrine or paracrine manner to induce downstream signal 

transduction cascades that promote proliferation and migration[11,16]. Alternatively, S1P can 

be rapidly metabolized by S1P phosphatases to reform sphingosine or irreversibly cleaved 

by S1P lyase (SGPL1) to yield phosphoethanolamine and hexadecanol, the final step in 

sphingolipid degradation[7,12,16]. Sustaining the flux between S1P generation and 

degradation is critical in regulating the balance of sphingolipids and plays a key role in 

pathological processes of tumorigenesis[17,22]. Specifically, with respect to ovarian cancer, 

S1P has been indicated to contribute to metastatic potential by stimulating the migration, 

chemotaxis, and invasion of ovarian cancer cells in several studies[23–26]. S1P may inhibit or 

enhance migration and invasion in a cell-type- and concentration-dependent manner[25].

SPHINGOLIPIDS IN OVARIAN CANCER AND DRUG RESISTANCE

Several literature have implicated dysregulated sphingolipid metabolism as key contributor 

of the progression and resistance of ovarian cancer. Using RNA-seq to compare and identify 

transcriptional variants between matched pairs of carboplatin and paclitaxel-treated vs. 

control patient-derived xenograft (PDX) models of ovarian cancer, Dobbin and colleagues 

identified S1P signaling in the top three most transcriptionally altered pathways following 

chemotherapy treatment[27]. Sphingolipid metabolizing enzymes directly involved in 

regulating the ceramide-sphingosine-S1P rheostat play a crucial role in cell survival and 

have been directly correlated with drug resistance in ovarian cancer[20,28]. Specifically, 

increased expressions of ceramide transport protein (CERT), SPHK1, SPHK2, and 

glucosylceramide synthase (GCS) have been associated with resistance to paclitaxel, 

doxorubicin, and N-(4-hydroxylphenyl) retinamide (fenretinide) chemotherapies and 

apoptotic responses[29–34].

Because altered levels or activity of bioactive sphingolipids regulate biological processes 

that influence tumor progression, several laboratories have investigated approaches to 

increase levels of the proapoptotic lipid ceramide and to decrease levels of the antiapoptotic 

lipid S1P[7,13,15]. With respect to ovarian cancer, the higher levels of S1P present in the 

ascites fluid of ovarian cancer patients skew the ratio of the three core lipids, to promote 

proliferation, angiogenic potential, and dissemination of ovarian tumors[11,35]. Further, 

increased levels of sphingomyelin, glucosylceramide, and galactosylceramide have been 

postulated to confer a multidrug resistant phenotype in ovarian cancer cells[29,36,37]. 

Consistent with these observations, the level of ceramide is lower in ovarian tumor cells than 
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in normal ovarian tissue and is further attenuated in paclitaxel-resistant compared to 

paclitaxel-sensitive ovarian cancer cells, again skewing the ratio of ceramide:S1P in favor of 

the anti-apoptotic lipid S1P in tumor cells[8,38]. These studies suggest that the balance 

between ceramide and S1P levels is critical in mediating drug-sensitivity and survival of 

tumor cells, which underscore targeting the rheostat for the evaluation of rational anticancer 

regimens.

PUTATIVE MECHANISMS BY WHICH CORE LIPIDS REGULATE APOPTOSIS

While development of such therapies may be challenging because of the rapid 

interconversion among core lipid components, it is well documented that increases in 

proapoptotic ceramide occur through a variety of mechanisms: (1) de novo synthesis, the 

conversion of serine and palmitoyl-CoA to ceramide via multiple steps; (2) hydrolysis of 

sphingomyelin; (3) inhibition of ceramide hydrolysis; and (4) hydrolysis of 

glucosylceramide (or inhibition of glucosylceramide)[15]. Induction of apoptosis by 

ceramide also occurs through multiple mechanisms: first, apoptosis through mitochondrial 

activation by forming ceramide platforms on cell membranes which subsequently invaginate 

and fuse with the mitochondria; also known as “the kiss of death”, ultimately leading to the 

induction of apoptosis. Second, ceramide can also form channels in mitochondrial 

membranes, to induce mitochondrial outer membrane permeabilization (MOMP). MOMP, in 

turn, promotes the release of apoptotic proteins such as cytochrome c and low molecular 

weight intermembrane space proteins into the cytoplasm[15].

Radiation-induced ceramide accumulation has been shown to function as a second 

messenger to activate the intrinsic apoptosis pathway and induce senescence through 

inhibition of telomerase activity, an enzyme overexpressed in approximately 90% cancer 

cells, enabling cells to escape senescence and acquire immortality[8,11,15]. Recently, El 

Kaffas et al.[39] demonstrated that activation of the acid sphingomyelinase-ceramide 

pathway is necessary for radiosensitization following ultrasound-stimulated microbubble 

(USMB) exposure. This study is the first to investigate and highlight the role of acid 

sphingomyelinase-ceramide signaling in USMB-mechanotransducive vascular therapy, 

showing minimal tumor cell death and responses in S1P-treated and acid-sphingomyelinase 

knockout mice compared to wild-type mice implanted with fibrosarcoma xenografts. 

Approaches to increase ceramide levels merit investigation.

Alternatively, approaches to decrease the anti-apoptotic lipid S1P[7,11,13] may also be useful 

therapeutically. S1P blocks apoptosis by stabilizing mitochondrial membrane potential, thus 

preventing cytochrome c release from the mitochondria[40]. Specifically, with respect to 

ovarian cancer, S1P has been indicated to contribute to metastatic potential by stimulating 

the migration, chemotaxis, and invasion of ovarian cancer cells in several studies[23–26]. S1P 

may inhibit or enhance migration and invasion in a cell-type- and concentration-dependent 

manner[25]. The antiapoptotic activity of S1P can be influenced by the level of S1P receptor 

expression, character of preexisting stress fibers, and levels of enzymes involved in 

extracellular matrix (ECM) remodeling and invasion[24,41].
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Angiogenesis supports invasion and metastasis of solid tumors. S1P induces expression 

and/or secretion of several pro-angiogenic cytokines such as VEGF, IL-8, and IL-6, to 

promote vascular network formation[42,43]. Further the expression of SPHK1 and S1PR1/3 

was correlated with microvascular density of ovarian cancer tissue, and inhibition of SPHK1 

or S1PR1/3 attenuated angiogenic potential and angiogenic factor secretion of ovarian 

cancer cells in vitro and in vivo[42].

Thus, therapeutic approaches would aim to promote ceramide accumulation and suppress 

S1P accumulation, to inhibit tumor growth and overcome drug resistance.

SPHK1 AND SPHK2

Despite their metabolic redundancy for generating S1P, SPHK1 and SPHK2 possess distinct, 

cell type-dependent characteristics, with differences in level of expression and intracellular 

localization[11,44,45]. SPHK1 localizes primarily in cytosol and cell membrane, whereas 

SPHK2 localizes at the nucleus, mitochondria and endoplasmic reticulum (ER). These 

distinct subcellular distributions have been cited as the factors that determine the divergent 

biochemical roles of SPHK1 and SPHK2[45,46]. Of the two, SPHK1 is better characterized 

and high levels of expression of this enzyme have been shown to promote oncogenic 

transformation, tumor growth, and drug resistance in ovarian cancer cells[29,47–49]. The 

oncogenic signaling mediated by SPHK1 depends on its activation, translocation to the 

plasma membrane, and subsequent catalysis of sphingosine to S1P[13,50]. SPHK1 activity 

and expression are augmented by a range of agonists including protein kinase activators, 

tyrosine kinase growth factors, GPCR ligands, small GTPases, proinflammatory cytokines, 

and calcium[11]. Interestingly, p53 activation in response to DNA damage can mediate 

proteolytic cleavage and inactivation of SPHK1, to promote the initiation of apoptosis[51]. 

mRNA and protein levels of SPHK1 are higher in primary ovarian tumors compared to their 

non-cancerous tissues and are associated with reduced 5-year survival[52–54]. Elevated 

SPHK1 expression accelerates the conversion of ceramide to S1P, while removing ceramide 

from the biosynthetic pool via dihydrosphingosine phosphorylation; thus, playing a role in 

regulating cellular ceramide levels[8,53]. In a recent study, Lee et al.[29] examined the 

antiproliferative effect of siRNA targeting SPHK1 combined with the sphingosine analog 

FTY720 in cultured EOC cell lines, and in xenografts and a patient-derived xenograft (PDX) 

model of clear cell carcinoma (CCC) in mice. SPHK1-siRNA plus FTY720 inhibited 

proliferation and invasion, and increased apoptosis in chemotherapy-resistant as well as -

sensitive models of EOC in vitro. Furthermore, treatment with FTY720 in vivo inhibited 

tumor growth and proliferation (P < 0.05) in cell line-derived xenografts models and a PDX 

model of CCC[29]. These data support the hypothesis that targeting SPHK1 has a therapeutic 

potential in ovarian cancer. In another study, SPHK1 was shown to be highly expressed in 

the tumor stroma of HGSOC and required for the differentiation and tumor promoting 

function of cancer-associated fibroblasts[55].

Compared to the extensively investigated SPHK1 isoform, the functions and mechanisms of 

SPHK2 in cancer remain largely elusive and the roles of SPHK2 in cancer cells are not fully 

understood with inconsistencies in published data[44,56]. For example, Liu et al.[57] revealed 

SPHK2 contains a putative BH3 motif, which is essential in the activation and initiation of 
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apoptosis by BH3-only proteins, and mutations in the highly conserved catalytic domain 

decreased its ability to induce apoptosis in NIH 3T3 fibroblasts, human embryonic kidney 

(HEK293), PC12 pheochromocytoma, and MCF-7 breast cancer cells. In contrast, work by 

Gao and Smith[58] demonstrated that SPHK2 contributed to proliferation and survival of 

breast adenocarcinoma cells and kidney clear cell carcinoma and adenocarcinoma cells in 
vitro. Additional studies conducted using SPHK2-siRNA indicate that decreased expression 

of SPHK2 enhanced apoptosis and decreased resistance to etoposide and doxorubicin in cell 

lines derived from lung, breast, and colon tumors[59,60]. Further, the specific localization of 

SPHKs also contributes to the cell function. Nuclear localized SPHK2 and S1P have been 

reported to have anti-proliferative roles; through which SPHK2 forms a repressor complex 

with histone H3 and histone deacetylase 1 and 2 (HDAC1/2) producing S1P that regulates of 

histone acetylation, as a part of epigenetic regulation of gene expression[13,50,61]. 

Alternatively, nuclear SPHK2-derived S1P has been shown to bind hTERT and allosterically 

mimic protein phosphorylation which limits proteasomal degradation and maintains 

telomere integrity and stabilization, thereby, bypassing replicative senescence and enhancing 

tumor growth[44]. Data for the function of SPHK2 in ovarian cancer cells are limited. Dai et 
al.[42] showed that SPHK1, but not SPHK2, expression was correlated with microvascular 

density (MVD) of ovarian cancer cells and that the angiogenic factor secretion by ovarian 

cancer cells could be attenuated by SPHK1, but not SPHK2 inhibition and subsequently 

restored upon addition of S1P. Alternatively, few stimuli have been shown to induce SPHK2-

mediated S1P formation, such as epidermal growth factor (EGF), PMA, TGFβ, and FcεRI 

triggering[29].

CERAMIDE TRANSPORT AND METABOLISM

De novo ceramide biosynthesis pathway is initiated at the cytosolic leaflet of the 

endoplasmic reticulum (ER), where the enzymes required for ceramide synthesis localize. 

Ceramide is subsequently transported to vesicular or non-vesicular loci[19]. Ceramide either 

undergoes vesicular trafficking to the cis-Golgi where it is converted to glucosylceramide 

(GlcCer) or gets transported to the trans-Golgi where it is preferentially incorporated into 

sphingomyelin[20,62]. The ceramide transfer protein CERT, encoded by the COL4A3BP 

gene, regulates this non-vesicular transport, to control the conversion of ceramide to 

sphingomyelin by sphingomyelin synthase (SMS)[7,19,63,64]. siRNA-mediated silencing of 

COL4ABP sensitizes diverse cells types, including ovarian, colorectal, and HER2-positive 

breast cancer cells to doxorubicin, cisplatin, 5-FU, and paclitaxel. The mechanism by which 

this sensitization occurs is thought to be through the induction of ceramide-mediated ER 

stress or lysosome-associated membrane glycoprotein 2 (LAMP2)-dependent autophagic 

flux. Consistent with this hypothesis, drug-resistant SKOV3-TR ovarian cancer and 

ADR/RES breast cancer cells express relatively high levels of CERT, and silencing of 

COL4ABP sensitizes these cell lines to paclitaxel-induced cell death[7,28,32]. Thus, 

inhibition of ceramide metabolism via targeting CERT-mediated trafficking of ceramide as 

well as conversion into glycosphingolipids may provide a novel strategy for sensitizing 

ovarian cancer cells to several classes of chemotherapeutic agents.

Glucosylceramide synthase (GCS) transfers glucose from UDP-glucose to ceramide to form 

glucosylceramide, the precursor for approximately 90% of mammalian glycosphingolipids 
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(GSLs). Both ceramide and GSLs play critical roles in modulating cellular signaling and 

gene expression, and thus modulating tumorigenesis, cancer progression, and the efficacies 

of cancer therapies[65,66]. Ceramide glycosylation by GCS is the rate-limiting step in 

glycosphingolipid synthesis and is essential in regulating the balance between apoptotic 

ceramide and antiapoptotic glucosylceramide[20]. Comparison of GSL expressions using 

matrix-assisted laser desorption/ionization-mass spectroscopy (MALDI-MS) and MALDI-

MS/MS showed increased and differential glycosylation of GSLs in the epithelial ovarian 

cancer SKOV3 cell line compared to the nontumorigenic epithelial ovarian T29 cell line, 

with five neutral globo-series GSLs detected only in the SKOV3 cell line[66]. Several studies 

have highlighted the influence of ceramide and glycolipid metabolism on function and 

expression of genes involved in response and metabolism of chemotherapies such as 

cisplatin, doxorubicin, vinblastine, paclitaxel and inflammatory responses to physiological 

stimuli such as tumor necrosis factor-α and cyclooxygenase-2[34,65,67–71]. In mechanistic 

studies associated with clinical trials, overexpression of GCS has been associated with poor 

prognosis and multidrug resistance in several tumor types including ovarian, breast, and 

colorectal cancers. These observations suggest that high levels of GCS expression merits 

investigation as a biomarker of clinical response or tumor progression[20,70,72,73]. Therefore, 

targeting the metabolism (and glycosylation) of ceramide presents an effective strategy for 

anticancer drug development to potentiate cellular sensitivity to ceramide-induced cell death 

and chemotherapeutics. These studies underscore ceramide’s essential role in mediating 

signaling cascades in response to cellular stressors such as physiological stimuli, 

chemotherapy, and ionizing radiation and provide rationale to investigate therapeutic 

strategies that target the metabolism (and glycosylation) of ceramide as anticancer 

treatments to potentiate cellular sensitivity to ceramide-induced cell death.

Interestingly, GCS overexpression is sometimes coincidental with overexpression of the 

multidrug resistance 1 gene (MDR1) in drug-resistant breast, ovary, cervical and colon 

cancer cells[69]. MDR1 encodes the drug efflux transporter P-glycoprotein (P-gp), which 

facilitates export of several classes of chemotherapeutic agents including Vinca alkaloids, 

anthracyclines, paclitaxel, actinomycin D, and epipodophyllotoxins[68]. Furthermore, Liu et 
al.[34] demonstrated that suppression of GCS enhanced sensitivity to doxorubicin and 

restored ceramide-mediated, p53-dependent apoptosis in vitro and in vivo in p53 mutant 

OVCAR-8, NCI/ADR-RES, and A2780ADR ovarian cancer cells. Mechanistically, GCS 

suppression increased long chain C18- and C24-ceramide species which, in turn, modulate 

pre-mRNA splicing to restore wild-type p53 expression[74]. However, in another cell type, 

inhibition of GCS expression resulted in cytokinetic dysfunction and multinucleation of 

human cervical adenocarcinoma (HeLa) cells, which have been associated with 

chemoresistance[75]. Consequently, while inhibition of GCS, to prevent the metabolism of 

ceramide to glucosylceramide, may provide an effective means to circumvent drug 

resistance, the effects of inhibiting GCS may be cell type-dependent and the utility of this 

approach needs additional studies before inhibition of GCS is considered a useful 

therapeutic approach.
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SPHINGOLIPID-BASED ANTICANCER THERAPEUTICS

As discussed above, sphingolipids play a regulatory role in determining cell fate. Multiple 

approaches have been investigated for influencing sphingolipid metabolism, to overcome 

drug resistance in ovarian cancer cells. Approaches that have demonstrated efficacy in 

ovarian cancer models include the use of synthetic ceramide analogs, inhibitors of SPHK, 

neutralization of secreted S1P, and S1PR antagonists. Studies addressing each approach are 

summarized below and tabulated in Table 1.

CERAMIDE ANALOGS

Cell-permeable ceramide analogs or mimetics induce apoptosis in cancer cells[76]. The 

solubility and bioavailability of such analogs has been increased by replacing the long-chain 

fatty acid of endogenous ceramide with short chain fatty acids (C2-, C6-, or C8-), or by 

encapsulating ceramide in liposomes or polymeric nanoparticles[9]. As a single “agent” 

bioavailable ceramide increases intracellular ceramide levels and induces apoptosis. Even 

greater efficacy has been reported when ceramide analogs or formulations are combined 

with more conventional chemotherapeutic agents[77–79]. As a first example, CAOV3 ovarian 

cancer cells exposed to C6-ceramide and paclitaxel demonstrated high levels of endocytic 

vesicle formation and synergy in inhibiting cell proliferation and migration[37,80]. A second 

example, the combination of paclitaxel with C6-ceramide-encapsulated in poly(ethylene 

oxide)-modified poly(epsilon-caprolactone) (PEO-PCL) nanoparticles restored sensitivity of 

taxane-resistant SKOV3.TR ovarian cancer cells to paclitaxel[77]. A third example, Zhu et al.
[81] demonstrated that C6-ceramide and the histone deacetylase inhibitor (HDACI) 

trichostatin A (TSA) were synergistic in models of ovarian and pancreatic cancer in vitro 
and in vivo. The synergistic effects of this combination were attributed to increases in α-

tubulin hyperacetylation and intracellular ceramide accumulation, the release and activation 

of protein phosphatase 1 (PP1), and subsequent dephosphorylation of AKT[81].

Preclinical data that support the use of ceramide nanoliposomes (CNL) are available for 

several preclinical tumor models of hepatocellular carcinoma, breast, melanoma, and ovarian 

cancers, and leukemia models[77,82–91]. These studies provided strong support for the FDA 

phase I first-in-man-dose-escalation study in patients with advanced solid tumors 

(NCT02834611)[82,92,93]. Mechanistically, using SKOV3 ovarian cancer cells, Zhang et al.
[82] made the novel observation that CNL targets the pseudokinase mixed lineage kinase like 

(MLKL) domain to induce necroptosis in vitro and in vivo. Their findings demonstrated an 

inverse relationship between monomeric MLKL expression and CNL efficacy and suggest 

that MLKL expression may serve as a biomarker of therapeutic efficacy of CNL-based 

therapy[82]. Also, Kitatani et al.[94] demonstrated that C6-ceramide liposomes suppressed 

ovarian cancer cell motility in vitro and inhibited peritoneal metastasis in a murine xenograft 

model. The study by Kitatani et al.[94] also showed that C6-ceramide liposomes suppressed 

ovarian cancer cell motility in vitro and inhibited peritoneal metastasis in a murine xenograft 

model in vivo. Furthermore, metastasis of PI3KC2β knocked-down xenografts were 

insensitive to treatment with ceramide liposomes, suggesting the role of ceramide as a 

metastasis-suppressor lipid and an involvement of ceramide interaction with PI3KC2β in 

metastasis suppression[94].
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S1P-SPECIFIC ANTIBODIES

S1P-specific murine (LT1002, Sphingomab) and humanized (LT1009, Sonepcizumab) 

monoclonal antibodies bind and neutralize S1P, and inhibit the activity of the endogenous 

enzyme by lowering circulating S1P. Although inactive, S1P-Ab complexes bind to the S1P 

receptor (S1PR) and competitively inhibit the binding of the active endogenous enzyme to 

this receptor, thereby decreasing the S1P pathway function. Anti-S1P antibodies reduced the 

expression and activity of hypoxia-inducible factor 1α (HIF-1α), secretion of the 

angiogenic factors IL-6, IL-8, vascular endothelial growth factor (VEGF), and basic 

fibroblastic growth factor (bFGF) and decreased vessel formation in in vitro and in vivo 
models of ovarian, breast, prostate and lung cancers[95–97]. The antiangiogenic effect of S1P 

antagonism in preclinical models led to the evaluation of Sonepcizumab in a phase II clinical 

trial in patients with metastatic renal cell carcinoma (mRCC) who were refractory to anti-

VEGF therapy[98,99]. Forty patients who had undergone a median of three prior regimens 

were enrolled. Patients achieved a median overall survival of 21.7 months was observed, but 

the study did not achieve its primary endpoint of a 2-month progression-free survival. While 

Sonepcizumab demonstrated an encouraging overall survival of > 20 months in a heavily 

pretreated population of patients with mRCC, only 10% (4 patients) demonstrated a partial 

response, with a median duration of response of 5.9 months. Interestingly, biomarker studies 

showed simultaneous increases in serum S1P and antibody concentrations, but no significant 

association was found between response to therapy and increases in S1P levels.

FTY720

FTY720 (Fingolimod) is an FDA-approved, first-line, immunomodulatory therapy for 

relapsing multiple sclerosis, an inflammatory disorder of the central immune system. 

FTY720 is a sphingosine analog derived from the potent serine palmitoyltransfease (SPT) 

inhibitor myriocin, and is a prodrug phosphorylated primarily by SPHK2 to generate P-

FTY720 which is a structural analog of S1P. FTY720 functions as an antagonist of S1PR1, 

thereby sequestering circulating lymphocytes in lymphoid tissues[100–103]. In addition to its 

primary indication as an S1PR ligand and immunosuppressive role, FTY720 has shown 

antitumor efficacy in multiple in vitro and in vivo models. FTY720 impacts multiple cell 

functions and pathways including motility, proliferation, death, angiogenesis, inflammation, 

and S1P[104–106]. FTY720 has been demonstrated as a competitive inhibitor (with 

sphingosine) of SPHK1 with a Kic of 2 μmol/L[107,108] and destabilizes SPHK1 by 

facilitating SPHK1 degradation via ubiquitination in human pulmonary artery smooth 

muscle, breast cancer, and androgen-independent prostate cancer cells[108,109]. Although 

somewhat controversial, compelling evidence suggests that the anticancer effects of FTY720 

are independent of phosphorylation and that the “prodrug” FTY720 is an active antitumor 

agent[104,110]. Due to differences in the expression levels and tissue distributions of SPHK2, 

FTY720-P phosphatases, and the ATP-binding cassette (ABC) transporters ABCA1, 

ABCB1, ABCC1, and ABCG2, as well as the multipass transmembrane family protein 

SPNS2, the concentration of FTY720-P differs between cells and tissues. Therefore, even 

when the intended use of FTY720 is as an antitumor agent, relatively high levels of 

FTY720-P are likely to be present in lymphoid tissue and to exert a potent 

immunosuppressive effect[109,111,112].
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Notably, tumor cells resistant to radiation and conventional chemotherapeutic agents such as 

cisplatin, topotecan, doxorubicin, etoposide, and tamoxifen are sensitive to FTY720 as a 

single agent and show additive or synergistic effects when combined with chemotherapy or 

radiation. FTY720 has been shown to potentiate the effects of these agents in models of 

ovarian, glioblastoma, prostate, breast, colon, melanoma and pancreatic 

cancers[61,104,113–116]. These preclinical data support the use of FTY720 and this agent is 

currently being evaluated in combination with radiation and temozolomide in a phase I 

clinical trial in newly diagnosed high grade glioma patients (NCT02490930)[117]. FTY720 is 

toxic to ovarian cancer cells independent of their sensitivity to cisplatin, carboplatin, and 

paclitaxel (Kreitzburg and Yoon, unpublished data) and can initiate both autophagic and 

necrotic death and apoptosis[29,104,106]. In ovarian cancer cell lines, FTY720 inhibited 

SPHK1 activity, angiogenesis, invasion, and proliferation. Furthermore, administration of 

FTY720 to mice bearing cell line xenograft and PDX models of ovarian cancer inhibited 

tumor growth[29].

SPHK INHIBITORS

Because S1P contributes to cancer progression and drug resistance, the SPHK enzymes that 

generate S1P are also potentially useful targets for cancer therapy. Safingol (L-threo-

dihydrosphingosine), a synthetic isomer of sphinganine, is the first molecule designed to 

inhibit SPHK1/2 to be evaluated in clinical trial. Safingol functions as a competitive 

inhibitor of SPHK1/2 and an inhibitor of ceramide kinase to increase ceramide levels. This 

compound also appears to inhibit protein kinase C, by an unknown mechanism[118,119]. In 
vitro data demonstrate that combinations of safingol with agents such as doxorubicin, 

cisplatin, or mitomycin C are synergistic in models of ovarian, colon, breast, cervical, and 

head and neck squamous cell cancer models. These combinations increase apoptosis and 

lethal autophagy induced by these conventional drugs as single agents. Based on in vitro 
data, safingol was combined with cisplatin for treatment of patients with advanced solid 

tumors in trial NCT0084812. Although safingol possesses limited activity as a single-agent 

in vivo, it potentiates the efficacy of cisplatin with little or no increase in toxicity and is 

being further evaluated in a phase I clinical trial in combination with fenretinide in patients 

with relapsed malignancies (NCT01553071)[118].

The SPHK1 isozyme has been extensively characterized and its diverse functions in tumor 

progression documented, while SPHK2 has not been as well characterized and its primary 

physiological functions are controversial[44,45,57,120,121]. Despite incomplete 

characterization of function and mechanism, in vitro and preclinical in vivo data document 

that the SPHK2-specific inhibitor ABC294640 has been shown to inhibit proliferation of 

tumor cells or tumors more effectively or similarly than agents that target SPHK1 in several 

tumor models, including ovarian[122], multiple myeloma[123], lung[124], kidney[58], 

breast[58,125], prostate[126], and pancreatic cancers[127]. Mechanistically, siRNA-targeted 

knockdown of SPHK2 expression inhibits ERK-mediated proliferation, invasion, and 

migration greater than knockdown of SPHK1 in kidney and breast tumor models[122]. In 

models of chemoresistant breast and ovarian cancer, ABC29460 decreases cell survival in a 

dose-dependent manner. Further, ABC29460 suppressed pancreatic and lung tumor growth. 

The proposed mechanisms for this inhibition in cell survival are inhibition of telomerase 
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stability in lung tumor models and suppression of Myc and ribonucleotide-diphosphate 

reductase subunit M2 (RRM2) expression in pancreatic cancer cell lines[122,125,127,128]. 

Guan et al.[124] demonstrated in lung cancer cells that PDPMP-mediated inhibition or 

knockdown of GCS potentiated ABC294640-induced antitumor activity, increased 

intracellular levels of ceramide, and increased apoptosis, whereas forced overexpression of 

GCS abrogated ABC294640 cytotoxicity against lung cancer cells. Clinically, a recently 

completed phase I trial ABC294640 for solid tumor patients reported acute biphasic 

reductions in plasma levels of S1P over 24-hour increments; however, this effect was 

independent of dose administered[129]. ABC294640 is currently being evaluated in several 

other clinical trials, including a phase II trial as second-line monotherapy for patients with 

advanced hepatocellular carcinoma (NCT02939807), a phase IIa study for treatment of 

patients with advanced cholangiocarcinoma (NCT03377179), and a phase Ib/II safety and 

efficacy study as a single agent in patients with refractory/relapsed multiple myeloma 

(NCT02757326).

TAMOXIFEN AS AN INHIBITOR OF SPHINGOLIPID METABOLISM AND 

MODULATOR OF DRUG RESISTANCE

Tamoxifen is a standard of care drug for treatment of breast cancer, and functions as a 

selective estrogen receptor modulator (SERM) to competitively inhibit estradiol-estrogen 

receptor (ER) interaction[130]. Independent of ER status, tamoxifen has oncolytic activity 

thought to be mediated by multiple mechanisms including inhibition of sphingolipid 

metabolism and inhibition of the activity of the drug efflux transporter P-glycoprotein (P-gp)
[71,131,132]. Previous literature indicated that tamoxifen enhanced the therapeutic efficacy of 

a wide range of agents such as paclitaxel, cisplatin, vincristine, and fenretinide in drug-

resistant cancer models of colon, prostate, ovarian cancer, and 

neuroblastoma[30,69,131,133,134]. The antiproliferative effect of tamoxifen has been proposed 

to depend on inhibition of acid ceramidase and GCS activity, and the resulting increase in 

ceramide levels[131,132]. Devalapally et al.[30] examined the in vitro and in vivo efficacy of 

encapsulated tamoxifen and paclitaxel using PEO-PCL nanoparticles in paclitaxel-resistant 

SKOV3. TR and wildtype SKOV3 ovarian cancer cells. As would be predicted, in tumor 

cells in vitro or tumor models in vivo, this formulation increased the efficiency of drug 

delivery, and intracellular drug retention, and increased intracellular ceramide levels and 

induction of apoptosis[30]. The data demonstrated that the combination of tamoxifen and 

paclitaxel decreased tumor volume and weight, induced apoptosis, and decreased GCS 

expression compared to control tumors. Additionally, our lab observed that the combination 

of tamoxifen and FTY720 inhibits proliferation of both ERα-positive and ERα-negative 

drug-resistant cell lines and an ERα-positive PDX model of ovarian cancer (Kreitzburg and 

Yoon, unpublished data). The multiple mechanisms of action of tamoxifen and its relatively 

high therapeutic index provide a strong rationale for combining tamoxifen with FTY720, as 

a strategy for treating ovarian tumors and circumventing drug resistance[30,131,135,136]. We 

suggest that therapeutics that promote ceramide accumulation by any of several pathways 

have broad translational potential.

Kreitzburg et al. Page 12

Cancer Drug Resist. Author manuscript; available in PMC 2019 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CONCLUDING REMARKS

As reviewed herein, sphingolipids, enzymes that comprise the S1P pathway, and 

sphingolipid metabolism have strong influence on the pathogenesis and drug-resistance in 

ovarian cancer. In summary, the generation and accumulation of ceramide and sphingosine is 

induced in response to various cellular stresses including chemotherapy, radiation, and/or 

oxidative stress to mediate cell death, senescence, and/or cell cycle arrest. Conversely, the 

metabolic conversion of ceramide to S1P, sphingomyelin, or glucosylceramide is mitogenic 

and inhibits antiapoptotic pathways, thereby promoting the proliferation and drug resistance 

of cancer cells. Because the sphingolipid metabolic pathway is implicated in multiple 

biological processes that are recognized to be essential for the development, progression, 

and drug-resistance of ovarian cancer, therapeutic modulation of sphingolipid metabolism 

may provide effective antitumor therapies for ovarian cancer[13,15].
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Figure 1. 
Schematic representation of sphingosine-1-phosphate (S1P) pathway. Summary of 

sphingolipid degradation and synthesis and major components of the S1P metabolic pathway 

implicated in ovarian cancer progression and drug resistance. SMase: sphingomyelinase; 

CDase: ceramidase; SPHK1/2: sphingosine kinase 1/2; SPNS2: Spinster homolog 2; ABC 

transporter: ATP-binding cassette transporters, ABCA1, ABCC1, and ABCG1; 

S1PR1,2,3,4,5: S1P receptor; SMS: sphingomyelin synthase; GCS: glucosylceramide 
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synthase; GlcCer: glucosylceramide; CERT: ceramide transport protein; SPT: serine 

palmitoyltransferase; CerS: ceramide synthase; SPPase: S1P Phosphatases
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Table 1.

List of anticancer therapies targeting sphingolipid metabolism in ovarian cancer

Name Target/activity Stage of development References

Ceramide analogs

 C6-ceramide nanoliposomes Survivin, prosurvival protein kinase Cζ-
dependent AKT and ERK signaling cascades, 
and VEGF production

 Phase I  [78,81–83,94]

Inhibitors of S1P metabolism

 FTY720 S1PR1     FDA-approved for multiple sclerosis  [29,106,137]

 Anti-S1P (Sphingomab) S1P  Phase II  [43,95,96]

 (Sonepcizumab)

 ABC294640 SPHK2, GCS, DES  Phase Ib and II  [122,129]

 SKI-II SPHK1, SPHK2  Preclinical  [54,138]

 Tamoxifen GCS, AC, P-gp  FDA-approved  [30]

 Safingol SPHK, PKC  Phase I     [118,139,140]
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