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Abstract

Missing data is almost always present in real datasets, and introduces several statistical issues. One 

fundamental issue is that, in the absence of strong uncheckable assumptions, effects of interest are 

typically not nonparametrically identified. In this article, we review the generic approach of the 

use of identifying restrictions from a likelihood-based perspective, and provide points of contact 

for several recently proposed methods. An emphasis of this review is on restrictions for 

nonmonotone missingness, a subject that has been treated sparingly in the literature. We also 

present a general, fully-Bayesian, approach which is widely applicable and capable of handling a 

variety of identifying restrictions in a uniform manner.
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1 Introduction

Missing data is highly prevalent in real datasets. Within a likelihood-based framework, 

missing data can best be categorized as either ignorable or nonignorable (Rubin, 1976); the 

former does not require a model for the missingness process, while the latter does. 

Nonignorable missingness introduces fundamental identifiability issues because, by virtue of 

the fact that we did not observe the missing data, we have no data with which to estimate its 

distribution.

The literature is filled with approaches which resolve identifiability issues by making 

parametric modeling assumptions (see Section 2 for a review). Following Cox and Donnelly 

(2011, page 96), however, we believe that if an issue cannot be resolved nonparametrically 

given an infinite sample then it is “usually dangerous to resolve it parametrically.” While 

parametric approaches are useful, we argue that they should not indirectly resolve 

identifiability issues. An alternative approach is to incorporate non-identifiability into the 

analysis. The full-data distribution can be factored into two components: (1) the observed-

data distribution, which is identified by the observed data; and (2) the conditional 

distribution of the missing data given the observed data, sometimes called the extrapolation 
distribution, which is not identified (Daniels and Hogan 2008, Section 8.2; Little 1995). 

Different assumptions about the missing data can be expressed in terms of identifying 
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restrictions which allow the analyst to recover the full-data distribution from the observed 

data distribution. The most well-known identifying restriction is the missing at random 

(MAR) assumption (Rubin, 1976), but many alternatives exist.

The National Research Council (2010) recommends the routine use of sensitivity analysis to 

assess the impact of assumptions about the missing data on inference. Two approaches to 

sensitivity analysis are to first consider many different identifying restrictions (Thijs et al., 

2002) and second (in the spirit of Rotnitzky et al. 1998 and Daniels and Hogan 2008, 

Chapter 9) to introduce an unidentified sensitivity parameter ξ which represents an 

interpretable deviation from a benchmark identifying restriction. The sensitivity parameter ξ 
should be such that (1) there is no information in the data to inform ξ and (2) upon 

specification of ξ, the effects of interest are identified.

Concerns about parametric assumptions have motivated frequentist semiparametric 

approaches (Robins et al., 1995; Scharfstein et al., 1999) which make minimal assumptions 

about the full-data distribution. These approaches posit a parametric model for the missing 

data mechanism and a semiparametric model for the outcome distribution, and produce 

estimates by solving inverse-probability-weighted (IPW) estimating equations. These 

procedures are frequently doubly-robust, requiring the analyst to specify one of the two 

models correctly to attain consistent estimation (Scharfstein et al., 1999; Rotnitzky et al., 

1998; Tsiatis, 2007). Recently, there have been various likelihood-based approaches 

proposed which have the flexibility of semiparametric approaches and allow a flexible 

sensitivity analysis (Wang et al., 2010; Linero and Daniels, 2015; Linero, 2017). An 

advantage of the Bayesian approach is that it allows for uncertainty about the unidentified 

components of the model to be encoded in an informative prior, allowing the analyst to 

incorporate subject-matter expertise formally into the analysis.

This article has three goals. First, we provide a review of model-based approaches to 

nonignorable missingness, including parametric approaches which identify the full-data 

distribution (see National Research Council, 2010; Ibrahim and Molenberghs, 2009, for 

additional reviews of MNAR modeling strategies). Our second goal is to summarize and 

review existing identifying restrictions in the literature. A special emphasis is given to recent 

proposals for nonmonotone missingness, as this subject has received a sparser treatment in 

the literature. We highlight several recently proposed identifying restrictions and 

characterize them as generalizations of monotone restrictions.

Our third goal is to propose a flexible, fully-Bayesian, framework for incomplete outcome 

data. First, a flexible Bayesian nonparametric model is chosen for the observed data 

distribution. Second, we use an identifying restriction to identify the extrapolation 

distribution. The framework allows for many different restrictions to be used without 

needing to change the model used for the observed data, can accommodate both monotone 

and nonmonotone missingness, and allows for the introduction of sensitivity parameters. The 

proposed approach might be perceived as a competitor to the IPW approaches which are 

prevalent in the literature. However, it has several features which IPW approaches do not. 

First, the Bayesian framework allows for expert knowledge to be formally incorporated into 

the analysis by eliciting informative priors on sensitivity parameters. Second, the approach 
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allows for simultaneous inference about functionals of the full-data distribution, rather than 

just a specifically chosen functional such as the mean; for example it is possible to make 

inferences about means and quantiles simultaneously. Third, we are not required to fit 

different models depending on the choice of identifying restriction, allowing for a more 

principled comparison of different restrictions.

To illustrate the necessity of conducting a principled sensitivity analysis, we analyze data 

from the Breast Cancer Prevention Trial (BCPT). A concern in this study was that the 

treatment tamoxifen might cause depression. We show that the evidence for this hypothesis 

is strongly influenced by the assumptions made about the missingness, and that seemingly 

similar assumptions can yield dramatically different results. This underscores the need for 

statisticians and subject-matter experts to work together in determining which assumptions 

about the missing data are most appropriate for a particular problem.

1.1 Notation

Let Y j
(i) denote the measurement of variable j intended to be collected on subject i for i = 

1, . . . ,N, and let Y(i) = (Y1
(i), …, YJ

(i)). Let R(i) = (R1
(i), …, RJ

(i)) be a vector of missingness 

indicators such that R j
(i) = 1 or 0 according to whether Y j

(i) is observed or not. For a given 

binary vector r ∈ {0,1}J, let yr = (yj : rj = 1) and y−r = (yj : rj = 0). The observed data on 

subject i is then given by Y
R(i)
(i) , and the missing data is given by Y

−R(i)
(i) .

We assume the pairs (Y(i),R(i)) are iid with density p(y, r) with respect to some measure; 

implicitly, p(y, r) may depend on a parameter vector θ. We refer to p(y, r) as the full-data 
distribution. To lighten notation, we will often work with an iid copy (Y,R) of (Y(1),R(1)). 

For simplicity we omit covariates; in principle all distributions we discuss can be defined 

conditional on fully-observed covariates X = x.

We will abuse notation, for example writing p(y) for the marginal density of Y or p(r | y) for 

the probability of R = r given Y = y; it will always be clear from context what density is 

being referred. When specific arguments are required, we will write for example p(Rj = 1 | Y 
= y) for the probability of Rj = 1 given Y = y.

For a fixed r, let p(y, r) = p(yr, r)p(y−r | yr, r) denote the extrapolation factorization (Daniels 

and Hogan, 2008, Section 8.2) of p(y, r). This factors p(y, r) into the product of a term which 

is identified and a term which is unidentified. Note that p(yr, r) is the density of the observed 

data (YR,R) while p(y−r | yr, r) is the conditional density of the missing data Y−R. We refer 

to p(yr, r) as the observed-data distribution and to p(y−r | yr, r) as the extrapolation 
distribution.

Missingness is said to be monotone if Rj = 0 implies Rj+1 = 0. This commonly occurs in 

longitudinal trials when missingness is due to dropout. Missingness can then be summarized 

by the last time at which a subect is measured S(i) = max{ j: R j
(i) = 1}, which we refer to as the 

(index of the) dropout time. For longitudinal studies it is also useful to let Y j
(i) = (Y1

(i), …, Y j
(i))
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denote the history of the response up-to time j, and let Y j
(i) = (Y j + 1

(i) , …, YJ
(i)) denote the future 

of the response strictly after time j. Thus, Y(i) = (Y j
(i), Y j

(i)). We similarly define R j
(i) and R j

(i).

1.2 Running example: the Breast Cancer Prevention Trial

To make the concepts presented concrete, we will focus on applications to the Breast Cancer 

Prevention Trial (BCPT), a clinical trial which assigned women at high-risk of developing 

breast cancer to either a preventative drug, tamoxifen, or to a placebo. One aim of this study 

was to determine if tamoxifen causes depression. The response Y j
(i) is 1 or 0 according to 

whether subject i is depressed or not at time j. Roughly N = 5000 subjects were assigned to 

each of tamoxifen (Z = 1) and control (Z = 0). Measurements were scheduled to be taken at 

baseline and 3, 6, 12, 18, 24, 30, and 36 months from baseline, for J = 8 intended 

measurements. There was a substantial amount of missingness at all time points, and 

missingness was highly nonmonotone. A concern is that depression at time j might be 

associated with missingness at time j, even after conditioning on other observables, resulting 

in MNAR missingness. Our primary interest is in the intention-to-treat effect ψ = E(YJ | Z = 

1) − E(YJ | Z = 0).

To help illustrate concepts, we will also consider a simplified setting in which J = 2. We 

refer to this setting as the reduced Breast Cancer Prevention Trial (RBCPT). We assume that 

(Y1, Y2) represent continuous, rather than binary, measures of depression level (the actual 

binary responses were created from dichotomizing a quantitative score) to create more 

generality in the development.

2 Basic MNAR modeling strategies

We divide strategies for modeling p(y, r) into three categories: (1) selection models; (2) 

pattern mixture models; and (3) shared parameter models. In Section 2.4, we describe how 

any of these three approaches can be used to obtain a model for the observed data, without 

modeling the missing data.

2.1 Selection models

The selection modeling approach (Heckman, 1979) is based on the factorization p(y, r) = 

p(y)·p(r | y). The term p(r | y) is referred to as the missing data mechanism.

Example 1. Consider the RBCPT. With monotone missingness and Y1 always observed, 

following Diggle and Kenward (1994), we set

Y Normal(μ, Σ),
p R2 = 1 | y1, y2, R1 = 1 = expit ϕ0 + ϕ1y1 + ϕ2y2 . (1)

Selection models are attractive for their conceptual simplicity. In the context of the BCPT, 

the selection factorization suggests a causal mechanism in which depression causes 

missingness to occur. As p(y) is directly available, inference is usually straight-forward.
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One drawback of parametric selection models is that they may “identify away” the missing 

data problem. Observe that ϕ2 = 0 corresponds to an MAR missing data mechanism in (1). 

One may be tempted to test for MNAR missingness by testing ϕ2 = 0. As we have stressed, 

testing for MAR cannot be done without recourse to parametric assumptions. As illustrated 

by Kenward (1998), inferences about MAR in this setup are extremely sensitive to 

parametric assumptions. When p(y) is a Gaussian density, (ϕ1, ϕ2) function as skewness 

parameters for p(y2 | y1, r) and can be estimated from the observed data. Hence, there are no 

sensitivity parameters which can be used as a basis of a sensitivity analysis. In practice, the 

likelihood of ϕ2 may be flat enough that it can be used as an approximate sensitivity 

parameter (Carpenter et al., 2002). This problem is mitigated to some extent when 

semiparametric or nonparametric models for Y are used, although this becomes more 

difficult as the dimension of the response increases. Note also that p(y−r | yr, r) is not 

available in closed form; consequently, it is difficult to describe on a conceptual level how 

missing values are imputed relative to the other approaches we describe.

2.2 Pattern mixture models

The pattern mixture approach (Little, 1994, 1993; Hogan and Laird, 1997) is based on the 

factorization p(y, r) = p(y | r)p(r). This characterizes p(y) as a mixture over missingness 

patterns ∑r p(y | r)p(r). The pattern mixture factorization is closely related to the 

extrapolation factorization, with p(yr, r) = p(yr | r) · p(r). This makes the pattern mixture 

approach conducive to sensitivity analysis.

Example 2. Consider the RBCPT and assume monotone missingness with Y1 always 

observed. We set ϕ = p(R2 = 1), (Y1 | R2 = r) Normal(μ(r), σ1
(r)), and 

(Y2 | Y1 = y1, R2 = r) Normal(α(r) + β(r)y1, σ2
(r)). The parameters (α(0), β(0), σ2

(0)) are 

unidentified. One approach to identifying these parameters is to link them to the R2 = 1 

pattern, setting for example (β(0), σ2
(0)) = (β(1), σ2

(1)) and α(0) = α(1) + ξ. This implies that the 

influence of Y1 on Y2 and the conditional spread of Y2 do not depend on R2, while the 

conditional mean of Y2 does and is shifted by a fixed amount ξ. The parameter ξ is a 

sensitivity parameter, and can be varied as part of a sensitivity analysis.

Characteristic of pattern mixture models, the above model allows an interpretable sensitivity 

analysis and is transparent in how the it imputes missing values on a conceptual level. There 

are several shortcomings of the pattern mixture approach. Conceptually, it is typically not 

easy to interpret how the response Y influences the probability of missingness at time j. In 

the BCPT, a pattern mixture model suggests that those with missing values come from a 

distinct sub-population; an arguably more natural way to capture this intuition is through the 

use of latent class models (Roy, 2003) (though as constructed there, they do not allow 

sensitivity parameters). Pattern mixture models often possess a large number of unidentified 

parameters that the analyst must specify, with the situation becoming unwieldy in higher 

dimensions. Additionally, sparsity in the observed missing data patterns R(i) may necessitate 

further modeling of p(y | r) to share information across times.
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2.3 Shared parameter approaches

The shared parameter approach captures dependence between Y(i) and R(i) through shared 

random effects (Wu and Carroll, 1988; Henderson et al., 2000), setting 

p(y, r) = ∫ p(y | b)p(r | b)G(db). The random effect distribution G(·) can be specified 

parametrically, usually as a multivariate Gaussian distribution, or nonparametrically.

Example 3. Consider the BCPT. We set (b1, b2) ~ Normal(μb,Σb) and assume that, 

conditional on b, all components of (Y,R) are mutually independent with 

logit p(Y j = 1 | b) = Z j
⊤b1 and logit p(R j = 1 | b) = W j

⊤b2. For example, to get a random 

quadratic trend over time, we might set Z j
⊤ = W j

⊤ = (1, t j, t j
2) where tj is the time of 

measurement j. This type of shared parameter model is referred to as a correlated random 
effects model (Lin et al., 2010).

The shared parameter approach provides a highly flexible framework for analyzing 

nonignorable missingness, and is particularly effective for modeling complex data structures 

(Dunson and Perreault, 2001). Shared parameter models appeal strongly to intuition, 

suggesting that Y and R have a shared, unobserved, common cause. A drawback of the 

shared parameter approach is that it is difficult to separate p(yr, r) from p(y−r | yr, r), making 

it difficult to anchor a sensitivity analysis to an interpretable identifying restriction (see 

Section 3). Generally, it is not easy to see what assumptions about the missing data 

mechanism are encoded in a shared parameter model.

Methods for implementing a sensitivity analysis for shared parameter models have been 

developed by Creemers et al. (2010, 2011). In our example, one might set 

logit(p(Y j = 1 | b, R = r)) = Z j
⊤(b1

(i) + r jδ) which gives an adjustment to the random effect b1 at 

the times for which rj = 0. One may then set, for example, δ ~ Normal(μδ,Σδ), with ξ = 

(μδ,Σδ) a sensitivity parameter. We feel that this is somewhat against the spirit of the shared 

parameter model, as Y and R are no longer conditionally independent and the causally 

suggestive motivation is stretched.

2.4 Observed data modeling

The models in Sections 2.1–2.3 have been presented as models for the joint density p(y, r). 
An alternative strategy is to model the observed data distribution p(yr, r) and leave the 

extrapolation distribution distribution p(y−r | yr, r) unspecified. One can then fit a model for 

p(yr, r) to the data and complete the model using one of the identifying restrictions described 

in Section 3.

Directly modeling p(yr, r) can be challenging to do in practice, as it requires a model for Yr 

for every pattern r. When missingness is monotone, one approach is to specify models for 

p(y j | S ≥ j, y j − 1) and p(S = j | S ≥ j, y j). For examples of this approach, see Scharfstein et 

al. (2014) and Wang et al. (2010). Other approaches to directly modeling p(yr, r) often use 

the pattern mixture approach, specifying models for p(yr | r) while leaving p(y−r | yr, r) 
unspecified. See, for example, Little (1994) and Thijs et al. (2002).
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A generic approach to modeling the observed data is to specify a working model (Linero, 

2017; Linero and Daniels, 2015; Daniels and Linero, 2015). One then implicitly obtains a 

model for the observed data p(yr, r) = ∫ p⋆(y, r) dy−r. In principle, p⋆(y, r) may be a selection 

model, pattern mixture model, or shared parameter model. In Section 5 we will apply this 

approach using a nonparametrically modeled shared parameter to obtain a highly flexible 

model of the observed data.

A benefit of the working model approach is that it allows models which share information 

across missingness patterns and time, without identifying the extrapolation distribution. This 

allows one to avoid a common pitfall of pattern-mixture models; we can estimate p(yr, r) 
even when we do not observe some patterns or the amount of data in some patterns is sparse. 

Because the model p⋆(y, r) is used only to obtain a model for p(yr, r), and is not used as a 

basis for inference, we are allowed complete freedom in how to identify the extrapolation 

distribution. Conveniently, p⋆(y, r) can also be used as a basis for Markov chain Monte Carlo 

algorithms.

In practice, the working model framework has the drawback of being somewhat difficult to 

implement, in that one must be able to derive the conditional distributions p⋆(yr | R = r′). 

This places restrictions on which models can be tractably used; in particular, selection 

models and parametric shared parameter models are difficult to use. Fortunately, there are 

very flexible models that are tractable. An additional concern is that, when p(yr, r) is 

modeled parametrically, p(y, r) will usually fall outside of this parametric family. For 

example, when using identifying restrictions, if p(yr | r) is modeled with a Gaussian 

distribution, it will not typically be the case that p(y | r) is Gaussian (Wang and Daniels, 

2011). Consequently, the joint model p(y, r) may not be easily interpretable, although causal 

effects may still be computed using MC integration (see Section 4).

3 Identifying restrictions

Identifying restrictions provide a useful starting point for identifying the extrapolation 

distribution and conducting a sensitivity analysis. Informally, an identifying restriction is an 

assumption about p(y, r) which links the observed data distribution p(yr,r) to the 

extrapolation distribution p(y−r | yr, r).

We remark that identifying assumptions differ subtlely throughout the literature; for 

example, Seaman et al. (2013) give several non-equivalent definitions of MAR. All 

restrictions we consider will be phrased in the form of conditional independencies, with (for 

example) MAR corresponding to the conditional independence statement 

(Y−r | Yr, R = r) =d (Y−r | Yr) for all patterns r.

The goal of specifying an identifying restriction is to nonparametrically identify the 

parameters of interest.

Definition 3.1. Let 𝒬 denote the set of observed data distributions q(yr, r), and let 𝒫 be some 

family of full-data distributions p(y, r). The family 𝒫 is said to nonparametrically identify a 

parameter ψ(p) if,
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1. For every q ∈ 𝒬, there exists a p ∈ 𝒫 such that q is the associated observed data 

density of p.

2. For every q ∈ 𝒬, if p, p′ ∈ 𝒫 both marginalize to q, then ψ(p) = ψ(p′).

The family 𝒫 is said to be nonparametrically saturated (Robins, 1997; Vansteelandt et al., 

2006) if, for each q ∈ 𝒬, there exists a unique p ∈ 𝒫 which marginalizes to q.

In the absence of strong subject-matter knowledge, it is unwise to assume that a particular 

identifying restriction holds. Nevertheless, in practice it can be useful to specify a single 

identifying restriction as a benchmark assumption, and consider interpretable deviations 

from that benchmark. For example, one might “anchor” an analysis to MAR and consider 

smooth deviations from MAR. Considering several anchors, and deviations from these 

anchors, provides insight into how inferences are driven by our assumptions.

We differentiate three different types of identifying restrictions. Joint restrictions completely 

identify p(y, r); that is, they lead to nonparametrically saturated models. Marginal 
restrictions do not identify p(y, r), but identify the marginals p(yj); an example is the 

sequential explainability assumption (Vansteelandt et al., 2007) discussed later. Marginal 

restrictions do not lead to nonparametrically saturated models, but are sufficient to 

nonparametrically identify all marginal effects. Marginal restrictions can be useful because 

(i) they may be more readily interpretable than joint restrictions, and (ii) they may encode 

weaker assumptions. Marginal restrictions are special cases of partial restrictions, which are 

any restrictions which do not identify p(y, r).

3.1 Identifying restrictions under monotone missingness

The missing data problem becomes much simpler when missingness is monotone. In this 

case, the missing data pattern can be summarized by the dropout time S = max{j : Rj = 1}. 

Monotonicity occurs naturally when missingness is due to dropout in a longitudinal study. 

Techniques for monotone missingness can also be applied if there is a method of ordering 

the components of Y which makes missingness monotone.

Example 4 (NCMV). Consider the BCPT, and assume that missingness is monotone. We 

conjecture that the, if a subject drops out at time k < j, then their missing response at time j 
can reasonably be approximated using an equivalent individual who instead drops out at 

time j; so, we set (Y j | Y j − 1, S = k) =d (Y j | Y j − 1, S = j). Thijs et al. (2002) refer to this as the 

neighboring case missing value (NCMV) restriction.

Example 5 (ACMV). Consider again the BCPT with monotone missingness. We conjecture 

that, if a subject drops out at time k < j, then their response at time j can reasonably be 

approximated by using an equivalent subject who dropped out after time j; so, we set 

(Y j | Y j − 1, S = k) =d (Y j | Y j − 1, S ≥ j). Little (1993) refers to this as the available case 

missing value (ACMV) restriction.

Example 6 (CCMV). In the BCPT, we decide to use the observations of those who complete 

the study to estimate the conditional distribution of the missing observations; so, we set 
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(Y j | Y j − 1, S = k) =d (Y j | Y j − 1, S = J); Little (1993) refers to that as the complete case 

missing value (CCMV) restriction.

The goal of using these restrictions is to provide a starting point for a sensitivity analysis. In 

practice, when missingness is MNAR, none of the conditional independencies asserted 

above is realistic; in fact, ACMV is itself equivalent to MAR (Molenberghs et al., 1998)! In 

the BCPT, if the depression status of an individual at time j is a strong predictor of Rj = 0 

then one may expect the conditional distribution of Yj to be stochastically larger than what is 

implied by ACMV, NCMV, or CCMV.

Under monotone missingness, ACMV is equivalent to MAR. This suggests that missingness 

at time j + 1 is causally linked only to the past values of Y j. The NFD restriction (Kenward 

et al., 2003) generalizes this idea.

Example 7 (NFD). We posit that missingness at time j+1 is causally due to the past and 

present values of Y, so that p(S = j | Y) = p(S = j | Y j + 1), or equivalently 

(Y j + 1 | S = k, Y j) =d (Y j + 1 | S ≥ j, Y j). This is referred to as the non-future dependence 

(NFD) assumption.

Despite its causal motivation, we note that NFD is not a causal law; for example if (Y,R) 

share an unobserved common cause, NFD will usually be violated. Given that MAR implies 

NFD, but not vice-versa, NFD leads to an under-identified model (and thus is a partial 

restriction); in particular, the distribution (Y j | S = j − 1, Y j − 1) is unidentified for j > 2. This 

is convenient, as it allows the analyst to consider families of restrictions, all of which satisfy 

the NFD restriction. For example, Linero and Daniels (2015) centers a sensitivity analysis on 

the MAR assumption by setting (Y j | Y j − 1, S = j − 1) =d (Y j + ξ | Y j − 1, S ≥ j), with ξ = 0 

corresponding to MAR.

The ACMV, NCMV, and CCMV restrictions are all joint restrictions. Birmingham et al. 

(2003) consider several partial restrictions, including the following marginal restriction 

which is implied by CCMV.

Example 8 (Last-occasion-pattern-mixture). We posit that the conditional distribution of YJ 

at the end of study, given Y j and S = j, can reasonably approximated by the distribution of 

those who complete the study; hence, we set (YJ | Y j, S = j) =d (YJ | Y j, S = J).

A general tool for extending the restrictions above to the nonmonotone settings is to assume 

that missingness is partially ignorable given S (Harel and Schafer, 2009). This sets p(R = r | 
Y = y, S = s) = p(R = r | Yr = yr, S = s), and assumes the parameters of p(r | y, s) are 

independent of the parameters of p(y, s). Analogously to ignorability, partial ignorability 

ensures that likelihood-based inferences for p(y, s) do not depend on how p(r | y, s) is 

modeled. See Wang et al. (2010) for an application of this assumption to the BCPT data.
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3.2 Identifying restrictions for nonmonotone missingness

The topic of identifying restrictions under nonmonotone missingness was initiated by 

Robins (1997), who proposed the class of permutation missingness (PM) models. Let O j

denote the observed data (including the Rj’s) up-to-and-including time j, and O j the data 

observed strictly after time j. The PM restriction assumes

(R j | Y , R j) =d (R j | Y j − 1, O j) (2)

possibly after applying an a-priori known permutation to Y. In words, (2) states that 

missingness at time j can depend on the “past” and the “observed future,” but not on the 

present, where the notion of time is determined by the given permutation. For longitudinal 

data, one can use (2) without a permutation, or use the reverse permutation to get 

(R j | Y , R j − 1) =d (R j | O j − 1, Y j) which states that missingness depends on the “future” and 

the “observed past.”

Our opinion is that PM models are difficult to explain to practitioners. We review several 

alternative assumptions which have been introduced relatively recently.

Example 9 (Sequential explainability). For the BCPT, we believe that the observed 

depression levels prior to time j are sufficient to predict whether or not a subject will be 

measured at time j, while the outcome at time j is not predictive. We therefore impose the 

sequential explainability restriction (Vansteelandt et al., 2007) 

(Y j | O j − 1, R j = 0) =d (Y j | O j − 1, R j = 1).

Example 10 (NIP). For the BCPT, we believe that, all other observed quantities being equal, 

missingness at time j is not predictive of depression at time j. We therefore posit the nearest 

identified pattern (NIP) (Linero, 2017) restriction, (Y j | R = r, Yr) =d (Y j | R = r j
⋆, Yr), where 

r j
⋆ is equal to r, but with jth component fixed at 1.

Both NIP and sequential explainability are marginal restrictions. NIP appears similar to 

NCMV. A more direct analog is the itemwise conditional independence (ICIN) assumption, 

introduced independently by Sadinle and Reiter (2017a) and Shpitser (2016).

Example 11 (ICIN). For the BCPT, we believe that all other quantities (both observed and 

unobserved) being equal, missingness at time j is not predictive of depression at time j. We 

therefore posit the ICIN restriction (Y j | R j = 0, R− j, Y− j) =d (Y j | R j = 1, R− j, Y− j) where R−j 

= (Rk : k ≠ j) and Y−j = (Yk : k ≠ j) denote R and Y with the jth component removed.

ICIN and NIP differ in that (i) NIP conditions only on the observed components of Y and 

(ii) ICIN is a joint restriction. To the extent that conditioning on additional variables makes 

conditional independence more tenable, ICIN is very attractive. To our knowledge, practical 

algorithms for conducting inference under ICIN are lacking when J is moderately large. 

Results of Sadinle and Reiter (2017a) imply that ICIN is equivalent to NCMV when 
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missingness is monotone. A proof of the following proposition is deferred to the 

supplementary material.

Proposition 3.2. ICIN is an extension of NCMV to nonmonotone missingness.

Tchetgen Tchetgen et al. (2016) introduced the pairwise missing at random assumption. The 

name is motivated by the observation that it corresponds to MAR when, for fixed r, we 

assume R ∈ r, 𝟙 , where 𝟙 = (1, …, 1).

Example 12 (PMAR). For the BCPT, we believe that the distribution of the missing values 

of a subject can reasonably be approximated using an equivalent subject who was observed 

at all measurement times. We therefore posit the pairwise missing at random (PMAR) 

restriction, (Y−r | R = r, Yr) =d (Y−r | R = 1, Yr).

Just as ICIN is a joint restriction which generalizes NCMV, PMAR is a joint restriction 

which generalizes CCMV; the following proposition is immediate from the definition.

Proposition 3.3. PMAR is an extension of CCMV to nonmonotone missingness.

3.3 Sensitivity parameters for identifying restrictions

The identifying restrictions in Section 3.1 and Section 3.2 are phrased in terms of 

conditional independence relationships which, as we have noted, are not themselves 

particularly plausible when Yj is thought to directly influence Rj. We consider these 

assumptions not because we believe the conditional independencies they suggest, but rather 

to use as benchmark assumptions. These assumptions can be embedded in a family of 

restrictions indexed by a sensitivity parameter ξ ∈ Ξ such that (1) there is no information in 

the data to identify ξ and (2) upon specifying ξ, the effects of interest are identified. It is 

essential that the sensitivity parameter ξ be interpretable; our convention will be to associate 

the benchmark assumption with ξ = 0. The index ξ can then be thought of as a smooth 

deviation from our benchmark assumption.

Example 13. For the BCPT, we believe the NIP restriction is unreasonable because 

depression at time J should increase the risk of missingness, even after accounting for the 

observed data. We instead assume

p(yJ | yr, R = r) =
p(yJ | yr, R = r j

⋆)e
γyJ

E(e
γYJ | Yr = yr, R = r j

⋆)
.

Let A = {r, r j
⋆}; using Bayes theorem it can be shown that

log
Odds(RJ = 0 | Yr, YJ = 1, R ∈ A)

Odds(RJ = 0, | Yr, YJ = 0′, R ∈ A) = γ,

so that γ denotes the effect, on the log-odds scale, of YJ = 1 on missingness.
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The exponential tilting strategy is very widely applicable, and we now outline it in a general 

form. Examples of works using this strategy include Birmingham et al. (2003); Wang et al. 

(2010); Scharfstein et al. (2014, 1999); Tchetgen Tchetgen et al. (2016); Vansteelandt et al. 

(2007). Consider a restriction of the form

(U | V = v, W = w) =d (U | V = v′, W = w), (3)

where U is a subset of the missing data, W is a subset of the complete data distinct from U, 

and V is a subset of the missing data indicators. The values v and v′ are such that U is 

missing when V = v, while U is observed when V = v′. For example, under sequential 

explainability, one has U = Y j, W = O j − 1, V = R j, v = 0, v′ = 1  while under PMAR one has 

U = Y−r, W = Yr, V =R, v = r, v′ = 𝟙 . Let fv(u | w) and f v′(u | w) denote the densities of the 

distributions in (3). The exponential tilting approach sets

f v(u | w) =
f v′(u | w)exp t(u, w)

E[exp t(U, w) | V = v′, W = w] . (4)

The function t(u,w) is a function-valued sensitivity parameter. By Bayes theorem,

log Odds(V = v | U = u, W = w, V ∈ v, v′ )
Odds(V = v | U = u′, W = w, V ∈ v, v′ ) = t(u, w) − t(u′, w) .

Hence, t(·,w) determines the effect of a change in U on the log-odds of V = v versus V = v′.

Another option is to consider a transformation-based approach similar to Daniels and Hogan 

(2000). This is particularly useful when the underlying response is continuous.

Example 14. Consider the BCPT, but with Y instead representing a continuous measure of 

depression level. We believe the NIP restriction is unreasonable because we expect 

depression levels to be higher among those missing at time j, even after conditioning on the 

observed data. We instead assume (Y j | Yr = R = r) =d (Y j + ξ j | Yr, R = r j
⋆), where ξj > 0 

represents the expected increase in depression level when a subject is missing rather than 

observed.

More generally, starting from (3), one can specify a generic transformation

(U | V = v, W = w) =d (𝒯(U, w) | V = v′, W = w) . (5)

In practice we must specify 𝒯(u, w) to be interpretable by subject-matter experts. Location or 

location-scale transformations, such as 𝒯 j(Y j) = ξ0 j + ξ1 jY j, are popular (Daniels and 

Hogan, 2000; Wang and Daniels, 2011; Gaskins et al., 2016) and can be computationally 

advantageous. Non-affine choices for 𝒯( ⋅ ) can be used to rescale the data before applying 

an affine transformation.

A meaningful sensitivity analysis requires serious engagement with subject-matter experts, 

and as such requires for Ξ to be low dimensional. A common approach that does not 

Linero and Daniels Page 12

Stat Sci. Author manuscript; available in PMC 2019 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



formally account for the effect of uncertainty in ξ is a “tipping point” approach. This 

identifies values, or regions of values, of ξ which result in substantively different 

conclusions for the effects of interest. If plausible values of ξ do not include any tipping 

points, then we can have confidence in our substantive conclusions; we note, however, that 

tipping point analyses do not incorporate uncertainty in ξ when quantifying uncertainty in 

treatment effects. For illustrations of tipping point analyses, see Scharfstein et al. (2014) and 

Liublinska and Rubin (2014). An option which formally incorporates uncertainty in ξ is to 

place an informative prior on ξ. As there is no information in the data about ξ, this prior for 

ξ will also be the posterior. An advantage of this approach is that it combines all restrictions 

under consideration to achieve a single, final, inference. For examples of this approach, see 

Daniels and Hogan (2008, Chapter 9, Case Study 2), Wang et al. (2010), and Gaskins et al. 

(2016).

3.4 A pattern mixture modeling example

We now show how one might combine the identifying restrictions described above with a 

model for the observed data for the RBCPT (using the original depression score). We 

specify a pattern mixture model

p(R1 = i, R2 = j) = ϕi j, Y1, Y2 | R = (1, 1) Normal(μ(1, 1), Σ(1, 1)),

Y1 | R = (1, 0) Normal(μ1
(1, 0), σ1

(1, 0)), Y2 | R = (0, 1) Normal(μ2
(0, 1), σ2

(0, 1)) .

All parameters above can be estimated from the observed data using standard techniques; for 

example, we have μ(1, 1) = 1
N(1, 1) ∑

i: R1
(i) = R2

(i) = 1
(Y1

(i), Y2
(i))⊤. For convenience, we write

(Y1 | Y2, R1 = 1, R2 = 1) Normal(α + βY2, τ2),

where (α, β, τ) is a function of (μ(1,1),Σ(1,1)). Suppose that interest is in the parameter ζ = 

E(Y1). We demonstrate how ζ is identified under the PMAR, sequential explainability, and 

NIP assumptions. First, by iterated expectation,

ζ = ∑
i = 0

1
∑

j = 0

1
ϕi jE(Y1 | R1 = i, R2 = j) .

Observe that E(Y1 | R1 = 1, R2 = 1) = μ1
(1, 1) and E(Y1 | R1 = 1, R2 = 0) = μ1

(1, 0). This leaves 

E(Y1 | R1 = 0, R2 = 0) and E(Y1 | R1 = 0, R2 = 1) to be identified.

Consider first the PMAR assumption. This implies 

E(Y1 | R1 = 0, R2 = 0) = E(Y1 | R1 =1, R2 = 1) = μ1
(1, 1). Using iterated expectation, PMAR also 

implies
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E(Y1 | R1 = 0, R2 = 1) = E E(Y1 | Y2, R1 = 0, R2 = 1) | R1 = 0, R2 = 1

= E E(Y1 | Y2, R1 = 1, R2 = 1) | R1 = 0, R2 = 1

= E(α + βY2 | R1 = 0, R2 = 1) = α + βμ2
(0, 1) .

This gives

ζPMAR = ϕ00μ1
(1, 1) + ϕ10μ1

(1, 0) + ϕ01(α + βμ2
(0, 1)) + ϕ11μ1

(1, 1) .

Next, we consider NIP. The derivations under NIP are exactly the same as those under 

PMAR, with the exception that E(Y1 | R1 = 0, R2 = 0) = E(Y1 | R1 = 1, R2 = 0) = μ1
(1, 0). 

Therefore, under NIP we have

ζNIP = ζPMAR + ϕ00(μ1
(1, 0) − μ1

(1, 1)) .

Hence, ζNIP will be larger than ζPMAR when μ1
(1, 0) − μ1

(1, 1), and vice versa. Lastly, we 

consider sequential explainability. At time j = 1 there is no observed history, so sequential 

explainability implies the marginal independence Y1 ⊥ R1. Consequently,

ζSE = E(Y1 | R1 = 1) =
ϕ10

ϕ10 + ϕ11
μ1

(1, 0) +
ϕ11

ϕ10 + ϕ11
μ1

(1, 1) .

Sequential explainability differs fundamentally from NIP and PMAR as, due to its 

sequential nature, it does not use the distribution of (Y2, R2) to identify ζ.

We now incorporate sensitivity parameters under sequential explainability. Note that if 

(Y1 | R1 = 0) =d (Y1 + ξ | R1 = 1), then ξ = 0 is consistent with sequential explainability. Under 

this assumption we have

ζ(ξ) = p(R1 = 1)E(Y1 | R1 = 1) + p(R1 = 0)E(Y1 | R1 = 0)
= p(R1 = 1)ζSE + p(R1 = 0)(ζSE + ξ)
= ζSE + (ϕ00 + ϕ01)ξ .

Sensitivity analysis may now proceed either by eliciting an informative prior on ξ, or by 

identifying values of ξ which lead to substantively different inferences.

4 Inference and computation

We discuss two approaches to computation. First, we describe a fully-Bayesian approach, 

which can be computationally demanding. Second, we describe multiple imputation, which 

is a computationally simpler approximation. Let θ denote the parameters of the model of 
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p(y, r), π(θ) a prior for θ, and 𝒪 = (Y
R(1)
(1) , R(1), …, Y

R(N)
(N) , R(N)) the observed data. We first 

obtain samples of θ from its posterior distribution π(θ | 𝒪) ∝ ∏i = 1
N p(Y

R(i)
(i) , R(i))π(θ), usually 

by Markov chain Monte Carlo. When the working model framework described in Section 

2.4 is used, samples of θ can be obtained by fitting the working model by data 

augmentation, taking advantage of the fact that pθ(yr, r) = ∫ pθ
⋆(y, r)dy−r. A benefit of this 

approach is that sampling θ can often be accomplished using general-purpose software for 

fitting Bayesian models. Software packages, such as JAGS and WinBUGS, allow for fast 

fitting of custom models, and accommodate missing values.

Fully-Bayesian inference then proceeds by computing effects of interest directly from the 

sampled θ’s and the chosen identifying restriction. Multiple imputation, by contrast, uses the 

sampled θ’s to impute completed datasets some number of times using the identifying 

restriction. Practically, these approaches are operationally quite similar. We begin by 

describing fully-Bayesian inference, and describe the changes required to perform multiple 

imputation.

4.1 Fully-Bayesian inference

Given sampled values θ π(θ | 𝒪), fully-Bayesian inference requires computing the desired 

effects. These will typically not be available in closed form, but can be computed by Monte 

Carlo integration. For illustrative purposes, we present the algorithm for sequential 

explainability in Algorithm 1. In the supplementary material we provide Monte Carlo 

integration algorithms for PMAR and NIP as well. While we do not pursue this here, Monte 

Carlo integration can also be implemented using IPW methods (see Robins, 1997; 

Birmingham et al., 2003; Shpitser, 2016, for such schemes). The number of Monte Carlo 

samples should be large relative to the sample size; in Section 5, we use 100 times the 

sample size. This appeal to Monte Carlo to estimate causal effects was initially proposed by 

Robins (1986) to implement G-computation. While computationally intensive, post-

processing of the MCMC output is parallelizable and our experience is that the Monte Carlo 

integration is not a computational bottleneck. We can avoid repeating these computations for 

each ξ by using an informative prior, providing another advantage to the fully-Bayesian 

approach.

Algorithm 1

Monte Carlo integration for sequential explainability

1: procedure GCOMP(θ T, j) ▷ Approximates μj by simulating T samples from pθ(y)

2:  for t = 1,..., T do

3:   Sample (Y
R(t)
(t) , R(s)) pθ(yr, r) .

4:   if R j
(t) = 0 then

5:    Sample Y j
(t) pθ(y j | o j − 1, R j

(t) = 1)

Linero and Daniels Page 15

Stat Sci. Author manuscript; available in PMC 2019 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6:   end if

7:  end for

8:  Set μ j = T−1∑s = 1
T Y j

(t)
.

9:  return μj

10: end procedure

4.2 Multiple imputation

Multiple imputation (MI) proceeds by specifying two, potentially different, models. First, 

we use the sampled values θ π(θ | 𝒪) to impute the missing data from pθ(y−r | yr, r) some 

number M > 1 times. The model pθ(y, r) is referred to as the imputation model. Next, an 

analysis model is specified to compute a point estimate ψ (m) and standard error σψ
(m) from 

each of the m = 1, . . . ,M completed datasets 𝒞(m). Rubin’s rules (see Harel and Zhou, 2007, 

for a review) are then used to produce a point estimate ψ  and standard error σψ. The 

imputation is referred to as congenial (Meng, 1994) when ψ (m) ≈ E(ψ | 𝒞(m)) and 

σψ
(m)2 = Var(ψ | 𝒞(m)), in which case MI-based inference approximates fully-Bayesian 

inference. MI inference may be valid in the absence of congeniality, particularly when the 

analysis model is a sub-model of the imputation model. For further discussion of this issue, 

see Rubin (1996). For textbook level treatments of multiple imputation, see Rubin (1987) or 

Carpenter and Kenward (2012). For an exploration of impact of uncongeniality, see Daniels 

and Luo (2017).

Algorithm 2

Multiple imputation algorithm for sequential explainability

1: procedure MI(M, 𝒪, j) ▷ Inference for μj using multiple 
imputation

2:  for m = 1,..., M do

3:   Sample θ π(θ | 𝒪)
4:   for i = 1,..., N do

5:    if R j
(i) = 0 then

6:     Sample Y j
(i) pθ(y j | O j − 1

(i) , R j
(i) = 1)

7:    end if

8:   end for

9:   Compute μ j
(m) = 1

N ∑i = 1
N Y j

(i)
.

10:  end for

11:  Compute μ j and σμ, j
2

 using the rules for combining inferences under MI.

12: end procedure
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The imputation step for MI is operationally similar to the Monte Carlo integration used in 

Section 4.1, as it requires simulating from the same conditional distributions. Unlike Monte 

Carlo integration, MI only requires imputation of the missing data. Additionally, imputations 

can be used with different analysis models. MI is much more practical for large datasets than 

fully-Bayesian inference, at the cost of using an approximation. An MI-based algorithm for 

estimating μj = E(Yj) under sequential ignorability is given in Algorithm 2

Extreme caution is required in using MI with partial restrictions in terms of what analysis 

models can be used. A minimal condition for MI to be valid is that the analysis model is a 

submodel of the imputation model. Hence, when a partial restriction is used, the analysis 

model should not identify any part of the joint distribution which is unidentified by the 

imputation model. For example, if a marginal restriction identifies the marginals p(yj) but 

not the joints p(yj, yk), then the analysis model may also identify p(yj) but must not identify 

p(yj, yk).

We remark that there are other approaches to sensitivity analysis which are applied with 

multiple imputation. One approach is the so-called “δ-adjustment” (Leacy et al., 2017; Van 

Buuren, 2012, Section 3.9.1) in which imputations are adjusted, say, by a location shift δ. 

This approach is ad-hoc and somewhat lacking in transparency regarding what assumptions 

it encodes about the missing data, but is highly appealing due to its simplicity. Graphical 

methods for conducting a tipping-point analysis are given by Liublinska and Rubin (2014).

5 Application to the Breast Cancer Prevention Trial data

We apply the working model approach described in Section 2.4, using an infinite product-

multinomial mixture (Dunson and Xing, 2009) which is implicitly stratified by treatment,

p⋆(y, r) = ∑
k = 1

∞
πk ∏

j = 1

J
γk j

r j(1 − γk j)
1 − r j ∏

j = 1

J
βk j

y j(1 − βk j)
1 − y j . (6)

In the context of missing data, Si and Reiter (2013) applied this model to conduct multiple 

imputation in large-scale survey data under MAR. For longitudinal responses, various 

improvements are possible. One shortcoming of this model is that it does not incorporate 

temporal structure; additionally, a model with dependence within the mixture components 

would likely perform better (Murray and Reiter, 2016).

We give πk k = 1
∞  the stick-breaking prior associated with the Dirichlet process (Sethuraman, 

1994) πk = Vk∏ j = 1
k − 1 (1 − V j), Vk ∼iid Beta(1, α). We approximate this by setting VK = 1 so that 

πk = 0 for k > K. For the BCPT data, we set K = 50 and α = 1. We view this truncation as a 

computational concession, leading to an approximation of inference under K = ∞; as 

pointed out by a referee, one may instead view the truncated model as a model in its own 

right, which is parametric rather than nonparametric. We model 

γk j ∼indep Beta ργ jaγ j, (1 − ργ j)aγ j  and βk j ∼indep Beta ρβ jaβ j, (1 − ρβ j)aβ j . For ργj and βγj we 

specify independent Uniform(0,1) priors. Finally, for aγj and aβj we use a uniform shrinkage 
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prior, with density fσ(a) = σ/(σ + a)2 with scale σ = 15. Larger values of σ encourage heavier 

shrinkage of the βkj’s and γkj’s towards their means. See Daniels (1999) and Wang et al. 

(2010) for motivation and details for the choice of this uniform shrinkage prior.

We use MCMC to draw samples of θ = (π, γ, β) from the posterior; details are provided in 

the supplementary material. We will focus our inference on the effect ψ = p(YJ = 1 | Z = 1) 

− p(YJ = 1 | Z = 0), where recall that Z = 1 corresponds tamoxifen and Z = 0 corresponds to 

the control. We consider four assumptions which identify ψ; the conditional distributions 

and algorithms needed are given in the supplementary material. First, we consider MAR by 

fitting the Y -marginal of (6) under ignorability. We also consider PMAR, sequential 

explainability, and the assumption

p(YJ = 1 | R = r, Yr = yr)

=
p(YJ = 1 | R = 𝟙, Yr = yr)e

ξ

p(YJ = 1 | R = 𝟙, Yr = yr)e
ξ + p(YJ = 0 | R = 𝟙, Yr = yr)

.
(7)

Assumption (7) is a nonmonotone, exponentially-tilted, variant of the last-occasion 

restriction of Birmingham et al. (2003). We refer to it as the tilted-last-occasion restriction. 

In addition to the interpretation of the exponential tilting strategy in Section 3.3, the 

parameter ξ can be interpreted as a location-shift on the logit-scale,

p(YJ = 1 | R = r, Yr = yr) = expit ξ + logit p(YJ = 1 | R = 𝟙, Yr = yr) ,

where ξ represents the log-odds ratio of [YJ = 1] relative to equivalent individuals with [R = 

r] and [R = 𝟙]. We posit independent priors for ξ for each treatment; this has the effect of 

making the posterior variance of ψ large relative to dependent priors. Alternatively, one 

might take ξ constant across treatments to encode the belief that the effect of depression on 

missingness does not interact with treatment. To account for the fact that depression is 

expected to be positively correlated with missingness, we set ξ ~ Uniform(0,B). We set B = 

0.8, corresponding to the belief that it is unlikely that the odds ratio of depression exceeds 

e0.8 ≈ 2.2. The above specification is made for illustrative purposes and is highly stylized. 

For a more realistic specification which seriously engages with subject-matter expertise, see 

Wang et al. (2010), who elicited informative priors from four subject-matter experts about 

analogous sensitivity parameters ξ; none posited values of ξ larger than 0.8.

As a sanity check on the model, it is useful to verify that the posterior gives inferences 

which are consistent with the empirical distribution of the observed data. Let μobs,j = E(Yj | 

Rj = 1). In Figure 1, we compare the inferences based on the posterior distribution of the 

μobs,j’s to the inferences that would be obtained from the standard model-free estimates 

μobs, j = ∑i = 1
N Y j

(i)R j
(i)/∑i = 1

N R j
(i). We see that the posterior means are essentially identical to 

the the μobs, j’s, and the posterior credible intervals agree with the model-free intervals.
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We report inferences for ψ obtained using the fully–Bayesian approach in Figure 2; results 

using multiple imputation with a nonparametric analysis model for p(yJ) are similar, and are 

given in the supplementary material, along with exact numerical results. The most striking 

feature is that inferences obtained under sequential explainability are very different from 

inferences obtained under either PMAR or MAR. First, the magnitude of the effect of 

tamoxifen on depression is much larger under sequential explainability; second, the posterior 

uncertainty is large. This is surprising, as one would expect the additional uncertainty in ξ to 

cause the tilted-last-occasion model to have the most posterior uncertainty.

The additional posterior uncertainty can be explained from the fact that most of the 

missingness in the data was monotone. As a result, there is little information about 

p(yJ | oJ − 1, RJ = 1) for most missingness patterns. On the other hand, there are many fully 

observed individuals, so there is ample data to estimate p(YJ | Yr, R = 𝟙) for all patterns.

The fact that sequential explainability produces a larger effect size and leads to substantively 

different conclusions is concerning, and nessecitates an explanation. Further investigation 

revealed that, among those who were observed at the end of study, but who missed at least 

one visit (roughly 650 individuals per treatment), the difference in depression levels was a 

massive 6%. Moreover, this difference was highly significant, with Fisher’s exact test giving 

a P-value of 0.002. Under sequential explainability, those who were not observed at the end 

of the study are associated to this group, whereas under PMAR and the tilted-last-occasion 

model these individuals are associated to fully observed individuals. As there was no 

evidence of a difference in depression levels for fully observed subjects (P-value > 0.5 using 

Fisher’s exact test) the estimate of ψ is much smaller.

Whether PMAR or sequential explainability is more appropriate depends on subject matter 

considerations, as well as the causes of missingness. Regardless, the sensitivity analysis led 

us to find a treatment effect in a sub-population (those who were observed at the end of the 

study, but missed at least one prior visit) which is perhaps itself of interest. Hence, in 

addition to determining the robustness of our inferences, a sensitivity analysis can give 

substantive insight into the relationship between the missingness and the response.

6 Discussion and Open problems

In this paper we reviewed identifying restrictions with a focus on recent proposals for 

nonmonotone missingness. We also combined a flexible modeling approach for the observed 

data with a variety of identifying restrictions to analyze data from the BCPT.

Several interesting avenues of research exist. Auxiliary covariates are often used to impute 

missing outcomes under an assumption that MAR holds only conditional on these additional 

covariates. This is sometimes called A-MAR missingness. The inclusion of such covariates 

can create parameter interpretation problems (Daniels et al., 2014) for categorical outcomes. 

A proposal similar to that introduced here for continuous outcomes and auxiliary covariates 

can be found in Zhou et al. (working paper).
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This paper has focused on missing outcome data. Handling missing covariate data is also of 

general importance (see, e.g., Ibrahim et al., 1999; Xu et al., 2016; Murray and Reiter, 

2016). One approach to addressing this would be to specify joint Bayesian nonparametric 

models, along with identifying restrictions for the combined vector of outcomes and 

covariates. An interesting problem here is how to specify a parsimonious set of sensitivity 

parameters which will correspond to conditional distributions of both missing outcomes and 

missing covariates. Multiple identifying restrictions could be used for such analyses, similar 

to what was used in Linero and Daniels (2015) for different types of dropouts (see also 

Sadinle and Reiter, 2017b). Nonignorable missingness for more complex data-structures, 

such as longitudinal images or networks, remains an underdeveloped area. Much of what has 

been proposed here could also be used for causal inference. Kim et al. (2017) and Roy et al. 

(2016) propose Bayesian nonparametric approaches similar to ours in the context of causal 

mediation and marginal structural models respectively. We are also intrigued by the ICIN 

restriction as an anchoring assumption, and believe practical methods for performing 

inference under ICIN would be valuable.

There are few software implementations for conducting sensitivity analysis using identifying 

restrictions, especially when missingness is nonmonotone. The primary challenge lies in 

imputing the missing data from the appropriate conditional distributions, as this requires 

model-specific software. Our R implementation of the multinomial mixture model is 

available at www.github.com/arlinero/NiNBayes. Beyond this, we mention several tools 

available for sensitivity analysis. Bunouf et al. (2015) provide SAS and R code for 

implementing pattern-mixture models under monotone missingness and a Gaussian 

assumption. Scharfstein et al. (2017) provide the R/SAS package SAMON for implementing 

semiparametric models under monotone missingness. Outside of our proposed framework, 

proc MI in SAS now supports δ-adjustments using the MNAR option, and the SOLAS 

software package implements the tipping-point strategy of Liublinska and Rubin (2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Observed data means over time for the tamoxifen and placebo arms of the study. Dots 

correspond to the posterior mean using the prior outlined in this section. The line 

corresponds to the empirical mean of the observed data for each time point. Solid error bars 

give the 95% credible interval for the observed data mean; dashed error bars given the usual 

95% confidence interval based on asymptotic normality of the observed-data means.
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Figure 2: 
Posterior credible intervals for ψ under different assumptions. Dots give the posterior mean, 

green bars give two-sided 90% credible intervals, blue bars give two-sided 95% credible 

intervals. On the right, the posterior probability P = Pr(ψ < 0) is given for each assumption.
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