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Abstract

Introduction

While fatigue is ubiquitous in old age and visibly interferes with mobility, studies have not yet

examined the effects of self-reported fatigue on healthy older adults’ gait. As a model that

simulates this daily phenomenon, we systematically reviewed eleven studies that compared

the effects of experimentally induced muscle and mental performance fatigability on gait

kinematics, variability, kinetics, and muscle activity in healthy older adults.

Methods

We searched for studies in databases (PubMed and Web of Science) using Fatigue, Gait,

and Clinical conditions as the main terms and extracted the data only from studies that

experimentally induced fatigue by sustained muscle or mental activities in healthy older

adults.

Results

Eleven studies were included. After muscle performance fatigability, six of nine studies

observed increases in stride length, width, gait velocity (Effect Size [ES] range: 0.30 to

1.22), inter-stride trunk acceleration variability (ES: 2.06), and ankle muscle coactivation

during gait (ES: 0.59, n = 1 study). After sustained mental activity, the coefficient of variation

of stride outcomes increased (ES: 0.59 to 0.67, n = 1 study) during dual-task but not single-

task walking.
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Conclusion

Muscle performance fatigability affects spatial and temporal features of gait and, mainly,

inter-stride trunk acceleration variability. In contrast, sustained mental activity tends only to

affect step variability during dual tasking. A critical and immediate step for future studies is

to determine the effects of self-reported fatigue on gait biomechanics and variability in

healthy older adults to verify the viability of experimentally induced fatigue as a model for the

study of gait adaptability in old age.

Introduction

Population studies and primary care data show that ~46% of older adults complain about

being tired [1–3]. Tiredness is the sensation of exhaustion, a reduction of physical and mental

energy, and a diminished interest in the surrounding world. Prolonged physical or mental

exertion can reduce motor performance (performance fatigability) [4–6] or reduce the capac-

ity to allocate cognitive resources to perform a task [7] and increase self-reported fatigue (per-

ceived fatigability) [8]. Performing a low-force activity for a prolonged period, such as a long

high-paced walk, can lead to a sensation of muscle performance fatigability. Performing a

motor task at a high percentage of the available maximal mechanical output, i.e., at a high rela-

tive effort, can also lead to muscle performance fatigability, a state that is associated with

reduced contractile force and a sub-optimal neural activation of muscles [6,8,9]. The decline in

force due to sustained muscle effort can interfere with the quality of motor acts such as carry-

ing an object, maintaining bodily postures, and gait [10–12].

While prolonged low force and short-term high force motor acts can directly reduce motor

performance due to impairment in force and muscle activation, demanding mental activities

can also create a psychobiological state characterized by a perception of tiredness and a lack of

motivation [8,13,14]. Sustaining attention or a mental effort for a prolonged period puts older

adults in a fatigued mental state [7,15,16] that slows cognitive processes often quantified by

slowed reaction times [13,14,17]. Sustained mental activity is also associated with alteration of

cortical brain areas and decreases in neurotransmitter levels [14,18]. Such modifications may

impair top-down cognitive control and the execution of motor tasks indirectly, even in the

absence of demonstrable muscle weakness [19,20]. Sustained mental activities can also

decrease parasympathetic and increase sympathetic activity, reducing motivation and pre-

frontal brain activation [7,20].

While both fatigue types are prevalent in old age and visibly interfere with gait, studies have

not yet examined the effects of trait of fatigue on healthy older adults’ gait. To minimize inter-

ference and maintain gait quality, older adults are expected to adopt strategies that help to

compensate for the mal-effects of fatigue on gait. The unanswered question is whether and

how those healthy older adults who report no trait of fatigue can adapt their gait when either

kind of fatigue is induced by experimental protocols in a laboratory environment. Such para-

digms are thought to simulate performance or perceived fatigued states often reported by

older adults. It is important because the after-effects of sustained activities can destabilize gait

and posture, increasing the risks for slips, trips, and falls [21–24]. The picture emerging from

the systematically not yet reviewed studies is that fatigue-free healthy older adults are able

somehow to adjust their gait kinematics, kinetics, variability, and muscle activation to states

created by performance or perceived fatigue induced in a laboratory environment [25–27]. It
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seems likely that experimentally induced muscle fatigability by prolonged physical activity

affects the generation of mechanical work and power at the ankle, knee, and hip joints during

gait [28]. Such changes are reasonable because the cellular mechanisms of fatigue impair vol-

untary force generation and the neural drive of muscles [4,6,29] that generate torques and

powers during gait. Specifically, it is likely that older adults would in compensation for the

force loss increase stride width and muscle activity to increase gait stability [25]. Subtler mech-

anisms could involve increases in the activity of antagonist muscles and distribute effort by

recruiting less affected muscles at adjacent joints [28,30,31]. Concerning mental fatigability,

we expect that interference with attention, arousal, executive function, mood, and motivation

would primarily affect gait variability [32,33]. Indeed, brain areas underlying these cognitive

functions are also active during imagined walking [34] and are related to temporal step out-

comes and gait variability [35–37]. We thus hypothesized that gait adaptations might be

fatigue-type specific. The purpose of this paper was to systematically review studies that com-

pared the effects of experimentally induced muscle and mental performance fatigability on

gait kinematics, variability, kinetics, and muscle activity in healthy older adults. A comprehen-

sive review of these adaptations is timely and needed because it would increase our under-

standing of how old age affects the capacity to adapt gait to sustained muscle or mental

activities.

Methods

We performed a computerized systematic literature search, following PRISMA (S1 Checklist)

and Cochrane Handbook for Systematic Reviews guidelines [38,39], in PubMed and Web of

Science for the period between January 1987 to August 2019 (last 30 years from the beginning

of the search (2017) and updated for the 2 following years). The search consisted of four terms:

Term 1 was the population by using the keywords ‘old’, ‘elderly’ and ‘adults’; Term 2 was the

intervention ‘Fatigue’ probed with the keywords ‘fatigue’, ‘fatigability’, ‘tiredness’, and its vari-

ants (e.g., mental fatigue, physical fatigue, motor fatigue, cognitive fatigue, performance fatiga-

bility, and perceived fatigability). Term 3 was the outcomes ‘Gait’ and ‘Walking’ with the

outcomes of gait adaptability concerning gait biomechanics, kinetics, kinematics, muscle activ-

ity, spatial-temporal parameters, inverse dynamics, gait stability, and gait variability. Term 4

included the exclusion criteria and clinical conditions, such as neurological and orthopaedical

diseases. Although the Cochrane Handbook for Systematic Reviews suggest that the ‘NOT’

operator should be avoided as exclusion where possible [39], in our case, exclusion terms were

necessary as a search strategy to remove from the initial screening the substantial number of

papers in diseased populations. Filters were set to include English language (S1 Table). The

PubMed syntax was adapted to the Web of Science search. We also identified studies missed

by the search from the list of references of relevant individual papers.

Eligibility, study selection and exclusion criteria

We used the Population, Intervention, Comparison, Outcome, and Study design as the crite-

rion for inclusion of papers in this review [38]. Population: older human adults. Intervention:

fatigue induced by prolonged physical/muscle and mental tasks. Comparison: gait in fatigue

and non-fatigued state. Outcomes: gait kinematics (e.g., spatial and temporal stride parame-

ters, joint angle, joint angular, acceleration outcomes), kinetics (e.g., force outcomes as

momentum, work and power, ground reaction force), electromyography (e.g., amplitude and

temporal parameters used to assess muscle activation). For the analysis of gait variability and

stability, we considered the standard deviation, coefficient of variation, and measures of vari-

ability regarding gait dynamics, such as RMS, sample and multi-scale entropy methods,
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detrended fluctuation analysis, and local dynamic stability and margin of stability, respectively.

We also considered gait performed under different conditions such as obstructed gait, level

surface walking, and treadmill walking. Finally, randomized controlled trials (RCTs), non-ran-

domized controlled trials (nRCTs), and non-randomized non-controlled trials (nRnCTs) were

included.

From the initial yield, obtained by combining original articles from electronic databases

and targeted searches, titles and abstracts were screened. When a study was potentially eligible

and relevant, it was selected for a full-text analysis and then subjected to a quality analysis.

Studies that analyzed the effects of fatigue on gait in age groups other than only in older adults

were included, but we considered the data only for older adults (over 63 years). When the

information was considered insufficient based on title and abstract alone, the full text was ana-

lyzed to decide on inclusion.

We had excluded studies that examined running and stair climbing. In addition, studies

unrelated to induced fatigue (decline in performance and/or increase in self-reported fatigue)

by sustained physical and mental activities or that could not indicate a measurement of

induced fatigue, a lack of quantitative gait outcomes and/or a lack of older adults in the sample

were excluded at the initial screening of titles and abstracts.

Quality assessment

Two of the authors (PCRS, FAB) screened candidate papers and worked based on a set of

guidelines to improve inter-rater reliability. Both authors analyzed the methodological quality

of the included studies by using a quality appraisal tool [40]. This appraisal tool relates to the

internal and external validity of the measurement and the generalizability of the results. For

each question, ‘1’ is rated when the criterion was met, ‘0.5’ when information is lacking detail

or clarity, and ‘0’ if the criterion was missing. A higher total score represents a higher quality

of the study. In case of discrepancies between the two authors, a third author (TH) was con-

sulted to make a decision about inclusion.

Data extraction and analysis

Two of the authors (PCRS, FAB) extracted the papers, independently, and synthesized data in

tables and together, both authors checked the tables. In case of an indecision, a third author

(TH) was consulted. The data were coded for: number of participants, age, sex, protocol to

induce performance fatigability (sit-to-stand, cognitive task, walking test), measurement of

fatigue (decline in performance, increase in self-reported fatigue), gait protocol (treadmill,

level walking, walking with obstacle crossing), and gait outcomes (kinematic and kinetic data,

variability, muscle activity). It was not necessary to contact any authors to get information

regarding the included papers. We used Cohen’s d to calculate the effect sizes (ES) to quantify

whether the magnitude of changes in gait outcomes induced by sustained muscle or mental

activity is relevant. ES values of 0.21–0.49 indicate small, 0.50–0.79 indicate medium,

and� 0.80 indicate large practical effects [41]. Due to the heterogeneity of the outcomes, lack

of consistent results, and the low number of studies that met eligibility criteria, we were unable

to perform a meta-analysis.

Results

Study characteristics

The Pubmed and Web of Science searches yielded 1,274 studies and one study was included

from the list of reference [42]. After screening for title, abstract and remove the duplicates, 61
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studies were selected for analyses, and, after reading the full text, a final sample size of 11 stud-

ies was included in the review (Fig 1). The included studies stated the aims sufficiently, gave an

appropriate description of the methods, detailed the outcomes clearly, and provided an inter-

pretation of the key findings (S2 Table).

The current review was based on 249 healthy older adults with a mean age of 71.5 (±4.66)

years (Table 1), 92 (37%) females, with normal body composition (body mass index: 26.1±1.94

kg/m2). Two studies did not report the subjects’ sex [23,43] (Table 1).

Effects of fatigue protocols on fatigue outcomes

The studies used heterogeneous protocols to induce a decline in muscle performance, includ-

ing repeated muscle contractions (n = 7 studies), knee extension/flexions (n = 5), sit-to-stands

(n = 4), endurance (n = 3, treadmill and cycling), isokinetic (n = 2, knee and ankle), hip abduc-

tions (n = 1), and prolonged mental tasks (n = 1, go/no go task for 90 min) (Tables 1 and 2).

Six, three, and two studies indicated the state of fatigue, respectively, as a decline in voluntary

force, inability to perform the movement, and movement slowing (Table 1). The reduction in

Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0226939.g001
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force ranged between ~10 to ~55% and varied between protocols. The sit-to-stand task, for

example, reduced voluntary force by ~9 to 13% [25,26]. The isokinetic protocols considered

fatigue as reductions to 50% of the initial maximum voluntary torque [27,44]. Unilateral squats

performed until exhaustion reduced knee extension force by 17% [45]. Longer reaction time

was also observed post vs. pre sustained endurance protocol [21]. Five studies reported an

increase in self-reported fatigue (indicated by the rating of perceived exertion and by fatigue

perception) (Tables 1 and 2) [21,25,32,43,46]. Two studies [25,46] indicated that older adults

reported near maximal perceived exertion (‘very hard’ to ‘maximum exertion’) after repeated

muscle contractions. Two studies [21,43] indicated a high rating of self-reported fatigue in

response to endurance protocol, scores ranged from ‘hard’ (15) to ‘maximal exertion’ (20) on

the Borg scale. One study [32] determined fatigue as a decrease in motivation by 10%, as exam-

ined by wakefulness, mood, and arousal dimension of the Multidimensional Mood Question-

naire (ES range: 0.27 to 0.95) and up 2x of increase in fatigue state assessed by Profile of Mood

States (ES: 0.92) following a prolonged period of mental activity. One study [23] also indicated

an increase (range: 25 to 35 beats per minute) in heart rate (ES: 0.65) after endurance exercise.

Effects of fatigue protocols on gait

Table 2 shows changes and ESs in gait outcomes after sustained muscle and mental activities.

Six studies evaluated outcomes during overground walking with [25,26] or without obstruc-

tion [21,25,26,32,44,47] while single- and dual-task walking [32,44]. Five studies assessed the

effects of muscle performance fatigability on gait while walking on a motorized treadmill with

[27,45] or without a perturbation [23,27,43,45,46].

Muscle performance fatigability affected stride outcomes [23,25,26,44–47], gait stability

[43], gait variability [44,46,47], and muscle activation [27] during gait. Stride velocity increased

by ~10 cm/s (ES = 0.6), stride length by 4.8cm (ES: 0.27) [21,25,44] or by 0.3 units of

Table 1. Description of the characteristics of the papers selected.

Helbostad

et al.[47]

Granacher

et al. [27]

Granacher

et al.[44]

Hatton

et al.[26]

Barbieri

et al. [25]

Nagano

et al. [23]

Toebes

et al. [45]

Arvir

et al.

[46]

Hamacher

et al. [43]

Morrison

et al. [21]

Behrens

et al. [32]

Participants 44 14 16 30 40 11 10 17 18 30 16

male/female

(N)

10/34 14/0 8/8 17/13 40/0 n/m 4/6 5/12 n/m 14/16 6/10

age (yrs) 79.3 67.2 71.3 78.3 69.3 74.2 63.4 73.2 69 69.4 72.2

body index

(kg/m2)

24.4 25.1 25.2 27.2 26.6 26.2 n/m 24.7 25.5 31.1 25.5

Fatigue protocol

muscle

contraction

STS—Knee IK–Ankle IK—Knee STS–

Knee

STS–Knee Squat—

Knee UL

Abd—

Hip UL

endurance 6-min fast-

Walking

Cycle–

Ergometer

Treadmill—

Walk

mental task Go/ no go

test

Fatigue outcomes

parameters # Pace of

Mov

#Force #Force #Force #Force "

RPE

"Heart

Rate

#Force " RPE

#Prop

" RPE #Force #RT

"RPE

#Motiv "

Fatigue

state

N: sample, n/m: not mentioned, STS: Sit-to-Stand test, IK: Isokinetic, ABD: Abduction, UL: unilateral, Mov: Movement, RPE: Rating of Perceived Exertion, RT:

Reaction Time, Prop: Proprioception, Motiv: Motivation.

https://doi.org/10.1371/journal.pone.0226939.t001
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Table 2. Study characteristics for included studies.

Fatigability Gait

Study N–older

adults

Protocol Outcomes Gait Conditions Gait Outcomes Fatigue-related changes

(effect sizes)

Helbostad

et al. [47]

22—Fatigue

Group (FG)

22—Control

Group (CG)

Sit-to-stand # time and vertical

displacement of

movement the sit-

to-stand

Overground level

walking (LW)

AP, ML and V. Trunk acc. and

inter-stride trunk acc var;. SL, SW,

and Sp; SL-var and SW-var.

FG vs. CG: " SW (ES: 1.51),

ML trunk acc (ES: 1.27), SL

Var (ES: 2.61) and # V. (ES:

2.06) and AP (ES: 0.80) inter-

stride Trunk acc var

Granacher

et al. [27]

14 Isokinetic ankle

extension

# in ~50% of

maximal torque

Perturbation

(decelerating) on

treadmill walking

Functional reflex activity (FRA)

and latency of m. Tibialis Anterior

(TA), Latency in TA, EMG activity

of the m. Peroneus, Soleus and

Vastus Medialis, Coactivity and

maximal angular velocity.

# FRA in TA (ES: 0.56), "

coactivity (ES: 0.58) and

maximal angular velocity (ES:

0.64).

Granacher

et al. [44]

16 Isokinetic knee

extension

# in ~50% of

maximal torque

LW in single-(ST)

and dual-task (DT)

SdL, Gait Sp, DT cost in SdL and

gait Sp and the Standard deviation

of the SdL in ST and DT

conditions

DT: " Gait Sp (ES: 0.55); SdL

(ES: 0.45) and # SD of SdL (ES:

095).

Hatton et al.

[26]

30 Sit-to-stand # in 9.5% of the peak

of force on knee

extension

Obstructed walking

(OW) with a

secondary visual task

Std, Sp of obstacle crossing, Trail

and lead limb vertical and

horizontal distance to the obstacle,

and V. loading rate.

" V loading rate of the lead

limb (ES: 0.27).

Barbieri

et al. [25]

20 –(60–70

years—G60)

20 –(over 70

years—G70)

Sit-to-stand # in ~13% of the

peak of force " RPE

LW and OW SdL, SdD, Sp, and SW (LW and

OW). SL, Sd, Sp, Trail (T) and

Lead (L) vertical distance to the

obstacle (VO).

LW and OW: " SdL / SL (ES:

0.35 / 0.04), SW (ES: 0.36 /

0.19), Sp (ES: 0.65 and 0.31), #

SdD/Sd (ES: 0.43 and 0.45).

OW: " TVO (ES: 0.1)

Nagano

et al. [23]

11 Endurance

(treadmill

walking)

" ~35% in heart rate Treadmill walking SL (normalized by limb length),

DsT (%) and SW and Minimum

Foot Clearance

" SL (ES: 0.63), DsT (ES: 0.12),

Var SW (ES: n/p) #Minimum

Foot Clearance (ES: 0.7)

Toebes et al.

[45]

10 Unilateral squat

exercise until task

failure.

# 17.3% Knee

extension strength

Unperturbed and

perturbed (push the

trunk) treadmill

walking

3-D LyE of the trunk, trunk vel,

and var of trunk vel, time to return

to unperturbed gait pattern on

stance and swing phase. Deviation

of trunk kinematic after

perturbation.

# Time to return to the

unperturbed gait pattern on

swing phase (ES: 0.67) and

deviation after perturbation

(ES: 1.8)

Arvir et al.

[46]

17 Unilateral hip

abductor

#Hip position sense

and " RPE

Treadmill walking SdD means and standard

deviations; ML trunk vel;

Harmonic Ratio (HR) of ML and

AP; Local Divergent Exponents of

ML and AP, acceleration and

position.

" SdD Var (n/p) and #HR of

ML (ES: 0.49).

Hamacher

et al. [43]

18 Endurance (cycle

ergometer)

" RPE Treadmill walking Local dynamic Stability (LDS) of

the walking (LyE) of 3D trunk

linear acc.

# LDS (ES: 0.73)

Morrison

et al. [21]

15 –(60–70

years—G60)

15 –(over 70

years—G70)

Endurance

(incremental

incline treadmill

walking)

" RPE; # Strength

G70: # Reaction

time.

LW Gait SP, SdL, SdD, and CAD. G70: " Gait SP, SdL, SdD and

CAD

Behrens

et al. [32]

16 Mental

demanding

(90min) vs. and

control task.

# 10% Motivation; "

100% Fatigue state

LW in ST and DT Mean and Coeficicient of variation

(CoV) of Gait Sp, SdL, StT, DsT

and SwT in ST and DT condition

" CoV of Sp (ES: 0.66), SdL

(ES: 0.67), StT (ES: 0.59), DsT

(ES: 0.59) and SwT (ES: 0.41)

SL: Step Length; SdL: Stride Length; SW: Step Width; SdW: Stride Width; SD: Step Duration; SdD: Stride duration Sp: Speed; StT: Stance Time; SwT: Swing Time; DsT:

Double support Time; CAD: Cadence; LW: Overground level walking; OW: Obstacle walking; acc: acceleration; vel: velocity, RPE: Rating of Perceived Exertion; var:

Variability; CoV: Coefficient of variation; ML: Medial-lateral; AP: Anteroposterior; V.: Vertical, FRA: Functional Reflex Activity; DT: Dual-Task; ST: Single-Task; RW:

Regular Walking; OW: Obstacle walking; LDS: Local Dynamic Stability.

https://doi.org/10.1371/journal.pone.0226939.t002
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normalized stride length (ES: 0.63) [23], step width by ~2 cm (ES: 0.80) [25,47], percentage of

double support (~2%, ES: 1.22) [23], and a decrease in stride duration by 2ms (ES: 0.42) [25]

and standard deviation of stride length by 1 cm (large ES: 0.95) [44] after sustained muscle

activity. After muscle performance fatigability, local dynamic stability of 3-D trunk accelera-

tion and symmetry in medial-lateral direction of trunk acceleration decreased by 0.1 max LyE

(ES: 0.73) [43] and by 22 in harmonic rate (ES: 0.49) [46], respectively and the anteroposterior

and vertical inter-stride trunk acceleration variability increased by 8% and 11% (ES: 0.8 and

2.06), respectively [47]. However, other studies did not indicate effects of muscle performance

fatigability on step length (p> 0.05) [26,45,47], and unilateral muscle fatigability protocols did

not affect the local dynamic stability during treadmill walking [45,46].

A decline in force induced by sustained muscle activity increased the coactivity between m.

soleus and m. tibialis anterior by ~12% (ES: 0.6) and delayed functional reflex activity in the

m. tibialis anterior over a 120-ms interval following treadmill decelerations by ~41% (215.7 to

174.7; ES: 0.56) [27]. While walking on an obstacle course, muscle performance fatigability

reduced step duration by 5ms (ES: 0.45) and increased step velocity by 6 cm/s (ES: 0.31), step

width by 1 cm (ES: 0.20), toe clearance of trailing limb to obstacle by 1 cm (ES: 0.10) [25], and

the vertical loading by 4.3 N kg-1 m-1 (ES: 0.27; all p< 0.05) [26]. These results suggest that

muscle performance fatigability induced adaptations in the mean and variability of spatial-

temporal stride parameters during overground level walking and obstacle negotiation and

increased the coactivation and delayed functional muscle reflex during treadmill walking

decelerations.

Reduced mental performance was associated with an increased coefficient of variation of

gait velocity from ~6% to 11%, stride length from ~4% to 7%, stance time from ~7% to 13%,

double support time from ~7% to 16% (ES: 0.50 to 0.68) and swing time by from ~9% to 14%

(ES: 0.41, all p< 0.05) during level walking in dual- but not in single-task condition [32].

Discussion

We systematically reviewed studies that compared the effects of experimentally induced mus-

cle and mental performance fatigability on gait kinematics, variability, kinetics, and muscle

activity in healthy older adults. Muscle performance fatigability affects spatial and temporal

features of gait and, mainly, inter-stride trunk acceleration variability. In contrast, sustained

mental activity tends only to affect step variability during dual-tasking. The evidence supports

the hypothesis that healthy older adults adapt spatial-temporal features of gait in a fatigue-type

specific manner. We discuss these findings with a perspective on whether experimentally

induced fatigue is a viable model for the study of gait adaptability in old age.

Muscle fatigue protocols were effective and induced sizable reductions in voluntary force

(ES range: 0.30 to 1.32), an accepted marker of performance fatigability [8]. However, the pro-

tocols varied widely and included: 1) Repetitive muscle contractions of knee and ankle exten-

sors with different instructions; 2) The STS task performed rapidly or at a fixed speed, and 3)

Endurance tasks involving rapid walking for six minutes, incline walking on a treadmill, or

incremental cycle-ergometer tests (Table 2). This large variation in methods inducing fatigue

is one source of the inconsistent effects on gait because cyclical lower extremity tasks could, in

fact, entrain rather than perturb gait, diminishing the interference effects and the need for par-

ticipants to invoke adaptations in their walking pattern.

It is however curious that even when participants performed ~70 knee extensions or ankle

plantarflexions at a maximal effort and the MVC in decreased by 50% (ES: ~1.3) [27,44],

changes in spatiotemporal gait variables were moderate but in the unexpected direction (ES:

0.47 to 0.58, Table 2). Indeed, stride length (~4%), gait speed (~10%), and step width (~11%)
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tended to increase and stride duration (~4%) tended to decrease (ES: 0.4 to 0.8) [21,25,44]. It

seems that gait has actually become more dynamic. The step and speed changes might reflect

adaptations to the marked increase in trunk acceleration and variability in the vertical and

anteroposterior directions (ES: 0.80 to 2.06, Table 2) [47].

Why did performance fatigability not elicit larger changes in gait and necessitate more sub-

stantive adaptive responses to the perturbations? One possibility is that torque and power

demands during gait were still below the levels of joint torques and powers fatigued muscles

could produce [48]. It was also reported that participants could compensate by more strongly

activating muscles that were less or not affected by the task [28]. Whether gait is tested over-

ground or on a treadmill affected the results, as studies that reported small fatigue effects on

spatial-temporal parameters tested gait using an overground protocol [21,25,44,47] but those

that found no effects used a treadmill [45,46]. Walking on a treadmill at a set speed makes gait

kinematically uniform and minimizes the potential for adaptations to occur [49,50], especially

in step variability [51,52]. This argument is borne out by a lack of fatigue effects on gait when

participants were tested on treadmill [45,46] compared with the small but meaningful

decreases in the autocorrelation and increases in variability of ML trunk acceleration during

overground gait [47]. The use of unilateral fatigue protocols did induce some gait asymmetry

but left all other gait outcomes virtually unaffected in older adults [46]. Finally, increases in

gait velocity and step length after a fatigue protocol suggest that a warm-up instead of an inter-

ference effect might have occurred. However, we need to consider even these small changes in

gait with caution because a number of studies reported no changes in gait metrics after a vari-

ety of muscle fatigue protocols, making all of the data combined inconsistent [26,45,46].

Muscle performance fatigability can modify muscle activation in single joint tasks and also

during gait. For example, decreases in level of force delayed muscle activation onset in older

adults while rising from a chair [31]. After ankle muscle fatigability, coactivation of agonist

and antagonist ankle muscles increased by ~12% during gait and there was 41% delay in a

functional reflex when older adults were prompted to respond to gait perturbations [27]. It is

speculated that sustained muscle activity-related increase in coactivation during gait [53,54]

reflects changes in the afferent feedback [29,55]. However, such an interpretation is compli-

cated by a coupled increase in plantarflexion angular velocity and increase in coactivation of

the soleus and tibialis anterior muscles during gait, a counterintuitive outcome because coacti-

vation would tend to stiffen instead accelerate joint motion. While suggested [28], we found

no direct evidence for activation substitution, i.e., reduction in muscle activation of the

fatigued muscle group being compensated by increases in activation of muscles at adjacent

joints. Together, the evidence is scant that there is an age- and perturbation-specific adaptation

in muscle activation in response to fatigue perturbations.

Performing a mental task for a prolonged period increased gait variability only during

dual-task gait [32]. This limited effect is in line with the hypothesis emerging from imaging

studies suggesting the involvement of complementary brain areas in gait, attention, and execu-

tive function while walking and performing a cognitive task at the same time [36,56]. Accord-

ingly, sustained mental activity affects cognitive functions known to be involved in gait

control, resulting in an interference with gait automaticity. This interference increases step

variability. In single-task conditions, the interference created by the sustained mental activity

may not be large enough, producing no measurable effects on any of the gait outcomes

reviewed here.

While there has been a concerted effort to use fatigue as a perturbation model (Tables 1 and

2), its viability to study the effects of age on gait adaptability remains unclear. When combined

with data from young individuals, the reviewed data revealed a lack of age effect, suggesting

that the nature, magnitude, and focality of the perturbations lacks specificity to age and gait.
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Indeed, fatigue-induced changes in gait were quantitatively similar in healthy younger and

older adults and also similar in healthy older adults and Parkinsonian patients [25,28,57]. The

original intent of these studies was to make healthy, fatigue-free older adults fatigued to simu-

late the fatigued state. However, it is unclear if the experimentally induced fatigue state and the

fatigue state de novo present in older people are qualitatively and quantitatively similar. It

seems that when muscle fatigue is induced with repetitive single-joint muscle contractions

such as knee extension-flexion, the ensuing fatigue is predominantly a localized force

impairment while the fatigue state in older adults is the result of a combination of impaired

physiology, reduced homeostasis, a bias in effort perception, and altered cognitive function.

When however, a multi-joint protocol is used (i.e., six-minute walk test), any adaptation in

gait after the task is the result of a combined physiological and cognitive (behavioral) effect.

Such limitations and the diversity in fatigue protocols shape the implementation of this per-

turbation model in the future. The viability of the model will increase if studies move from its

descriptive application to hypothesis-driven designs. There is a need to determine the effects

of muscle performance fatigability on motor outcomes that are specific and also not specific to

the fatigue task, an approach that would improve experimental control and the validity of con-

clusions. Future studies should also evaluate cognitive outcomes because the adaptive pro-

cesses may not be confined to motor (gait) function alone. Therefore, future studies should

include motor-cognitive dual-task assessments when probing age-differences in adaptations to

fatigue. There is a strong need for studies examining the effects of prolonged mental tasks on

gait biomechanics and variability. Such studies should set fatigability and gait as the main out-

comes in older adults [58]. Such an approach would strengthen our understanding of the role

cognition plays in gait control. Perhaps the most critical gap in knowledge is related to a lack

of studies comparing gait outcomes in older adults with and without self-reported fatigue.

Only after such studies could we meaningfully interpret gait adaptations in healthy older adults

after experimentally induced muscle or mental fatigue.

In conclusion, muscle performance fatigability affects spatial and temporal features of gait

and, mainly, inter-stride trunk acceleration variability. In contrast, sustained mental activity

tends only to affect step variability during dual-tasking. A critical and immediate step for

future studies is to determine the effects of self-reported fatigue on gait biomechanics and vari-

ability in healthy older adults to verify the viability of experimentally induced fatigue as a

model for the study of gait adaptability in old age.
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