Table 3.
Configuration of the forecasting models for wellness conditions
Models | Optimized superior parameters | |
---|---|---|
Deep learning-based | LSTM | h: 256, i: 100, η0: 0.6, f: 0.1. Optimized scheme of η: η·f when ε not improving every 10 epochs. |
BiLSTM | h: 256, i: 100, η0: 0.6, f: 0.1. Optimized scheme of η: η·f when ε not improving every 10 epochs. | |
Machine learning-based | ANN | h: 100, η0: 0.01, f: 0.01. Optimized scheme of η: η·f per 100 epochs |
SVM | C: 10, Γ: 0.01, Kernel: RBF Tolerance for stopping criterion: 10−3 |