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Abstract

Background: Culturomics can ascertain traces of microorganisms to be cultivated using different strategies and
identified by matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry or 16S rDNA sequencing.
However, to cater to all requirements of microorganisms and isolate as many species as possible, multiple culture
conditions must be used, imposing a heavy workload. In addition, the fast-growing bacteria (e.g., Escherichia)
surpass the slow-growing bacteria in culture by occupying space and using up nutrients. Besides, some bacteria
(e.g., Pseudomonas) suppress others by secreting antibacterial metabolites, making it difficult to isolate bacteria with
lower competence. Applying inhibitors to restrain fast-growing bacteria is one method to cultivate more bacterial
species from human feces.

Results: We applied CHIR-090, an LpxC enzyme inhibitor that has antibacterial activity against most Gram-negative
bacteria, to culturomics of human fresh feces. The antibacterial activity of CHIR-090 was first assessed on five Gram-
negative species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, and
Bacteroides vulgatus), all of which are commonly isolated from the human gut. Then, we assessed suitable
concentrations of the inhibitor. Finally, CHIR-090 was applied in blood culture bottles for bacterial cultivation. In
total, 102 species from five samples were identified. Of these, we found one new species, two species not reported
previously in the human gut, and 11 species not previously isolated from humans.

Conclusions: CHIR-090 can suppress E. coli, P. aeruginosa, K. pneumoniae, Pro. vulgaris, but not B. vulgatus.
Compared with the non-inhibitor group, CHIR-090 increased bacteria isolation by 23.50%, including four species not
reported in humans and one new species. Application of LpxC enzyme inhibitor in culturomics increased the
number of species isolated from the human gut.
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Background
Recent studies have revealed that the gut microbiota
plays an important role in maintaining homeostasis and
human health [1, 2]. The revolution of metagenomics
has helped further our comprehension of the human gut

microbiota, but it has left a large number of unidentified
sequences that may belong to unknown species [3, 4].
The renaissance of culturomics is trying to fill these gaps
by isolating and analyzing the pure culture of human gut
microorganisms [5, 6]. To date, more than 1000 species
of bacteria in the human gut have been cultivated and
studied [7]. However, because culturomics requires mul-
tiple cultivation conditions to satisfy the preferences of
different species in the microbiota, it is a time- and
labor-consuming process, which has long hindered pro-
gress in this area [8]. In our work isolating gut microor-
ganisms, we found that Escherichia coli, a rapidly and
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easily grown species, quickly occupied most of the space
of a culture plate, making it more difficult to isolate
other bacterial species. In addition, the culture diversity
of fecal samples with large numbers of Pseudomonas
aeruginosa is much lower than that of samples without
P. aeruginosa. Therefore, we postulate that inhibiting the
growth of E. coli and P. aeruginosa in a culture system
could result in a more efficient isolation of previously
unidentified species.
CHIR-090 is an inhibitor of the enzyme LpxC, the key en-

zyme of lipid A biosynthesis in Gram-negative bacteria [9].
When lipid A biosynthesis, a cytoderm lipid that shields
Gram-negative bacteria, is suppressed, the cytomembrane of
Gram-negative bacteria can easily crack, leading to the death
of bacteria [10]. Previous studies have demonstrated that
CHIR-090 shows substantial antibacterial activity against
both E. coli and P. aeruginosa [11].
In this study, we evaluated the antibacterial or inhibitory

capacity of CHIR-090 against five Gram-negative bacteria.
Furthermore, we determined the optimal concentration of
CHIR-090 in blood culture bottles for fecal microbiota en-
richment before prolonged cultivation. Finally, we applied
CHIR-090 in culturomics of five fecal samples from healthy
adults to evaluate the feasibility of using CHIR-090 to in-
crease isolation of previously unreported bacterial species.

Results
Antibacterial capacity of CHIR-090
To evaluate the ability of CHIR-090 to suppress the growth
of five Gram-negative bacteria (E. coli, P. aeruginosa, K.
pneumoniae, Pro. vulgaris, and B. vulgatus), CHIR-090 was
added to culture medium. We found that not all the Gram-
negative bacteria were inhibited by CHIR-090 and the ef-
fective concentrations differed by species (Table 1). E. coli,
P. aeruginosa, K. pneumoniae, and Pro. vulgaris were com-
pletely suppressed by CHIR-090 but at different concentra-
tions of the inhibitor. Growth of Pro. vulgaris was inhibited
with 8 μg/mL CHIR-090, whereas growth of E. coli and P.
aeruginosa was inhibited at 40 μg/mL CHIR-090. K. pneu-
moniae was not inhibited until the concentration of CHIR-
090 reached 200 μg/mL. Finally, growth of B. vulgatus was
not affected by CHIR-090, even at the highest concentra-
tion tested. These differences in antibacterial activity may

be related to different coding sequences (Additional file 1:
Table S1) of enzyme LpxC, which result in diverse struc-
tures of this enzyme that affect the tightness of the binding
with CHIR-090 [12].

Determination of optimal concentration of CHIR-090
In this study, we adopt Lagier’s group strategy [8]: we
enriched fecal samples in blood culture bottles with 5%
sheep blood and 5% rumen fluid and then subcultured
the mixtures on YCFA plates, followed by subculture
and identification of colonies. Although 200 μg/mL
CHIR-090 could suppress 4 common fast-growing
Gram-negative bacteria, we also tested CHIR-090 at 400
and 800 μg/mLl, because of the large numbers of micro-
organisms that the human gut harbors and the continu-
ous consumption of the inhibitor during the prolonged
enrichment of bacteria in our study. Because we ob-
served that the effective concentration of CHIR-090 var-
ied with bacterial species, we determined the optimal
concentration before extending the experiment. To do
so, fecal sample 1 (F1) was cultivated with CHIR-090 at
80, 400, and 800 μg/mL in blood culture bottles with 5%
sheep blood and 5% rumen fluid; bottles with dimethyl
sulphoxide (DMSO) and without treatment (blank) were
used as controls. In this experiment, we isolated 19 species
of bacteria in total. The percentages of colony-forming
units of each bacterium under different CHIR-090 con-
centrations are shown in Additional file 1: Figure S1a, and
that in anaerobic or aerobic conditions are shown in Add-
itional file 1: Figure S1b and Additional file 1: Figure S1c,
respectively. E. coli and Enterococcus faecium occupied the
largest percentages in DMSO and blank bottles, in which
only 6 and 5 species, respectively, were isolated. In the
CHIR-090 bottles, growth of E. coli was suppressed, allow-
ing the number of isolated species to increase to 12 spe-
cies in the 80 and 400 μg/mL bottles, at equal percentages.
However, when the concentration of CHIR-090 was in-
creased to 800 μg/mL, the diversity decreased to 6 species;
at 800 μg/mL, Enterococcus faecalis prevailed though no E.
coli were found. Because CHIR-090 is a time-dependent
inhibitor, we determined 400 μg/mL to be the optimal
concentration for subsequent experiments.

Table 1 Counts (colony-forming units, CFU) of five Gram-negative bacteria after co-culturing with different concentrations of CHIR-
090

Bacteria CFU

Blank DMSO 8 μg/mL 40 μg/mL 80 μg/mL 200 μg/mL

Sensitive Escherichia coli > 500 > 500 4 0 0 0

Pseudomonas aeruginosa > 500 > 500 46 0 0 0

Klebsiella pneumoniae > 500 > 500 > 500 > 500 26 0

Proteus vulgaris > 500 > 500 0 0 0 0

Insensitive Bacteroides vulgatus > 500 > 500 > 500 > 500 > 500 > 500
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Evaluation of CHIR-090 in human gut culturomics
We enriched fecal samples for 1 month, plating subsam-
ples at 1, 3, 6, 12, 21, and 30 days, subculturing the
resulting colonies in YCFA liquid medium, streak-
inoculating the subcultures, and finally identifying the
species by Matrix-assisted laser desorption/ionization–
time-of-flight mass spectrometry (MALDI–TOF MS) or
16S rDNA sequencing (Fig. 1). Overall, we identified 102
species from five fresh fecal samples (Fig. 2 a). Taxo-
nomic information showed that the isolates covered five
phyla: Actinobacteria, Bacteroidetes, Firmicutes, Fusobac-
teria, and Proteobacteria (Additional file 2: Table S2).
Forty species were found only in 1 sample, 26 species
were found in 2 samples, 14 species were found in 3
samples, 9 species were found in 4 samples, and 13 spe-
cies were found in 5 samples (Fig. 2 b). The amount of
overlap among samples is shown in Fig. 2 c. During the
1-month culture, different bacteria existed in different
groups at different time points (Fig. 3 a), demonstrating
that a prolonged culture time results in more complete
isolation of species. The addition of CHIR-090 or not re-
sulted in very different microecology, such that 23.5% of
bacteria were only isolated in CHIR-090 bottles, 25.5%
were only isolated from bottles without CHIR-090, and
51% were found in both bottles in general condition (in-
cluding anaerobic and aerobic condition) (Fig. 3 b). Ana-
lysis of anaerobic or aerobic conditions respectively
resulted in similar findings (Additional file 1: Figure S2a,
Additional file 1: Figure S2b). The distributions of each
species and percentages of each group in samples are
shown in Additional file 1: Figure S3a-t. Moreover,

addition of CHIR-090 accounted for about one-third of
the bacterial isolates from one stool sample (Table 2),
indicating that application of CHIR-090 results in dis-
covery of more bacterial species and, to some degree,
offsets the sample source deficiency. Among 102 species
identified in our experiments, one isolate was a potentially
novel species, two were not previously reported to be asso-
ciated with the human gut, and 11 were not previously re-
ported to be isolated from humans, four of which were
from bottles with CHIR-090. The potentially novel bacterial
species was also identified in a CHIR-090 bottle (Table 3).
Eight of these species came from one sample and CHIR-
090 accounted for five of them (Table 3).

Discussion
In recent decades, researchers have attempted to understand
how the gut microbiome affects human health because it is
the largest immune organ in the body [25–28]. Revolutions
in sequencing techniques have added, little by little, to the
landscape of the gut microbiome [29, 30]. However, this
process has reached a plateau because sequencing techniques
are limited in that they can only identify bacteria to the spe-
cies level or, worse, can result in mismatched sequences [31].
Culturomics can identify bacteria to the strain level by apply-
ing multiple cultivation conditions to isolate the full diversity
of the microbiota and by using MALDI–TOF MS or 16S
rRNA amplification and sequencing for identification [32].
The isolates can be used in mechanistic studies, especially
those that focus on interactions with other bacteria and with
the host [33–35]. However, culturomics has its own limita-
tions. First, to expand the culturable gut microbiota

Fig. 1 Workflow of the culturomics strategy. Fecal samples were enriched in blood culture bottles containing 5% sheep blood, 5% rumen fluid,
and CHIR-090 for one month, plating subsamples at 1, 3, 6, 12, 21, and 30 days, subculturing the resulting colonies in YCFA liquid medium (all
cultures were preserved in glycerin at − 80 °C or liquid nitrogen for the reuse of bacteria), streak-inoculating the subcultures, and finally
identifying the species by MALDI–TOF MS or 16S rDNA sequencing
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repertoire, complex conditions are essential to meet the vari-
ous preferences of all species that make up the microbiota,
which requires a great amount of work, although some stud-
ies have tried to simplify culture conditions [8]. This time-
and labor-consuming workload has long hindered progress
in culturomics. Second, interactions among bacteria increase
the difficulty of isolation. For example, before slow-growing
bacteria can grow sufficiently to be identified, E. coli have
already dominated the culture and prevented further growth
of lagging species. Moreover, an antibacterial peptide pro-
duced by Pseudomonas can affect the growth of other bac-
teria in co-culture [36]. Selected culture media can help
distinguish bacteria, but selective media are generally used to
isolate specific species and thus are not efficient for mass iso-
lation [37, 38]. The use of phage is an option to kill Escheri-
chia and Pseudomonas; however, the extreme specificity of
phage to the strain level makes it a less effective option for
stopping growth of various Escherichia and Pseudomonas
species [39]. The use of antibacterial agents is another way to
suppress fast-growing bacteria. CHIR-090 inhibits the en-
zyme LpxC, which catalyzes the first irreversible step of lipid
A biosynthesis of E. coli and most Gram-negative bacteria,
and aroused our interest [12]. Previous studies showed that
CHIR-090 could inhibit the growth of E. coli and P. aerugi-
nosa [9, 40]. In our studies, CHIR-090 excelled in suppress-
ing growth of most Gram-negative bacteria that we studied,
especially E. coli. Its ability to do so depends to a certain

extent on the LpxC coding sequence, which determines the
structure of LpxC. LpxC source of coding sequence on line
may predict the effect of CHIR-090 before using it as an anti-
bacterial agent [12].
Cultures with sheep blood and rumen fluid can satisfy a

large majority of gut microorganisms [8]. In our previous
studies (unpublished data) we found that prolonging the cul-
ture time can isolate more bacteria because different bacteria
exist at different times over a month. We also found that
more bacteria are isolated early in the 1-month culture
period; however, after day 10, the microbiota varies less.
Prolonging enrichment over 30 days is not recommended.
Therefore, we chose to subculture on days 1, 3, 6, 12, 21,
and 30. Fecal culture represents a complicated microbial
ecology in that it varies throughout a 1-month enrichment.
CHIR-090 is the main factor affecting microbial ecology be-
cause it inhibits growth of many of the Gram-negative bac-
teria (40% of Gram-negative bacteria are inhibited in this
study), thus disturbing the microbiota. Meanwhile, it allows
other bacteria to grow because space and nutrients are
spared. Thus, without altering other conditions and
adding CHIR-090 into blood culture bottles, the
number of species isolated can be increased by at
least a quarter. Increasing the number of samples
would allow isolation of more bacteria; however,
when a source is difficult to obtain, CHIR-090 can,
to some degree, offset this deficiency. Therefore, we

Fig. 2 Overall information of 102 isolated species in five samples. a Distribution of 102 bacteria species in 5 samples. The light blue color
represents the presence and blank space indicates the absence. b Numbers of bacterial species found in sample(s). c Amounts of overlap
between and among samples
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believe that CHIR-090 has great potential for isolat-
ing diverse species in the gut microbiota and discov-
ering new bacterial species.

Conclusion
In this study, we introduced CHIR-090 in culturomics of
human gut microbiota. First, we found that CHIR-090
could inhibit E. coli, P. aeruginosa, K. pneumoniae, and
Pro. vulgaris,which are all commonly isolated species in
human feces. Second we optimize the concentration of

CHIR-090 in blood culture bottles for human feces cul-
turing. Under the concentration of 400 μg/mL, CHIR-
090 increased bacterial diverisity of isolates in five fecal
samples by 23.50%, showing its usefulness in fecal
microbiota culturomics. Application of LpxC enzyme in-
hibitor increased the number of species isolated from
the human gut.

Methods
Bacterial strains
E. coli, P. aeruginosa, K. pneumoniae, Pro. vulgaris, and
B. vulgatus were isolated from the human feces and pre-
served at − 80 °C in our laboratory. MALDI–TOF MS
was conducted by QuantiHealth Technology Co. Ltd.
(Beijing, China) to confirm the species identity of the in-
oculated colonies before usage.

CHIR-090
CHIR-090 (Beijing BioRab Technology Co. Ltd., Beijing,
China), also called benzamide, N-[(1S,2R)-2-hydroxy-1-
[(hydroxyamino)carbonyl] propyl]-4-[2-[4- (4-morpholi-
nylmethyl) phenyl]ethynyl], is a two-step, slow, tight-
binding inhibitor of E. coli LpxC. Before usage, CHIR-
090 was dissolved in DMSO.

Fig. 3 Distribution and percentages of bacteria in each group. a The distribution of 102 bacteria in different groups at 6 points in time under
general condition. b The percentage of all bacteria identified in blank bottles and CHIR-090 bottles under general, anaerobic, and aerobic
conditions. Blue represents the blank group, yellow represents the CHIR-090 group, and green indicates presence in both bottles
(common group)

Table 2 Percentages of bacteria present in blank or CHIR090
group in each sample under different conditions

BA% CHA% CA% BO% CHO% CO% B% CH% C%

F2 35.70 35.70 28.60 42.30 34.60 23.10 37.80 28.90 33.30

F3 36.40 30.30 33.30 57.10 23.80 19.10 42.80 28.60 28.60

F4 25.90 40.70 33.30 35.30 35.30 29.40 25.00 30.60 44.40

F5 20.70 37.90 41.40 32.10 42.90 25.00 25.50 35.30 39.20

F6 25.80 38.70 35.50 63.20 21.10 15.80 39.10 30.40 30.40

Mean 28.90 36.60 34.40 46.00 31.50 22.48 34.04 30.76 25.18

BA, blank group, anaerobic, CHA, CHIR-090 group, anaerobic, CA, common
group, anaerobic, BO, blank group, aerobic, CHO, CHIR-090 group, aerobic; CO,
common group, aerobic, B, blank group, general, CH, CHIR-090 group, general,
C, common group, general
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Antibacterial capacity of CHIR-090
Colonies of E. coli, P. aeruginosa, K. pneumoniae, Pro. vul-
garis, and B. vulgatus were inoculated into YCFA liquid
medium [41] with different concentrations of CHIR-090
(8, 40, 80, and 200 μg/mL). For controls, we inoculated
colonies into bottles with DMSO and into bottles without
any treatment (“blanks”). All bottles were incubated at
37 °C under aerobic conditions for 24 h. The cultures were
then cultivated using the agar dilution method at 37 °C
under aerobic conditions for 24 h. Finally, colony-forming
units (CFU) on each agar plate were counted.

Stool samples and pretreatment
Six fresh fecal samples were collected from six healthy hu-
man adults who met the screening criteria for donors in
the European Fecal Microbiota Transplantation (FMT)
criteria [42] and were designated F1 to F6. Each fecal sam-
ple (500mg) was diluted in 15ml of sterile phosphate buf-
fer saline (PBS) immediately after collection and blended
thoroughly. Then, 0.5 ml of each sample suspension was
injected into a blood culture bottle with 5% sheep blood
and 5% rumen liquid for enrichment.

Optimization of the applied concentration of CHIR-090
Dissolved CHIR-090 was injected into blood culture bot-
tles (with 5% sheep blood and 5% rumen fluid) to reach
a concentration of 80, 400, or 800 μg/ml; bottles with
DMSO and without treatments (blanks) were used as
controls. After diluting 500mg of fresh fecal sample F1
with 15 ml of sterile PBS, 0.5 ml of the diluted suspen-
sion was added into each prepared bottle (liquid volume
50ml) and incubated at 37 °C, under anaerobic or aer-
obic condition for 24 h. The cultures were then culti-
vated using the agar dilution method at 37 °C under

aerobic conditions for 24 h and anaerobic conditions for
48 h. The colonies were collected and identified by
MALDI–TOF MS; if colonies were not identifiable, they
were subjected to 16S rDNA sequencing.

Cultivation strategy
Blood cultures containing 5% sheep blood, 5% rumen
fluid, and CHIR-090 (400 μg/ml) were used to enrich the
fresh stool dilutions at 37 °C under anaerobic and aerobic
conditions for 1month. On days 1, 3, 6, 12, 21, and 30,
samples of enriched cultures were extracted from the bot-
tles by syringe, and doubling dilutions were spread onto
YCFA plates for culture at 37 °C under aerobic conditions
for 24 h or anaerobic conditions for 48 h. Colonies were
picked according to their appearance (size, color, and
shape) for subculture in YCFA liquid medium. The sub-
cultures were then streak-inoculated and later identified
by MALDI–TOF MS or 16S rDNA sequencing.

MALDI–TOF MS
Colonies were first identified by MALDI–TOF MS using
an Autof ms1000 system (QuantiHealth Technology Co.
Ltd., Beijing, China) after being deposited into 1 ml of
lysis buffer (70% formic acid) and 1ml of matrix solution
(saturated α-cyano acid-4-hydroxycinnamic in 50%
acetonitrile and 2.5% trifluoroacetic acid). Each spectrum
was compared with those of known samples in the data-
base. A colony was not labeled as credible at the species
level without a total score ≥ 9.0.

16S rDNA sequencing
Colonies that were not identified by MALDI-TOF MS
were subjected to 16S rDNA sequencing with primers 27F
(5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R (5′-

Table 3 Fourteen bacterial species that have not previously been isolated from humans or the human gut

Bacteria Source Group Initial source

Not isolated in human new species (Bacillus.sp) F5 CHIR090 /

Bacillus altitudinis F5,6 CHIR090 cryogenic tubes [13]

Lysinibacillus louembei F5 CHIR090 alkaline fermented leaves of cassava [14]

Lysinibacillus pakistanensis F2 CHIR090 the Manasbal Lake [15]

Vagococcus teuberi F2 CHIR090 fermented Cow Milk [16]

Oceanobacillus chironomi F5,6 Blank chironomid egg mass [17]

Pseudogracilibacillus auburnensis F5 Blank rhizosphere of Zea mays [18]

Paenibacillus fonticola F5 Blank warm spring [19]

Exiguobacterium undae F2,3,4,5,6 Common pond water [20]

bacillus aerius F3,4,6 Common cryogenic tubes [13]

Lysinibacillus macroides F3,5 Common cow dung [21]

Bacillus safensis F3 Common spacecraft and assembly-facility surfaces [22]

Not isolated in human gut Fusobacterium ulcerans F4 Blank tropical ulcers [23]

Enterobacter amnigenus F2,4,5,6 Blank blood of a heart transplant patient [24]
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GGTTACCTTGTTACGACTT-3′) (Tsingke Biological
Technology Co. Ltd., Beijing, China). For identification at
the species level, we chose a threshold similarity of >
98.0%. An isolate with a similarity value below this thresh-
old was suspected to be a new species.

Classification of cultivated species
We used an online database of isolated bacteria in
humans (http://hpr.mediterranee-infection.com/arkothe-
que/client/ihu_bacteries/recherche/index.php) to classify
all isolates into four categories: new species, known spe-
cies in human gut, species previously isolated from the
environment but first isolated from humans, and species
previously isolated from humans but first isolated from
human gut. We also conducted literature searches on
PubMed to compare against published papers and con-
firm the classification.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12866-019-1681-6.

Additional file 1: Supplementary table and figure.

Additional file 2: Table S2 Taxonomic information of 102 species of
bacteria.
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