Skip to main content
. Author manuscript; available in PMC: 2020 Nov 15.
Published in final edited form as: Arch Biochem Biophys. 2019 Oct 14;676:108140. doi: 10.1016/j.abb.2019.108140

Table 2.

Kinetic Rate Constant Estimates determined by Surface Plasmon Resonance a

Protein kon (M−1s−1) SD koff (s−1) SD Kd (nM) errorb Ki (nM)c Fold differencef
H1 WTd 2.23×105 5.0×103 6.03×10−5 3.1×10−6 0.271 0.015 0.021 12.9
H1 WTd,e 4.85×105 2.06×105 7.10×10−5 5.6×10−6 0.146 0.063 0.021 7.0
H2 WT 1.28×105 1.54×104 2.76×10−4 2.32×10−5 2.16 0.32 2.11 1.02
H2 WTe 2.3×105 2.39×104 3.69×10−4 6.45×10−5 1.61 0.32 2.11 0.8
H1 L59F 1.12×105 7.00×103 0.2020 0.0351 2050 478 200 10
H2 T125A 7.21×104 4.61×103 5.3×10−3 3.0×10−4 73.5 6.3 53 1.4
H2 T125Ae 1.33×105 2.21×104 4.8×10−3 6.8×10−4 36.5 8.0 53 0.7
H2 N127A 3.48×104 6.81×102 0.0591 0.0084 1710 773 397 4.3
a

Microscopic rate constant estimates are the average of three individual sensorgrams.

b

The dissociation constant error was propagated from the on- and off-rate standard deviations.

c

The inhibition constants determined by progress curve analysis (WT) or 5×5 assay (EapH1 L59F, EapH2 T125A and N127A; Fig. 7).

d

Values previously determined by Herdendorf and Geisbrecht. 3.

e

Microscopic rate constant estimates determined by single-cycle binding kinetics.

f

The fold difference depicts the difference between the dissociation constant determined by SPR and the inhibition constant determined by kinetic analysis.