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Abstract

Simultaneous multi-slice or multi-band (SMS/MB) imaging allows accelerated coverage in
magnetic resonance imaging (MRI). Multiple slices are excited and acquired at the same time, and
reconstructed using the redundancies in receiver coil arrays, similar to parallel imaging. SMS/MB
reconstruction is currently performed with linear reconstruction techniques. Recently, a nonlinear
reconstruction method for parallel imaging, Robust Artificial-neural-networks for k-space
Interpolation (RAKI) was proposed and shown to improve upon linear methods. This method uses
convolutional neural networks (CNN) trained solely on subject-specific calibration data. In this
study, we sought to extend RAKI to SMS/MB imaging reconstruction. CNN training was
performed on calibration data acquired prior to SMS/MB imaging, in a manner consistent with the
existing linear methods. These CNNs were used to reconstruct a time series of functional MRI
(fMRI) data. CNN network parameters were optimized using an extensive search of the parameter
space. With these optimal parameters, RAKI substantially improves image quality compared to a
commonly used linear reconstruction algorithm, especially for high acceleration rates.

[. Introduction

Acquisition times in Magnetic Resonance Imaging (MRI) remain long, especially compared
to other imaging modalities. Therefore several methods for accelerating MRI have been
proposed. Parallel imaging is the most clinically utilized strategy [1]-[3]. These methods use
the differences in the receiver profiles of coil arrays [4], which lead to redundancies in
acquisition. Redundancies in these profiles are estimated from calibration data that is
acquired at the beginning of each MRI exam or scan [2], [3]. The reconstruction can be
performed in image domain using a least squares formulation [2] or in k-space using linear
shift-invariant interpolation [3].

A related acceleration technique, called simultaneous multislice or multi-band (SMS/MB)
imaging provides fast coverage of the scans by encoding and acquiring multiple slices
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simultaneously [5]. The images are then recovered in a manner similar to parallel imaging,
using the distinct sensitivities of the coils, which exhibit further variations for different
slices. Several reconstruction methods have been proposed, including image domain
techniques [6]-[8] and k-space interpolation strategies [9], [10]. For all these methods, scan-
specific calibration data is acquired prior to SMS/MB imaging. The SMS/MB calibration
data is often higher resolution compared to parallel imaging, as one calibration dataset is
typically used to reconstruct series of images. SMS/MB imaging has been used in large-
scale NIH projects, such as the Human Connectome Project [11], for fast acquisition of
functional MRI (fMRI) and diffusion MRI.

The linear reconstruction approaches that are frequently used for accelerated MRI suffer
from noise amplification that increases with higher undersampling rates [2], [3]. Thus,
alternative strategies have been explored. Recently, multiple methods that use machine
learning for improved regularization have been suggested [12]-[19]. These regularizers are
learned on large training databases, which deviates from the scan-specific calibration of the
linear strategies. In another line of work, a method called Robust Artificial-neural-networks
for k-space Interpolation (RAKI) has been proposed for improving parallel imaging in a
scan-specific manner [20]. RAKI uses multi-layer CNNs, trained on subject-specific
calibration data, to interpolate missing points in k-space, extending on the linear
convolutional kernels of conventional methods, such as Generalized Autocalibrating Partial
Parallel Acquisition (GRAPPA) [3]. This method was shown to reduce the noise
amplification in parallel imaging compared to GRAPPA [20].

In this study, we sought to extend the utility of RAKI to SMS/MB imaging. Subject-specific
training of the CNNs was performed using the SMS/MB calibration data. Due to the higher
resolution of the calibration data, bigger networks or convolutional kernels can be utilized,
while over-fitting of the CNNs may also be a concern. Thus, extensive search of the
parameter space was performed to yield CNNs that are robust to over-fitting, while
improving noise performance. SMS/MB RAKI was applied to 8-fold and 16-fold accelerated
fMRI, and compared to a conventional linear method called RO-SENSE-GRAPPA [21],
showing improved robustness to noise.

[I. Methods

A. Background on k-space Interpolation and RAKI

k-space interpolation approaches are widely used for parallel imaging reconstruction of
undersampled MRI data, with GRAPPA [3] being one of the most clinically-used methods.
In GRAPPA, the ACS can be obtained integrally or as a separate scan. A set of linear shift-
invariant convolution kernel are estimated from this ACS data, which are subsequently
utilized to interpolate the missing points in a uniformly undersampled k-space acquisition
using the acquired ones in its vicinity [3]. As with other linear approaches, GRAPPA suffers
from noise amplification at high acceleration rates [2].

RAKI extends on this linear convolution by performing nonlinear interpolation using CNNs
[20]. Similar to GRAPPA, the CNNs are trained from the ACS data, which are subsequently
used to interpolate the missing k-space points from the acquired ones. In [20], a three-layer
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CNN was used, although deeper architectures are also possible for larger ACS data. The first
two layers of the network include convolutions and a point-wise non-linear operation via the
rectified linear unit (ReLU), defined as ReLU(x) = max(x, 0). The last layer of the network
only contains convolutions to generate the final estimates. This non-linear interpolation
strategy was shown to improve upon the noise amplification associated with GRAPPA [20].

B. RAKI for SMS/MB Imaging

In extending RAKI to SMS/MB imaging, we used a readout concatenation strategy to
transform the SMS/MB reconstruction into a one-dimensional interpolation problem [21].
To generate the ACS signal, fully sampled slices were obtained in individual scans prior to
the fMRI acquisition. These were concatenated along the readout direction in image domain
(Figure 1) to generate the calibration data that was used for CNN training. Subsequently, the
SMS/MB-encoded images (Figure 2a) were zero-filled in k-space with the corresponding
MB rates (Figure 2b). Image unfolding was then achieved by k-space interpolation using
RAKI trained on the subject-specific calibration data (Figure 2c).

For SMS/MB RAKI, we used a three-layer CNN similar to RAKI [20]. The input to the
network is the acquired and zero-filled k-space data across all coils (mapped to the real
field), and the output is the missing points in each coil. For an SMS/MB acceleration rate of
R, the output contains /#— 1 channels. For outputting coil ¢, the first two layers of the
network implement non-linear functions F{(x) = ReLU(wlc * x), and F5(x) = ReLU(wZC * x),

while the last layer is given by F§(x) = w$ * x. Here, wS, wS, w§ are sets of convolutional

operators used in reconstructing the data in the ¢ channel, which were respectively in size

x; X y;, X i; X 0;, where p €{1, 2, 3}. By design o5 = R — 1. The overall interpolation

function is given as F“(x) = F§(F5(F{(x))). For each channel in the receiver coil array, a

corresponding CNN is trained from the ACS data based on the mean-square error loss
function. A total of 27, such CNNs are trained, where 7, is the number of coils in the
receiver array, and the factor of 2 is due to the mapping of the complex k-space values to R.

C. InVivo Imaging Experiments

Imaging was performed on a 3T Siemens Magnetom Prisma (Siemens Healthcare, Erlangen,
Germany) scanner with a 32-channel receiver head coil-array. fMRI acquisition was
performed using the Human Connectome Project protocol [22] with resolution = 2 x 2 x
2mm3, using blipped-CAIPI encoding [23] with a field-of-view/3 shift between adjacent
multiband slices. Images were acquired using a multiband rate of 8 (MB8) with echo time =
37ms, repetition time = 800ms, in accordance with the Human Connectome Project protocol,
as well as at a higher multiband rate of 16 (MB16) with echo time = 37ms, repetition time =
1000ms. Calibration data containing the individual slices was acquired prior to the fMRI
image series at the same resolution.

The subject-specific ACS data was used for training of the CNN as described in Section II-
B. The mean-square error loss function was minimized using the Adam optimizer [24].
Network parameters were optimized using an extensive search of the parameter space,
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through the following values: x; e {1,3,5,7}, y; e (1,2,4,6}, i;, (); € {18, 16,32,64,128}, for
P€{1, 2,3} As noted earlier, o5 = R — 1 was fixed. The trained network corresponding to

each set of values was used to reconstruct both MB8 and MB16 data. These reconstructions
were qualitatively evaluated by an observer for certain fidelity criteria (Figure 3), which
included a) the reconstruction of low-intensity slices in the higher part of the skull, b)
robustness to overfitting with respect to ghosting artifacts, c) resilience to noise
amplification. The optimized network parameters were subsequently used for the
reconstruction of MB8 and MB16 datasets. To further test noise sensitivity, Gaussian white
noise was retrospectively added to MB8 datasets, which were subsequently reconstructed.
For comparison in all cases, conventional RO-SENSE-GRAPPA reconstruction using a 5 x 4
kernel was also implemented on the same ACS data.

SMS/MB RAKI was implemented using python 3.6.2 and TensorFlow 1.3.0, supported by
CUDA 8.0 and CuDNN 7.0.5. Python environment was created by Anaconda 3.8.3.
GRAPPA was implemented using Matlab R2012b (MathWorks Inc., Natick, MA). All
experiments were performed on a server with two Intel E5-2643 CPUs (6 cores each, 3.7
GHz), 256 GB memory, a NVIDIA Tesla K80 GPU (single precision 8.74 TFLOPS, 24 GB
memory), running Linux 3.10.0 OS with GCC 4.8.5.

Results

Based on the criteria outlined in Section I1-C, the extensive search of the CNN parameter
space yielded two sets of network parameters for both MB8 and MB16. The first set
corresponded to convolutional kernels of size 3 x 2 x 2/7,x 32,1 x 1 x 32 x 32,5 % 4 x 32 x

R—-1for wS, wS, w§ respectively. The second set led to kernels of size 3 x 2 x 271, 32, 1
1x32x128,5x4x 128 x R—-1for wS, wS, w§ respectively. Figure 4 shows the

reconstruction results using these two networks. No apparent visual difference between these
two results were observed. Thus, the first set of parameters were used for the remainder of
the experiments in order to reduce running time.

Figure 5 depicts the results of the MB16 fMRI reconstruction. Figure 5a and ¢ show the
results of the conventional RO-SENSE-GRAPPA reconstruction for the first and second set
of eight slices respectively. These reconstructions exhibit noise amplification at this high
acceleration rate. These noise artifacts are visibly reduced using the proposed SMS/MB
RAKI approach, as shown in Figure 5b and d for the same sets of slices, respectively.

Figure 6 shows the results of noise sensitivity for an MB8 reconstruction, when noise is
retrospectively added to the acquired data to simulate a low-SNR acquisition. The
reconstruction noise in RO-SENSE-GRAPPA reconstruction scales with the increased input
noise, rendering these images unusable. The SMS/MB RAKI approach exhibits higher
robustness to input noise, enabling the reconstruction of these eight slices from low-SNR k-
space data.
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V. Conclusion

In this paper we extended the subject-specific CNN interpolation of the RAKI reconstruction
to SMS/MB imaging. Parameter selection for the CNN was highlighted in this application
due to the availability of higher resolution calibration data. SMS/MB RAKI provided
improved noise robustness and reconstruction quality at high SMS/MB rates compared to a
conventional linear reconstruction approach.
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Fig. 1.
Generation of ACS signal for SMS/MB reconstruction. a) Fully sampled slices were

obtained from calibration scans prior to fMRI acquisition. b) Image slices were concatenated
in image domain along the readout direction. ¢) This readout-concatenated image was
transformed to k-space, which served as the calibration data for CNN training.
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a

Fig. 2.
Reconstruction procedure for SMS/MB imaging. a) Folded image in k-space (left) and

image domain (right) at the acquisition matrix size. b) Zero-filled k-space data in k-space
(top) and image domain (bottom). c) Reconstructed image after using k-space interpolation
in k-space (top) and image domain (bottom).
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a b c

Fig. 3.

Reconstruction quality varies among different CNNs. a) A CNN that failed to recover the
first slice properly. b) A CNN capable of reconstructing all slices while controlling the noise
level. ¢) A CNN that recovers the first slice but suffers from noise amplification.
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Fig. 4.
Reconstruction results using the two networks with the optimal set of parameters as

determined by extensive search of the parameter space, a) The reconstruction results for the
first set of parameters. b) The reconstruction results for the second set of parameters.
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Fig. 5.
MB16 reconstruction results. a) Slice 1 to 8 using RO-SENSE-GRAPPA, b) Slice 1 to 8

using SMS/MB RAKI. ¢) Slice 9 to 16 using RO-SENSE-GRAPPA. d) Slice 9 to 16 using
SMS/MB RAKI.
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Fig. 6.
Noise sensitivity test using MB8 data using a) RO-SENSE-GRAPPA, b)SMS/MB RAKI

reconstructions.
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